autopilot: split channel definition into LocalChannel/ChannelEdge

Since non-local channels won't have a balance field, we split the
definitions in anticipation of adding one.
This commit is contained in:
Johan T. Halseth 2020-10-02 13:56:43 +02:00
parent 3e1755ee99
commit d40cf6b592
No known key found for this signature in database
GPG Key ID: 15BAADA29DA20D26
14 changed files with 66 additions and 72 deletions

@ -65,11 +65,11 @@ type Config struct {
// channelState is a type that represents the set of active channels of the
// backing LN node that the Agent should be aware of. This type contains a few
// helper utility methods.
type channelState map[lnwire.ShortChannelID]Channel
type channelState map[lnwire.ShortChannelID]LocalChannel
// Channels returns a slice of all the active channels.
func (c channelState) Channels() []Channel {
chans := make([]Channel, 0, len(c))
func (c channelState) Channels() []LocalChannel {
chans := make([]LocalChannel, 0, len(c))
for _, channel := range c {
chans = append(chans, channel)
}
@ -163,7 +163,7 @@ type Agent struct {
// initiated, but haven't yet been confirmed as being fully opened.
// This state is required as otherwise, we may go over our allotted
// channel limit, or open multiple channels to the same node.
pendingOpens map[NodeID]Channel
pendingOpens map[NodeID]LocalChannel
pendingMtx sync.Mutex
quit chan struct{}
@ -174,10 +174,10 @@ type Agent struct {
// configuration and initial channel state. The initial channel state slice
// should be populated with the set of Channels that are currently opened by
// the backing Lightning Node.
func New(cfg Config, initialState []Channel) (*Agent, error) {
func New(cfg Config, initialState []LocalChannel) (*Agent, error) {
a := &Agent{
cfg: cfg,
chanState: make(map[lnwire.ShortChannelID]Channel),
chanState: make(map[lnwire.ShortChannelID]LocalChannel),
quit: make(chan struct{}),
stateUpdates: make(chan interface{}),
balanceUpdates: make(chan *balanceUpdate, 1),
@ -187,7 +187,7 @@ func New(cfg Config, initialState []Channel) (*Agent, error) {
pendingOpenUpdates: make(chan *chanPendingOpenUpdate, 1),
failedNodes: make(map[NodeID]struct{}),
pendingConns: make(map[NodeID]struct{}),
pendingOpens: make(map[NodeID]Channel),
pendingOpens: make(map[NodeID]LocalChannel),
}
for _, c := range initialState {
@ -249,7 +249,7 @@ type nodeUpdates struct{}
// channel has been opened, either by the Agent itself (within the main
// controller loop), or by an external user to the system.
type chanOpenUpdate struct {
newChan Channel
newChan LocalChannel
}
// chanPendingOpenUpdate is a type of external state update that indicates a new
@ -294,7 +294,7 @@ func (a *Agent) OnNodeUpdates() {
// OnChannelOpen is a callback that should be executed each time a new channel
// is manually opened by the user or any system outside the autopilot agent.
func (a *Agent) OnChannelOpen(c Channel) {
func (a *Agent) OnChannelOpen(c LocalChannel) {
a.wg.Add(1)
go func() {
defer a.wg.Done()
@ -356,7 +356,7 @@ func (a *Agent) OnHeuristicUpdate(h AttachmentHeuristic) {
// channels open to, with the other sets of nodes that should be removed from
// consideration during heuristic selection. This ensures that the Agent doesn't
// attempt to open any "duplicate" channels to the same node.
func mergeNodeMaps(c map[NodeID]Channel,
func mergeNodeMaps(c map[NodeID]LocalChannel,
skips ...map[NodeID]struct{}) map[NodeID]struct{} {
numNodes := len(c)
@ -380,11 +380,11 @@ func mergeNodeMaps(c map[NodeID]Channel,
// mergeChanState merges the Agent's set of active channels, with the set of
// channels awaiting confirmation. This ensures that the agent doesn't go over
// the prescribed channel limit or fund allocation limit.
func mergeChanState(pendingChans map[NodeID]Channel,
activeChans channelState) []Channel {
func mergeChanState(pendingChans map[NodeID]LocalChannel,
activeChans channelState) []LocalChannel {
numChans := len(pendingChans) + len(activeChans)
totalChans := make([]Channel, 0, numChans)
totalChans := make([]LocalChannel, 0, numChans)
totalChans = append(totalChans, activeChans.Channels()...)
@ -549,7 +549,7 @@ func (a *Agent) controller() {
// openChans queries the agent's heuristic for a set of channel candidates, and
// attempts to open channels to them.
func (a *Agent) openChans(availableFunds btcutil.Amount, numChans uint32,
totalChans []Channel) error {
totalChans []LocalChannel) error {
// As channel size we'll use the maximum channel size available.
chanSize := a.cfg.Constraints.MaxChanSize()
@ -828,7 +828,7 @@ func (a *Agent) executeDirective(directive AttachmentDirective) {
// opens. We do this here to ensure we don't stall on selecting new
// peers if the connection attempt happens to take too long.
delete(a.pendingConns, nodeID)
a.pendingOpens[nodeID] = Channel{
a.pendingOpens[nodeID] = LocalChannel{
Capacity: directive.ChanAmt,
Node: nodeID,
}

