Merge pull request #4804 from wpaulino/proper-gossip-query-reply-chunk-splitting

discovery: adhere to proper channel chunk splitting for ReplyChannelRange
This commit is contained in:
Conner Fromknecht 2020-12-10 18:10:07 -08:00 committed by GitHub
commit d870bb5002
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 396 additions and 245 deletions

@ -10,6 +10,7 @@ import (
"io"
"math"
"net"
"sort"
"sync"
"time"
@ -1704,12 +1705,25 @@ func (c *ChannelGraph) FilterKnownChanIDs(chanIDs []uint64) ([]uint64, error) {
return newChanIDs, nil
}
// BlockChannelRange represents a range of channels for a given block height.
type BlockChannelRange struct {
// Height is the height of the block all of the channels below were
// included in.
Height uint32
// Channels is the list of channels identified by their short ID
// representation known to us that were included in the block height
// above.
Channels []lnwire.ShortChannelID
}
// FilterChannelRange returns the channel ID's of all known channels which were
// mined in a block height within the passed range. This method can be used to
// quickly share with a peer the set of channels we know of within a particular
// range to catch them up after a period of time offline.
func (c *ChannelGraph) FilterChannelRange(startHeight, endHeight uint32) ([]uint64, error) {
var chanIDs []uint64
// mined in a block height within the passed range. The channel IDs are grouped
// by their common block height. This method can be used to quickly share with a
// peer the set of channels we know of within a particular range to catch them
// up after a period of time offline.
func (c *ChannelGraph) FilterChannelRange(startHeight,
endHeight uint32) ([]BlockChannelRange, error) {
startChanID := &lnwire.ShortChannelID{
BlockHeight: startHeight,
@ -1728,6 +1742,7 @@ func (c *ChannelGraph) FilterChannelRange(startHeight, endHeight uint32) ([]uint
byteOrder.PutUint64(chanIDStart[:], startChanID.ToUint64())
byteOrder.PutUint64(chanIDEnd[:], endChanID.ToUint64())
var channelsPerBlock map[uint32][]lnwire.ShortChannelID
err := kvdb.View(c.db, func(tx kvdb.RTx) error {
edges := tx.ReadBucket(edgeBucket)
if edges == nil {
@ -1742,33 +1757,51 @@ func (c *ChannelGraph) FilterChannelRange(startHeight, endHeight uint32) ([]uint
// We'll now iterate through the database, and find each
// channel ID that resides within the specified range.
var cid uint64
for k, _ := cursor.Seek(chanIDStart[:]); k != nil &&
bytes.Compare(k, chanIDEnd[:]) <= 0; k, _ = cursor.Next() {
// This channel ID rests within the target range, so
// we'll convert it into an integer and add it to our
// returned set.
cid = byteOrder.Uint64(k)
chanIDs = append(chanIDs, cid)
// we'll add it to our returned set.
rawCid := byteOrder.Uint64(k)
cid := lnwire.NewShortChanIDFromInt(rawCid)
channelsPerBlock[cid.BlockHeight] = append(
channelsPerBlock[cid.BlockHeight], cid,
)
}
return nil
}, func() {
chanIDs = nil
channelsPerBlock = make(map[uint32][]lnwire.ShortChannelID)
})
switch {
// If we don't know of any channels yet, then there's nothing to
// filter, so we'll return an empty slice.
case err == ErrGraphNoEdgesFound:
return chanIDs, nil
case err == ErrGraphNoEdgesFound || len(channelsPerBlock) == 0:
return nil, nil
case err != nil:
return nil, err
}
return chanIDs, nil
// Return the channel ranges in ascending block height order.
blocks := make([]uint32, 0, len(channelsPerBlock))
for block := range channelsPerBlock {
blocks = append(blocks, block)
}
sort.Slice(blocks, func(i, j int) bool {
return blocks[i] < blocks[j]
})
channelRanges := make([]BlockChannelRange, 0, len(channelsPerBlock))
for _, block := range blocks {
channelRanges = append(channelRanges, BlockChannelRange{
Height: block,
Channels: channelsPerBlock[block],
})
}
return channelRanges, nil
}
// FetchChanInfos returns the set of channel edges that correspond to the passed

@ -1848,24 +1848,32 @@ func TestFilterChannelRange(t *testing.T) {
t.Fatalf("expected zero chans, instead got %v", len(resp))
}
// To start, we'll create a set of channels, each mined in a block 10
// To start, we'll create a set of channels, two mined in a block 10
// blocks after the prior one.
startHeight := uint32(100)
endHeight := startHeight
const numChans = 10
chanIDs := make([]uint64, 0, numChans)
for i := 0; i < numChans; i++ {
channelRanges := make([]BlockChannelRange, 0, numChans/2)
for i := 0; i < numChans/2; i++ {
chanHeight := endHeight
channel, chanID := createEdge(
uint32(chanHeight), uint32(i+1), 0, 0, node1, node2,
channel1, chanID1 := createEdge(
chanHeight, uint32(i+1), 0, 0, node1, node2,
)
if err := graph.AddChannelEdge(&channel); err != nil {
if err := graph.AddChannelEdge(&channel1); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
chanIDs = append(chanIDs, chanID.ToUint64())
channel2, chanID2 := createEdge(
chanHeight, uint32(i+2), 0, 0, node1, node2,
)
if err := graph.AddChannelEdge(&channel2); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
channelRanges = append(channelRanges, BlockChannelRange{
Height: chanHeight,
Channels: []lnwire.ShortChannelID{chanID1, chanID2},
})
endHeight += 10
}
@ -1876,7 +1884,7 @@ func TestFilterChannelRange(t *testing.T) {
startHeight uint32
endHeight uint32
resp []uint64
resp []BlockChannelRange
}{
// If we query for the entire range, then we should get the same
// set of short channel IDs back.