@ -13,7 +13,7 @@ type AgentConstraints interface {
// the first return value will represent the amount of additional funds
// available towards creating channels. The second return value is the
// exact *number* of additional channels available.
ChannelBudget(chans []Channel, balance btcutil.Amount) (
ChannelBudget(chans []LocalChannel, balance btcutil.Amount) (
btcutil.Amount, uint32)
// MaxPendingOpens returns the maximum number of pending channel
@ -82,7 +82,7 @@ func NewConstraints(minChanSize, maxChanSize btcutil.Amount, chanLimit,
// additional channels available.
//
// Note: part of the AgentConstraints interface.
func (h *agentConstraints) ChannelBudget(channels []Channel,
func (h *agentConstraints) ChannelBudget(channels []LocalChannel,
funds btcutil.Amount) (btcutil.Amount, uint32) {
// If we're already over our maximum allowed number of channels, then

@ -37,7 +37,7 @@ func TestConstraintsChannelBudget(t *testing.T) {
}
testCases := []struct {
channels []Channel
channels []LocalChannel
walletAmt btcutil.Amount
needMore bool
@ -47,7 +47,7 @@ func TestConstraintsChannelBudget(t *testing.T) {
// Many available funds, but already have too many active open
// channels.
{
[]Channel{
[]LocalChannel{
{
ChanID: randChanID(),
Capacity: btcutil.Amount(prand.Int31()),
@ -70,7 +70,7 @@ func TestConstraintsChannelBudget(t *testing.T) {
// Ratio of funds in channels and total funds meets the
// threshold.
{
[]Channel{
[]LocalChannel{
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin),
@ -93,7 +93,7 @@ func TestConstraintsChannelBudget(t *testing.T) {
// recommended. We should also request 2 more channels as the
// limit is 3.
{
[]Channel{
[]LocalChannel{
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin),
@ -113,7 +113,7 @@ func TestConstraintsChannelBudget(t *testing.T) {
// to be committed. We should only request a single additional
// channel as the limit is 3.
{
[]Channel{
[]LocalChannel{
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin),
@ -132,7 +132,7 @@ func TestConstraintsChannelBudget(t *testing.T) {
// Ratio of funds in channels and total funds is above the
// threshold.
{
[]Channel{
[]LocalChannel{
{
ChanID: randChanID(),
Capacity: btcutil.Amount(btcutil.SatoshiPerBitcoin),

@ -19,7 +19,7 @@ type moreChansResp struct {
}
type moreChanArg struct {
chans []Channel
chans []LocalChannel
balance btcutil.Amount
}
@ -29,7 +29,7 @@ type mockConstraints struct {
quit chan struct{}
}
func (m *mockConstraints) ChannelBudget(chans []Channel,
func (m *mockConstraints) ChannelBudget(chans []LocalChannel,
balance btcutil.Amount) (btcutil.Amount, uint32) {
if m.moreChanArgs != nil {
@ -76,7 +76,7 @@ type mockHeuristic struct {
type directiveArg struct {
graph ChannelGraph
amt btcutil.Amount
chans []Channel
chans []LocalChannel
nodes map[NodeID]struct{}
}
@ -84,7 +84,7 @@ func (m *mockHeuristic) Name() string {
return "mock"
}
func (m *mockHeuristic) NodeScores(g ChannelGraph, chans []Channel,
func (m *mockHeuristic) NodeScores(g ChannelGraph, chans []LocalChannel,
chanSize btcutil.Amount, nodes map[NodeID]struct{}) (
map[NodeID]*NodeScore, error) {
@ -154,7 +154,7 @@ type testContext struct {
sync.Mutex
}
func setup(t *testing.T, initialChans []Channel) (*testContext, func()) {
func setup(t *testing.T, initialChans []LocalChannel) (*testContext, func()) {
t.Helper()
// First, we'll create all the dependencies that we'll need in order to
@ -291,7 +291,7 @@ func TestAgentChannelOpenSignal(t *testing.T) {
// Next we'll signal a new channel being opened by the backing LN node,
// with a capacity of 1 BTC.
newChan := Channel{
newChan := LocalChannel{
ChanID: randChanID(),
Capacity: btcutil.SatoshiPerBitcoin,
}
@ -432,7 +432,7 @@ func TestAgentChannelFailureSignal(t *testing.T) {
func TestAgentChannelCloseSignal(t *testing.T) {
t.Parallel()
// We'll start the agent with two channels already being active.
initialChans := []Channel{
initialChans := []LocalChannel{
{
ChanID: randChanID(),
Capacity: btcutil.SatoshiPerBitcoin,