@ -1884,7 +1892,7 @@ func TestFilterChannelRange(t *testing.T) {
startHeight: startHeight,
endHeight: endHeight,
resp: chanIDs,
resp: channelRanges,
},
// If we query for a range of channels right before our range, we
@ -1900,7 +1908,7 @@ func TestFilterChannelRange(t *testing.T) {
startHeight: endHeight - 10,
endHeight: endHeight - 10,
resp: chanIDs[9:],
resp: channelRanges[4:],
},
// If we query for just the first height, we should only get a
@ -1909,7 +1917,14 @@ func TestFilterChannelRange(t *testing.T) {
startHeight: startHeight,
endHeight: startHeight,
resp: chanIDs[:1],
resp: channelRanges[:1],
},
{
startHeight: startHeight + 10,
endHeight: endHeight - 10,
resp: channelRanges[1:5],
},
}
for i, queryCase := range queryCases {

@ -39,10 +39,11 @@ type ChannelGraphTimeSeries interface {
superSet []lnwire.ShortChannelID) ([]lnwire.ShortChannelID, error)
// FilterChannelRange returns the set of channels that we created
// between the start height and the end height. We'll use this to to a
// remote peer's QueryChannelRange message.
// between the start height and the end height. The channel IDs are
// grouped by their common block height. We'll use this to to a remote
// peer's QueryChannelRange message.
FilterChannelRange(chain chainhash.Hash,
startHeight, endHeight uint32) ([]lnwire.ShortChannelID, error)
startHeight, endHeight uint32) ([]channeldb.BlockChannelRange, error)
// FetchChanAnns returns a full set of channel announcements as well as
// their updates that match the set of specified short channel ID's.
@ -203,26 +204,15 @@ func (c *ChanSeries) FilterKnownChanIDs(chain chainhash.Hash,
}
// FilterChannelRange returns the set of channels that we created between the
// start height and the end height. We'll use this respond to a remote peer's
// QueryChannelRange message.
// start height and the end height. The channel IDs are grouped by their common
// block height. We'll use this respond to a remote peer's QueryChannelRange
// message.
//
// NOTE: This is part of the ChannelGraphTimeSeries interface.
func (c *ChanSeries) FilterChannelRange(chain chainhash.Hash,
startHeight, endHeight uint32) ([]lnwire.ShortChannelID, error) {
startHeight, endHeight uint32) ([]channeldb.BlockChannelRange, error) {
chansInRange, err := c.graph.FilterChannelRange(startHeight, endHeight)
if err != nil {
return nil, err
}
chanResp := make([]lnwire.ShortChannelID, 0, len(chansInRange))
for _, chanID := range chansInRange {
chanResp = append(
chanResp, lnwire.NewShortChanIDFromInt(chanID),
)
}
return chanResp, nil
return c.graph.FilterChannelRange(startHeight, endHeight)
}
// FetchChanAnns returns a full set of channel announcements as well as their

@ -265,16 +265,6 @@ type AuthenticatedGossiper struct {
// every new block height.
blockEpochs *chainntnfs.BlockEpochEvent
// prematureAnnouncements maps a block height to a set of network
// messages which are "premature" from our PoV. A message is premature
// if it claims to be anchored in a block which is beyond the current
// main chain tip as we know it. Premature network messages will be
// processed once the chain tip as we know it extends to/past the
// premature height.
//
// TODO(roasbeef): limit premature networkMsgs to N
prematureAnnouncements map[uint32][]*networkMsg
// prematureChannelUpdates is a map of ChannelUpdates we have received
// that wasn't associated with any channel we know about. We store
// them temporarily, such that we can reprocess them when a
@ -338,21 +328,22 @@ func New(cfg Config, selfKey *btcec.PublicKey) *AuthenticatedGossiper {
networkMsgs: make(chan *networkMsg),
quit: make(chan struct{}),
chanPolicyUpdates: make(chan *chanPolicyUpdateRequest),
prematureAnnouncements: make(map[uint32][]*networkMsg),
prematureChannelUpdates: make(map[uint64][]*networkMsg),
channelMtx: multimutex.NewMutex(),
recentRejects: make(map[uint64]struct{}),
heightForLastChanUpdate: make(map[uint64][2]uint32),
syncMgr: newSyncManager(&SyncManagerCfg{
ChainHash: cfg.ChainHash,
ChanSeries: cfg.ChanSeries,
RotateTicker: cfg.RotateTicker,
HistoricalSyncTicker: cfg.HistoricalSyncTicker,
NumActiveSyncers: cfg.NumActiveSyncers,
IgnoreHistoricalFilters: cfg.IgnoreHistoricalFilters,
}),
}
gossiper.syncMgr = newSyncManager(&SyncManagerCfg{
ChainHash: cfg.ChainHash,
ChanSeries: cfg.ChanSeries,
RotateTicker: cfg.RotateTicker,
HistoricalSyncTicker: cfg.HistoricalSyncTicker,
NumActiveSyncers: cfg.NumActiveSyncers,
IgnoreHistoricalFilters: cfg.IgnoreHistoricalFilters,
BestHeight: gossiper.latestHeight,
})
gossiper.reliableSender = newReliableSender(&reliableSenderCfg{
NotifyWhenOnline: cfg.NotifyWhenOnline,
NotifyWhenOffline: cfg.NotifyWhenOffline,
@ -1045,33 +1036,11 @@ func (d *AuthenticatedGossiper) networkHandler() {
d.Lock()
blockHeight := uint32(newBlock.Height)
d.bestHeight = blockHeight
d.Unlock()
log.Debugf("New block: height=%d, hash=%s", blockHeight,
newBlock.Hash)
// Next we check if we have any premature announcements
// for this height, if so, then we process them once
// more as normal announcements.
premature := d.prematureAnnouncements[blockHeight]
if len(premature) == 0 {
d.Unlock()
continue
}
delete(d.prematureAnnouncements, blockHeight)
d.Unlock()
log.Infof("Re-processing %v premature announcements "+
"for height %v", len(premature), blockHeight)
for _, ann := range premature {
emittedAnnouncements := d.processNetworkAnnouncement(ann)
if emittedAnnouncements != nil {
announcements.AddMsgs(
emittedAnnouncements...,
)
}
}
// The trickle timer has ticked, which indicates we should
// flush to the network the pending batch of new announcements
// we've received since the last trickle tick.
@ -1501,7 +1470,6 @@ func (d *AuthenticatedGossiper) addNode(msg *lnwire.NodeAnnouncement) error {
func (d *AuthenticatedGossiper) processNetworkAnnouncement(
nMsg *networkMsg) []networkMsg {
// isPremature *MUST* be called with the gossiper's lock held.
isPremature := func(chanID lnwire.ShortChannelID, delta uint32) bool {
// TODO(roasbeef) make height delta 6
// * or configurable
@ -1593,18 +1561,12 @@ func (d *AuthenticatedGossiper) processNetworkAnnouncement(
// to be fully verified once we advance forward in the chain.
d.Lock()
if nMsg.isRemote && isPremature(msg.ShortChannelID, 0) {
blockHeight := msg.ShortChannelID.BlockHeight
log.Infof("Announcement for chan_id=(%v), is "+
"premature: advertises height %v, only "+
"height %v is known",
msg.ShortChannelID.ToUint64(),
msg.ShortChannelID.BlockHeight,
d.bestHeight)
d.prematureAnnouncements[blockHeight] = append(
d.prematureAnnouncements[blockHeight],
nMsg,
)
d.Unlock()
return nil
}
@ -1824,11 +1786,6 @@ func (d *AuthenticatedGossiper) processNetworkAnnouncement(
"height %v, only height %v is known",
shortChanID, blockHeight,
d.bestHeight)
d.prematureAnnouncements[blockHeight] = append(
d.prematureAnnouncements[blockHeight],
nMsg,
)
d.Unlock()
return nil
}
@ -2124,10 +2081,6 @@ func (d *AuthenticatedGossiper) processNetworkAnnouncement(
// to other clients if this constraint was changed.
d.Lock()
if isPremature(msg.ShortChannelID, d.cfg.ProofMatureDelta) {
d.prematureAnnouncements[needBlockHeight] = append(
d.prematureAnnouncements[needBlockHeight],
nMsg,
)
log.Infof("Premature proof announcement, "+
"current block height lower than needed: %v <"+
" %v, add announcement to reprocessing batch",
@ -2644,3 +2597,10 @@ func IsKeepAliveUpdate(update *lnwire.ChannelUpdate,
}
return true
}
// latestHeight returns the gossiper's latest height known of the chain.
func (d *AuthenticatedGossiper) latestHeight() uint32 {
d.Lock()
defer d.Unlock()
return d.bestHeight
}

@ -918,8 +918,7 @@ func TestPrematureAnnouncement(t *testing.T) {
// Pretending that we receive the valid channel update announcement from
// remote side, but block height of this announcement is greater than
// highest know to us, for that reason it should be added to the
// repeat/premature batch.
// highest known to us, so it should be rejected.
ua, err := createUpdateAnnouncement(1, 0, nodeKeyPriv1, timestamp)
if err != nil {
t.Fatalf("can't create update announcement: %v", err)
@ -934,31 +933,6 @@ func TestPrematureAnnouncement(t *testing.T) {
if len(ctx.router.edges) != 0 {
t.Fatal("edge update was added to router")
}
// Generate new block and waiting the previously added announcements
// to be proceeded.
newBlock := &wire.MsgBlock{}
ctx.notifier.notifyBlock(newBlock.Header.BlockHash(), 1)
select {
case <-ctx.broadcastedMessage:
case <-time.After(2 * trickleDelay):
t.Fatal("announcement wasn't broadcasted")
}
if len(ctx.router.infos) != 1 {
t.Fatalf("edge wasn't added to router: %v", err)
}
select {
case <-ctx.broadcastedMessage:
case <-time.After(2 * trickleDelay):
t.Fatal("announcement wasn't broadcasted")
}
if len(ctx.router.edges) != 1 {
t.Fatalf("edge update wasn't added to router: %v", err)
}
}
// TestSignatureAnnouncementLocalFirst ensures that the AuthenticatedGossiper

@ -89,6 +89,9 @@ type SyncManagerCfg struct {
// This prevents ranges with old start times from causing us to dump the
// graph on connect.