@ -70,7 +70,7 @@ func (c *WeightedCombAttachment) Name() string {
// is the maximum possible improvement in connectivity.
//
// NOTE: This is a part of the AttachmentHeuristic interface.
func (c *WeightedCombAttachment) NodeScores(g ChannelGraph, chans []Channel,
func (c *WeightedCombAttachment) NodeScores(g ChannelGraph, chans []LocalChannel,
chanSize btcutil.Amount, nodes map[NodeID]struct{}) (
map[NodeID]*NodeScore, error) {

@ -80,7 +80,7 @@ func (s *ExternalScoreAttachment) SetNodeScores(targetHeuristic string,
// not known will get a score of 0.
//
// NOTE: This is a part of the AttachmentHeuristic interface.
func (s *ExternalScoreAttachment) NodeScores(g ChannelGraph, chans []Channel,
func (s *ExternalScoreAttachment) NodeScores(g ChannelGraph, chans []LocalChannel,
chanSize btcutil.Amount, nodes map[NodeID]struct{}) (
map[NodeID]*NodeScore, error) {

@ -99,11 +99,8 @@ func (d dbNode) ForEachChannel(cb func(ChannelEdge) error) error {
}
edge := ChannelEdge{
Channel: Channel{
ChanID: lnwire.NewShortChanIDFromInt(ep.ChannelID),
Capacity: ei.Capacity,
Node: NodeID(ep.Node.PubKeyBytes),
},
ChanID: lnwire.NewShortChanIDFromInt(ep.ChannelID),
Capacity: ei.Capacity,
Peer: dbNode{
tx: tx,
node: ep.Node,
@ -264,19 +261,15 @@ func (d *databaseChannelGraph) addRandChannel(node1, node2 *btcec.PublicKey,
}
return &ChannelEdge{
Channel: Channel{
ChanID: chanID,
Capacity: capacity,
},
ChanID: chanID,
Capacity: capacity,
Peer: dbNode{
node: vertex1,
},
},
&ChannelEdge{
Channel: Channel{
ChanID: chanID,
Capacity: capacity,
},
ChanID: chanID,
Capacity: capacity,
Peer: dbNode{
node: vertex2,
},
@ -424,20 +417,17 @@ func (m *memChannelGraph) addRandChannel(node1, node2 *btcec.PublicKey,
}
}
channel := Channel{
edge1 := ChannelEdge{
ChanID: randChanID(),
Capacity: capacity,
}
edge1 := ChannelEdge{
Channel: channel,
Peer: vertex2,
Peer: vertex2,
}
vertex1.chans = append(vertex1.chans, edge1)
edge2 := ChannelEdge{
Channel: channel,
Peer: vertex1,
ChanID: randChanID(),
Capacity: capacity,
Peer: vertex1,
}
vertex2.chans = append(vertex2.chans, edge2)