IgnoreHistoricalFilters bool
// BestHeight returns the latest height known of the chain.
BestHeight func() uint32
}
// SyncManager is a subsystem of the gossiper that manages the gossip syncers
@ -419,7 +422,11 @@ func (m *SyncManager) createGossipSyncer(peer lnpeer.Peer) *GossipSyncer {
sendToPeerSync: func(msgs ...lnwire.Message) error {
return peer.SendMessageLazy(true, msgs...)
},
ignoreHistoricalFilters: m.cfg.IgnoreHistoricalFilters,
ignoreHistoricalFilters: m.cfg.IgnoreHistoricalFilters,
maxUndelayedQueryReplies: DefaultMaxUndelayedQueryReplies,
delayedQueryReplyInterval: DefaultDelayedQueryReplyInterval,
bestHeight: m.cfg.BestHeight,
maxQueryChanRangeReplies: maxQueryChanRangeReplies,
})
// Gossip syncers are initialized by default in a PassiveSync type

@ -2,7 +2,6 @@ package discovery
import (
"fmt"
"math"
"reflect"
"sync/atomic"
"testing"
@ -12,6 +11,7 @@ import (
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/ticker"
"github.com/stretchr/testify/require"
)
// randPeer creates a random peer.
@ -34,6 +34,9 @@ func newTestSyncManager(numActiveSyncers int) *SyncManager {
RotateTicker: ticker.NewForce(DefaultSyncerRotationInterval),
HistoricalSyncTicker: ticker.NewForce(DefaultHistoricalSyncInterval),
NumActiveSyncers: numActiveSyncers,
BestHeight: func() uint32 {
return latestKnownHeight
},
})
}
@ -202,7 +205,7 @@ func TestSyncManagerInitialHistoricalSync(t *testing.T) {
syncMgr.InitSyncState(peer)
assertMsgSent(t, peer, &lnwire.QueryChannelRange{
FirstBlockHeight: 0,
NumBlocks: math.MaxUint32,
NumBlocks: latestKnownHeight,
})
// The graph should not be considered as synced since the initial
@ -290,7 +293,7 @@ func TestSyncManagerForceHistoricalSync(t *testing.T) {
syncMgr.InitSyncState(peer)
assertMsgSent(t, peer, &lnwire.QueryChannelRange{
FirstBlockHeight: 0,
NumBlocks: math.MaxUint32,
NumBlocks: latestKnownHeight,
})
// If an additional peer connects, then a historical sync should not be
@ -305,7 +308,7 @@ func TestSyncManagerForceHistoricalSync(t *testing.T) {
syncMgr.cfg.HistoricalSyncTicker.(*ticker.Force).Force <- time.Time{}
assertMsgSent(t, extraPeer, &lnwire.QueryChannelRange{
FirstBlockHeight: 0,
NumBlocks: math.MaxUint32,
NumBlocks: latestKnownHeight,
})
}
@ -326,7 +329,7 @@ func TestSyncManagerGraphSyncedAfterHistoricalSyncReplacement(t *testing.T) {
syncMgr.InitSyncState(peer)
assertMsgSent(t, peer, &lnwire.QueryChannelRange{
FirstBlockHeight: 0,
NumBlocks: math.MaxUint32,
NumBlocks: latestKnownHeight,
})
// The graph should not be considered as synced since the initial
@ -531,14 +534,18 @@ func assertTransitionToChansSynced(t *testing.T, s *GossipSyncer, peer *mockPeer
query := &lnwire.QueryChannelRange{
FirstBlockHeight: 0,
NumBlocks: math.MaxUint32,
NumBlocks: latestKnownHeight,
}
assertMsgSent(t, peer, query)
s.ProcessQueryMsg(&lnwire.ReplyChannelRange{
require.Eventually(t, func() bool {
return s.syncState() == waitingQueryRangeReply
}, time.Second, 500*time.Millisecond)
require.NoError(t, s.ProcessQueryMsg(&lnwire.ReplyChannelRange{
QueryChannelRange: *query,
Complete: 1,
}, nil)
}, nil))
chanSeries := s.cfg.channelSeries.(*mockChannelGraphTimeSeries)

@ -4,6 +4,8 @@ import (
"errors"
"fmt"
"math"
"math/rand"
"sort"
"sync"
"sync/atomic"
"time"
@ -128,6 +130,14 @@ const (
// maxUndelayedQueryReplies queries.
DefaultDelayedQueryReplyInterval = 5 * time.Second
// maxQueryChanRangeReplies specifies the default limit of replies to
// process for a single QueryChannelRange request.
maxQueryChanRangeReplies = 500
// maxQueryChanRangeRepliesZlibFactor specifies the factor applied to
// the maximum number of replies allowed for zlib encoded replies.
maxQueryChanRangeRepliesZlibFactor = 4
// chanRangeQueryBuffer is the number of blocks back that we'll go when
// asking the remote peer for their any channels they know of beyond
// our highest known channel ID.
@ -237,6 +247,13 @@ type gossipSyncerCfg struct {
// This prevents ranges with old start times from causing us to dump the
// graph on connect.
ignoreHistoricalFilters bool
// bestHeight returns the latest height known of the chain.
bestHeight func() uint32
// maxQueryChanRangeReplies is the maximum number of replies we'll allow
// for a single QueryChannelRange request.
maxQueryChanRangeReplies uint32
}
// GossipSyncer is a struct that handles synchronizing the channel graph state
@ -313,6 +330,11 @@ type GossipSyncer struct {
// buffer all the chunked response to our query.
bufferedChanRangeReplies []lnwire.ShortChannelID
// numChanRangeRepliesRcvd is used to track the number of replies
// received as part of a QueryChannelRange. This field is primarily used
// within the waitingQueryChanReply state.
numChanRangeRepliesRcvd uint32
// newChansToQuery is used to pass the set of channels we should query
// for from the waitingQueryChanReply state to the queryNewChannels
// state.
@ -738,17 +760,27 @@ func (g *GossipSyncer) processChanRangeReply(msg *lnwire.ReplyChannelRange) erro
g.bufferedChanRangeReplies = append(
g.bufferedChanRangeReplies, msg.ShortChanIDs...,
)
switch g.cfg.encodingType {
case lnwire.EncodingSortedPlain:
g.numChanRangeRepliesRcvd++
case lnwire.EncodingSortedZlib:
g.numChanRangeRepliesRcvd += maxQueryChanRangeRepliesZlibFactor
default:
return fmt.Errorf("unhandled encoding type %v", g.cfg.encodingType)
}
log.Infof("GossipSyncer(%x): buffering chan range reply of size=%v",
g.cfg.peerPub[:], len(msg.ShortChanIDs))
// If this isn't the last response, then we can exit as we've already
// buffered the latest portion of the streaming reply.
// If this isn't the last response and we can continue to receive more,
// then we can exit as we've already buffered the latest portion of the
// streaming reply.
maxReplies := g.cfg.maxQueryChanRangeReplies
switch {
// If we're communicating with a legacy node, we'll need to look at the
// complete field.
case isLegacyReplyChannelRange(g.curQueryRangeMsg, msg):
if msg.Complete == 0 {
if msg.Complete == 0 && g.numChanRangeRepliesRcvd < maxReplies {
return nil
}
@ -760,7 +792,8 @@ func (g *GossipSyncer) processChanRangeReply(msg *lnwire.ReplyChannelRange) erro
// TODO(wilmer): This might require some padding if the remote
// node is not aware of the last height we sent them, i.e., is
// behind a few blocks from us.
if replyLastHeight < queryLastHeight {
if replyLastHeight < queryLastHeight &&
g.numChanRangeRepliesRcvd < maxReplies {
return nil
}
}
@ -783,6 +816,7 @@ func (g *GossipSyncer) processChanRangeReply(msg *lnwire.ReplyChannelRange) erro
g.curQueryRangeMsg = nil
g.prevReplyChannelRange = nil
g.bufferedChanRangeReplies = nil
g.numChanRangeRepliesRcvd = 0
// If there aren't any channels that we don't know of, then we can
// switch straight to our terminal state.
@ -834,9 +868,17 @@ func (g *GossipSyncer) genChanRangeQuery(
startHeight = uint32(newestChan.BlockHeight - chanRangeQueryBuffer)
}
// Determine the number of blocks to request based on our best height.
// We'll take into account any potential underflows and explicitly set
// numBlocks to its minimum value of 1 if so.
bestHeight := g.cfg.bestHeight()
numBlocks := bestHeight - startHeight
if int64(numBlocks) < 1 {
numBlocks = 1
}
log.Infof("GossipSyncer(%x): requesting new chans from height=%v "+
"and %v blocks after", g.cfg.peerPub[:], startHeight,
math.MaxUint32-startHeight)
"and %v blocks after", g.cfg.peerPub[:], startHeight, numBlocks)
// Finally, we'll craft the channel range query, using our starting
// height, then asking for all known channels to the foreseeable end of
@ -844,7 +886,7 @@ func (g *GossipSyncer) genChanRangeQuery(
query := &lnwire.QueryChannelRange{
ChainHash: g.cfg.chainHash,
FirstBlockHeight: startHeight,
NumBlocks: math.MaxUint32 - startHeight,
NumBlocks: numBlocks,
}
g.curQueryRangeMsg = query
@ -919,7 +961,7 @@ func (g *GossipSyncer) replyChanRangeQuery(query *lnwire.QueryChannelRange) erro
// channel ID's that match their query.
startBlock := query.FirstBlockHeight
endBlock := query.LastBlockHeight()
channelRange, err := g.cfg.channelSeries.FilterChannelRange(
channelRanges, err := g.cfg.channelSeries.FilterChannelRange(
query.ChainHash, startBlock, endBlock,
)
if err != nil {
@ -929,102 +971,98 @@ func (g *GossipSyncer) replyChanRangeQuery(query *lnwire.QueryChannelRange) erro
// TODO(roasbeef): means can't send max uint above?