@ -36,10 +36,10 @@ type Node interface {
ForEachChannel(func(ChannelEdge) error) error
}
// Channel is a simple struct which contains relevant details of a particular
// channel within the channel graph. The fields in this struct may be used a
// signals for various AttachmentHeuristic implementations.
type Channel struct {
// LocalChannel is a simple struct which contains relevant details of a
// particular channel the local node has. The fields in this struct may be used
// a signals for various AttachmentHeuristic implementations.
type LocalChannel struct {
// ChanID is the short channel ID for this channel as defined within
// BOLT-0007.
ChanID lnwire.ShortChannelID
@ -59,8 +59,12 @@ type Channel struct {
// edge within the graph. The existence of this reference to the connected node
// will allow callers to traverse the graph in an object-oriented manner.
type ChannelEdge struct {
// Channel contains the attributes of this channel.
Channel
// ChanID is the short channel ID for this channel as defined within
// BOLT-0007.
ChanID lnwire.ShortChannelID
// Capacity is the capacity of the channel expressed in satoshis.
Capacity btcutil.Amount
// Peer is the peer that this channel creates an edge to in the channel
// graph.
@ -136,7 +140,7 @@ type AttachmentHeuristic interface {
//
// NOTE: A NodeID not found in the returned map is implicitly given a
// score of 0.
NodeScores(g ChannelGraph, chans []Channel,
NodeScores(g ChannelGraph, chans []LocalChannel,
chanSize btcutil.Amount, nodes map[NodeID]struct{}) (
map[NodeID]*NodeScore, error)
}

@ -23,7 +23,7 @@ type ManagerCfg struct {
// ChannelState is a function closure that returns the current set of
// channels managed by this node.
ChannelState func() ([]Channel, error)
ChannelState func() ([]LocalChannel, error)
// SubscribeTransactions is used to get a subscription for transactions
// relevant to this node's wallet.
@ -200,7 +200,7 @@ func (m *Manager) StartAgent() error {
chanID := lnwire.NewShortChanIDFromInt(
edgeUpdate.ChanID,
)
edge := Channel{
edge := LocalChannel{
ChanID: chanID,
Capacity: edgeUpdate.Capacity,
Node: chanNode,
@ -292,7 +292,7 @@ func (m *Manager) queryHeuristics(nodes map[NodeID]struct{}, localState bool) (
// If we want to take the local state into action when querying the
// heuristics, we fetch it. If not we'll just pass an emply slice to
// the heuristic.
var totalChans []Channel
var totalChans []LocalChannel
var err error
if localState {
// Fetch the current set of channels.

@ -78,7 +78,7 @@ func (p *PrefAttachment) Name() string {
// given to nodes already having high connectivity in the graph.
//
// NOTE: This is a part of the AttachmentHeuristic interface.
func (p *PrefAttachment) NodeScores(g ChannelGraph, chans []Channel,
func (p *PrefAttachment) NodeScores(g ChannelGraph, chans []LocalChannel,
chanSize btcutil.Amount, nodes map[NodeID]struct{}) (
map[NodeID]*NodeScore, error) {

@ -422,10 +422,10 @@ func TestPrefAttachmentSelectSkipNodes(t *testing.T) {
// We'll simulate a channel update by adding the nodes
// to our set of channels.
var chans []Channel
var chans []LocalChannel
for _, candidate := range scores {
chans = append(chans,
Channel{
LocalChannel{
Node: candidate.NodeID,
},
)

@ -50,7 +50,7 @@ func (g *TopCentrality) Name() string {
// As our current implementation of betweenness centrality is non-incremental,
// NodeScores will recalculate the centrality values on every call, which is
// slow for large graphs.
func (g *TopCentrality) NodeScores(graph ChannelGraph, chans []Channel,
func (g *TopCentrality) NodeScores(graph ChannelGraph, chans []LocalChannel,
chanSize btcutil.Amount, nodes map[NodeID]struct{}) (
map[NodeID]*NodeScore, error) {

@ -16,9 +16,9 @@ func testTopCentrality(t *testing.T, graph testGraph,
topCentrality := NewTopCentrality()
var channels []Channel
var channels []LocalChannel
for _, ch := range channelsWith {
channels = append(channels, Channel{
channels = append(channels, LocalChannel{
Node: NewNodeID(graphNodes[ch]),
})
}

@ -249,7 +249,7 @@ func initAutoPilot(svr *server, cfg *lncfg.AutoPilot,
return &autopilot.ManagerCfg{
Self: self,
PilotCfg: &pilotCfg,
ChannelState: func() ([]autopilot.Channel, error) {
ChannelState: func() ([]autopilot.LocalChannel, error) {
// We'll fetch the current state of open
// channels from the database to use as initial
// state for the auto-pilot agent.
@ -257,10 +257,10 @@ func initAutoPilot(svr *server, cfg *lncfg.AutoPilot,
if err != nil {
return nil, err
}
chanState := make([]autopilot.Channel,
chanState := make([]autopilot.LocalChannel,
len(activeChannels))
for i, channel := range activeChannels {
chanState[i] = autopilot.Channel{
chanState[i] = autopilot.LocalChannel{
ChanID: channel.ShortChanID(),
Capacity: channel.Capacity,
Node: autopilot.NewNodeID(