// * or make internal 64
// In the base case (no actual response) the first block and last block
// will match those of the query. In the loop below, we'll update these
// two variables incrementally with each chunk to properly compute the
// starting block for each response and the number of blocks in a
// response.
firstBlockHeight := startBlock
lastBlockHeight := endBlock
// We'll send our response in a streaming manner, chunk-by-chunk. We do
// this as there's a transport message size limit which we'll need to
// adhere to. We also need to make sure all of our replies cover the
// expected range of the query.
sendReplyForChunk := func(channelChunk []lnwire.ShortChannelID,
firstHeight, lastHeight uint32, finalChunk bool) error {
numChannels := int32(len(channelRange))
numChansSent := int32(0)
for {
// We'll send our this response in a streaming manner,
// chunk-by-chunk. We do this as there's a transport message
// size limit which we'll need to adhere to.
var channelChunk []lnwire.ShortChannelID
// We know this is the final chunk, if the difference between
// the total number of channels, and the number of channels
// we've sent is less-than-or-equal to the chunk size.
isFinalChunk := (numChannels - numChansSent) <= g.cfg.chunkSize
// If this is indeed the last chunk, then we'll send the
// remainder of the channels.
if isFinalChunk {
channelChunk = channelRange[numChansSent:]
log.Infof("GossipSyncer(%x): sending final chan "+
"range chunk, size=%v", g.cfg.peerPub[:],
len(channelChunk))
} else {
// Otherwise, we'll only send off a fragment exactly
// sized to the proper chunk size.
channelChunk = channelRange[numChansSent : numChansSent+g.cfg.chunkSize]
log.Infof("GossipSyncer(%x): sending range chunk of "+
"size=%v", g.cfg.peerPub[:], len(channelChunk))
}
// If we have any channels at all to return, then we need to
// update our pointers to the first and last blocks for each
// response.
if len(channelChunk) > 0 {
// If this is the first response we'll send, we'll point
// the first block to the first block in the query.
// Otherwise, we'll continue from the block we left off
// at.
if numChansSent == 0 {
firstBlockHeight = startBlock
} else {
firstBlockHeight = lastBlockHeight
}
// If this is the last response we'll send, we'll point
// the last block to the last block of the query.
// Otherwise, we'll set it to the height of the last
// channel in the chunk.
if isFinalChunk {
lastBlockHeight = endBlock
} else {
lastBlockHeight = channelChunk[len(channelChunk)-1].BlockHeight
}
}
// The number of blocks contained in this response (the total
// span) is the difference between the last channel ID and the
// first in the range. We add one as even if all channels
// The number of blocks contained in the current chunk (the
// total span) is the difference between the last channel ID and
// the first in the range. We add one as even if all channels
// returned are in the same block, we need to count that.
numBlocksInResp := lastBlockHeight - firstBlockHeight + 1
numBlocks := lastHeight - firstHeight + 1
complete := uint8(0)
if finalChunk {
complete = 1
}
// With our chunk assembled, we'll now send to the remote peer
// the current chunk.
replyChunk := lnwire.ReplyChannelRange{
return g.cfg.sendToPeerSync(&lnwire.ReplyChannelRange{
QueryChannelRange: lnwire.QueryChannelRange{
ChainHash: query.ChainHash,
NumBlocks: numBlocksInResp,
FirstBlockHeight: firstBlockHeight,
NumBlocks: numBlocks,
FirstBlockHeight: firstHeight,
},
Complete: 0,
Complete: complete,
EncodingType: g.cfg.encodingType,
ShortChanIDs: channelChunk,
})
}
var (
firstHeight = query.FirstBlockHeight
lastHeight uint32
channelChunk []lnwire.ShortChannelID
)
for _, channelRange := range channelRanges {
channels := channelRange.Channels
numChannels := int32(len(channels))
numLeftToAdd := g.cfg.chunkSize - int32(len(channelChunk))
// Include the current block in the ongoing chunk if it can fit
// and move on to the next block.
if numChannels <= numLeftToAdd {
channelChunk = append(channelChunk, channels...)
continue
}
if isFinalChunk {
replyChunk.Complete = 1
}
if err := g.cfg.sendToPeerSync(&replyChunk); err != nil {
// Otherwise, we need to send our existing channel chunk as is
// as its own reply and start a new one for the current block.
// We'll mark the end of our current chunk as the height before
// the current block to ensure the whole query range is replied
// to.
log.Infof("GossipSyncer(%x): sending range chunk of size=%v",
g.cfg.peerPub[:], len(channelChunk))
lastHeight = channelRange.Height - 1
err := sendReplyForChunk(
channelChunk, firstHeight, lastHeight, false,
)
if err != nil {
return err
}
// If this was the final chunk, then we'll exit now as our
// response is now complete.
if isFinalChunk {
return nil
// With the reply constructed, we'll start tallying channels for
// our next one keeping in mind our chunk size. This may result
// in channels for this block being left out from the reply, but
// this isn't an issue since we'll randomly shuffle them and we
// assume a historical gossip sync is performed at a later time.
firstHeight = channelRange.Height
chunkSize := numChannels
exceedsChunkSize := numChannels > g.cfg.chunkSize
if exceedsChunkSize {
rand.Shuffle(len(channels), func(i, j int) {
channels[i], channels[j] = channels[j], channels[i]
})
chunkSize = g.cfg.chunkSize
}
channelChunk = channels[:chunkSize]
numChansSent += int32(len(channelChunk))
// Sort the chunk once again if we had to shuffle it.
if exceedsChunkSize {
sort.Slice(channelChunk, func(i, j int) bool {
return channelChunk[i].ToUint64() <
channelChunk[j].ToUint64()
})
}
}
// Send the remaining chunk as the final reply.
log.Infof("GossipSyncer(%x): sending final chan range chunk, size=%v",
g.cfg.peerPub[:], len(channelChunk))
return sendReplyForChunk(
channelChunk, firstHeight, query.LastBlockHeight(), true,
)
}
// replyShortChanIDs will be dispatched in response to a query by the remote
@ -1274,11 +1312,23 @@ func (g *GossipSyncer) FilterGossipMsgs(msgs ...msgWithSenders) {
// ProcessQueryMsg is used by outside callers to pass new channel time series
// queries to the internal processing goroutine.
func (g *GossipSyncer) ProcessQueryMsg(msg lnwire.Message, peerQuit <-chan struct{}) {
func (g *GossipSyncer) ProcessQueryMsg(msg lnwire.Message, peerQuit <-chan struct{}) error {
var msgChan chan lnwire.Message
switch msg.(type) {
case *lnwire.QueryChannelRange, *lnwire.QueryShortChanIDs:
msgChan = g.queryMsgs
// Reply messages should only be expected in states where we're waiting
// for a reply.
case *lnwire.ReplyChannelRange, *lnwire.ReplyShortChanIDsEnd:
syncState := g.syncState()
if syncState != waitingQueryRangeReply &&
syncState != waitingQueryChanReply {
return fmt.Errorf("received unexpected query reply "+
"message %T", msg)
}
msgChan = g.gossipMsgs
default:
msgChan = g.gossipMsgs
}
@ -1288,6 +1338,8 @@ func (g *GossipSyncer) ProcessQueryMsg(msg lnwire.Message, peerQuit <-chan struc
case <-peerQuit:
case <-g.quit:
}
return nil
}
// setSyncState sets the gossip syncer's state to the given state.

@ -5,6 +5,7 @@ import (
"fmt"
"math"
"reflect"
"sort"
"sync"
"testing"
"time"
@ -12,7 +13,9 @@ import (
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/stretchr/testify/require"
)
const (
@ -95,11 +98,36 @@ func (m *mockChannelGraphTimeSeries) FilterKnownChanIDs(chain chainhash.Hash,
return <-m.filterResp, nil
}
func (m *mockChannelGraphTimeSeries) FilterChannelRange(chain chainhash.Hash,
startHeight, endHeight uint32) ([]lnwire.ShortChannelID, error) {
startHeight, endHeight uint32) ([]channeldb.BlockChannelRange, error) {
m.filterRangeReqs <- filterRangeReq{startHeight, endHeight}
reply := <-m.filterRangeResp
return <-m.filterRangeResp, nil
channelsPerBlock := make(map[uint32][]lnwire.ShortChannelID)
for _, cid := range reply {
channelsPerBlock[cid.BlockHeight] = append(
channelsPerBlock[cid.BlockHeight], cid,
)
}
// Return the channel ranges in ascending block height order.
blocks := make([]uint32, 0, len(channelsPerBlock))
for block := range channelsPerBlock {
blocks = append(blocks, block)
}
sort.Slice(blocks, func(i, j int) bool {
return blocks[i] < blocks[j]
})
channelRanges := make([]channeldb.BlockChannelRange, 0, len(channelsPerBlock))
for _, block := range blocks {
channelRanges = append(channelRanges, channeldb.BlockChannelRange{
Height: block,
Channels: channelsPerBlock[block],
})
}
return channelRanges, nil
}
func (m *mockChannelGraphTimeSeries) FetchChanAnns(chain chainhash.Hash,
shortChanIDs []lnwire.ShortChannelID) ([]lnwire.Message, error) {
@ -158,6 +186,10 @@ func newTestSyncer(hID lnwire.ShortChannelID,
return nil
},
delayedQueryReplyInterval: 2 * time.Second,
bestHeight: func() uint32 {
return latestKnownHeight
},
maxQueryChanRangeReplies: maxQueryChanRangeReplies,
}
syncer := newGossipSyncer(cfg)
@ -825,6 +857,7 @@ func TestGossipSyncerReplyChanRangeQuery(t *testing.T) {
// reply. We should get three sets of messages as two of them should be
// full, while the other is the final fragment.
const numExpectedChunks = 3
var prevResp *lnwire.ReplyChannelRange
respMsgs := make([]lnwire.ShortChannelID, 0, 5)
for i := 0; i < numExpectedChunks; i++ {
select {
@ -852,14 +885,14 @@ func TestGossipSyncerReplyChanRangeQuery(t *testing.T) {
// channels.
case i == 0:
expectedFirstBlockHeight = startingBlockHeight
expectedNumBlocks = chunkSize + 1
expectedNumBlocks = 4
// The last reply should range starting from the next
// block of our previous reply up until the ending
// height of the query. It should also have the Complete
// bit set.
case i == numExpectedChunks-1:
expectedFirstBlockHeight = respMsgs[len(respMsgs)-1].BlockHeight
expectedFirstBlockHeight = prevResp.LastBlockHeight() + 1
expectedNumBlocks = endingBlockHeight - expectedFirstBlockHeight + 1
expectedComplete = 1
@ -867,8 +900,8 @@ func TestGossipSyncerReplyChanRangeQuery(t *testing.T) {
// the next block of our previous reply up until it
// reaches its maximum capacity of channels.
default:
expectedFirstBlockHeight = respMsgs[len(respMsgs)-1].BlockHeight
expectedNumBlocks = 5
expectedFirstBlockHeight = prevResp.LastBlockHeight() + 1
expectedNumBlocks = 4
}
switch {
@ -886,9 +919,10 @@ func TestGossipSyncerReplyChanRangeQuery(t *testing.T) {
case rangeResp.Complete != expectedComplete:
t.Fatalf("Complete in resp #%d incorrect: "+
"expected %v, got %v", i+1,
expectedNumBlocks, rangeResp.Complete)
expectedComplete, rangeResp.Complete)
}
prevResp = rangeResp
respMsgs = append(respMsgs, rangeResp.ShortChanIDs...)
}
}
@ -1134,9 +1168,9 @@ func TestGossipSyncerGenChanRangeQuery(t *testing.T) {
rangeQuery.FirstBlockHeight,
startingHeight-chanRangeQueryBuffer)
}
if rangeQuery.NumBlocks != math.MaxUint32-firstHeight {
if rangeQuery.NumBlocks != latestKnownHeight-firstHeight {
t.Fatalf("wrong num blocks: expected %v, got %v",
math.MaxUint32-firstHeight, rangeQuery.NumBlocks)
latestKnownHeight-firstHeight, rangeQuery.NumBlocks)
}
// Generating a historical range query should result in a start height
@ -1149,9 +1183,9 @@ func TestGossipSyncerGenChanRangeQuery(t *testing.T) {
t.Fatalf("incorrect chan range query: expected %v, %v", 0,
rangeQuery.FirstBlockHeight)
}
if rangeQuery.NumBlocks != math.MaxUint32 {
if rangeQuery.NumBlocks != latestKnownHeight {
t.Fatalf("wrong num blocks: expected %v, got %v",
math.MaxUint32, rangeQuery.NumBlocks)
latestKnownHeight, rangeQuery.NumBlocks)
}
}
@ -1495,10 +1529,12 @@ func TestGossipSyncerDelayDOS(t *testing.T) {
// inherently disjoint.
var syncer2Chans []lnwire.ShortChannelID
for i := 0; i < numTotalChans; i++ {
syncer2Chans = append(syncer2Chans, lnwire.ShortChannelID{
BlockHeight: highestID.BlockHeight - 1,
TxIndex: uint32(i),
})
syncer2Chans = append([]lnwire.ShortChannelID{
{
BlockHeight: highestID.BlockHeight - uint32(i) - 1,
TxIndex: uint32(i),
},
}, syncer2Chans...)
}
// We'll kick off the test by asserting syncer1 sends over the
@ -2234,7 +2270,7 @@ func TestGossipSyncerHistoricalSync(t *testing.T) {
// sent to the remote peer with a FirstBlockHeight of 0.
expectedMsg := &lnwire.QueryChannelRange{
FirstBlockHeight: 0,
NumBlocks: math.MaxUint32,
NumBlocks: latestKnownHeight,
}
select {
@ -2302,3 +2338,80 @@ func TestGossipSyncerSyncedSignal(t *testing.T) {
t.Fatal("expected to receive chansSynced signal")
}
}
// TestGossipSyncerMaxChannelRangeReplies ensures that a gossip syncer
// transitions its state after receiving the maximum possible number of replies
// for a single QueryChannelRange message, and that any further replies after
// said limit are not processed.
func TestGossipSyncerMaxChannelRangeReplies(t *testing.T) {
t.Parallel()
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.ShortChannelID{BlockHeight: latestKnownHeight},
defaultEncoding, defaultChunkSize,
)
// We'll tune the maxQueryChanRangeReplies to a more sensible value for
// the sake of testing.
syncer.cfg.maxQueryChanRangeReplies = 100
syncer.Start()
defer syncer.Stop()
// Upon initialization, the syncer should submit a QueryChannelRange
// request.
var query *lnwire.QueryChannelRange
select {
case msgs := <-msgChan:
require.Len(t, msgs, 1)
require.IsType(t, &lnwire.QueryChannelRange{}, msgs[0])
query = msgs[0].(*lnwire.QueryChannelRange)
case <-time.After(time.Second):
t.Fatal("expected query channel range request msg")
}
// We'll send the maximum number of replies allowed to a
// QueryChannelRange request with each reply consuming only one block in
// order to transition the syncer's state.
for i := uint32(0); i < syncer.cfg.maxQueryChanRangeReplies; i++ {
reply := &lnwire.ReplyChannelRange{
QueryChannelRange: *query,
ShortChanIDs: []lnwire.ShortChannelID{
{
BlockHeight: query.FirstBlockHeight + i,
},
},
}
reply.FirstBlockHeight = query.FirstBlockHeight + i
reply.NumBlocks = 1
require.NoError(t, syncer.ProcessQueryMsg(reply, nil))
}
// We should receive a filter request for the syncer's local channels
// after processing all of the replies. We'll send back a nil response
// indicating that no new channels need to be synced, so it should
// transition to its final chansSynced state.
select {
case <-chanSeries.filterReq:
case <-time.After(time.Second):
t.Fatal("expected local filter request of known channels")
}
select {
case chanSeries.filterResp <- nil:
case <-time.After(time.Second):
t.Fatal("timed out sending filter response")
}
assertSyncerStatus(t, syncer, chansSynced, ActiveSync)
// Finally, attempting to process another reply for the same query
// should result in an error.
require.Error(t, syncer.ProcessQueryMsg(&lnwire.ReplyChannelRange{
QueryChannelRange: *query,
ShortChanIDs: []lnwire.ShortChannelID{
{
BlockHeight: query.LastBlockHeight() + 1,
},
},
}, nil))
}