lnd_test: move chain claim tests to separate files

This commit splits out several integration tests that will be modified
in a follow up commit to separate files. The current lnd_test.go file is
10k+ loc which makes it harder to handle by tools and it isn't good for
overview either.
This commit is contained in:
Joost Jager 2019-05-08 09:31:14 +02:00
parent b917820c5b
commit bf0af12fae
No known key found for this signature in database
GPG Key ID: A61B9D4C393C59C7
4 changed files with 910 additions and 867 deletions

@ -0,0 +1,352 @@
// +build rpctest
package lnd
import (
"context"
"fmt"
"time"
"github.com/btcsuite/btcd/wire"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lntest"
)
// testMultiHopHtlcLocalChainClaim tests that in a multi-hop HTLC scenario, if
// we're forced to go to chain with an incoming HTLC, then when we find out the
// preimage via the witness beacon, we properly settle the HTLC on-chain in
// order to ensure we don't lose any funds.
func testMultiHopHtlcLocalChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
// With the network active, we'll now add a new invoice at Carol's end.
invoiceReq := &lnrpc.Invoice{
Value: 100000,
CltvExpiry: 40,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Now that we've created the invoice, we'll send a single payment from
// Alice to Carol. We won't wait for the response however, as Carol
// will not immediately settle the payment.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// We'll now wait until all 3 nodes have the HTLC as just sent fully
// locked in.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// At this point, Bob decides that he wants to exit the channel
// immediately, so he force closes his commitment transaction.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
bobForceClose := closeChannelAndAssert(ctxt, t, net, net.Bob,
aliceChanPoint, true)
// Alice will sweep her output immediately.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find alice's sweep tx in miner mempool: %v",
err)
}
// We'll now mine enough blocks so Carol decides that she needs to go
// on-chain to claim the HTLC as Bob has been inactive.
numBlocks := uint32(invoiceReq.CltvExpiry -
defaultIncomingBroadcastDelta)
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks")
}
// Carol's commitment transaction should now be in the mempool.
txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundingPoint := wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
}
// The tx should be spending from the funding transaction,
commitHash := txids[0]
tx1, err := net.Miner.Node.GetRawTransaction(commitHash)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx1.MsgTx().TxIn[0].PreviousOutPoint != carolFundingPoint {
t.Fatalf("commit transaction not spending fundingtx: %v",
spew.Sdump(tx1))
}
// Mine a block that should confirm the commit tx.
block := mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("expected 2 transactions in block, got %v",
len(block.Transactions))
}
assertTxInBlock(t, block, commitHash)
// After the force close transacion is mined, Carol should broadcast
// her second level HTLC transacion. Bob will broadcast a sweep tx to
// sweep his output in the channel with Carol. He can do this
// immediately, as the output is not timelocked since Carol was the one
// force closing.
commitSpends, err := waitForNTxsInMempool(net.Miner.Node, 2,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// Both Carol's second level transaction and Bob's sweep should be
// spending from the commitment transaction.
for _, txid := range commitSpends {
tx, err := net.Miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("tx did not spend from commitment tx")
}
}
// Mine a block to confirm the two transactions (+ the coinbase).
block = mineBlocks(t, net, 1, 2)[0]
if len(block.Transactions) != 3 {
t.Fatalf("expected 3 transactions in block, got %v",
len(block.Transactions))
}
for _, txid := range commitSpends {
assertTxInBlock(t, block, txid)
}
// Keep track of the second level tx maturity.
carolSecondLevelCSV := uint32(defaultCSV)
// When Bob notices Carol's second level transaction in the block, he
// will extract the preimage and broadcast a second level tx to claim
// the HTLC in his (already closed) channel with Alice.
bobSecondLvlTx, err := waitForTxInMempool(net.Miner.Node,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// It should spend from the commitment in the channel with Alice.
tx, err := net.Miner.Node.GetRawTransaction(bobSecondLvlTx)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *bobForceClose {
t.Fatalf("tx did not spend from bob's force close tx")
}
// At this point, Bob should have broadcast his second layer success
// transaction, and should have sent it to the nursery for incubation.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending for " +
"close chan but doesn't")
return false
}
for _, forceCloseChan := range pendingChanResp.PendingForceClosingChannels {
if forceCloseChan.Channel.LocalBalance != 0 {
continue
}
if len(forceCloseChan.PendingHtlcs) != 1 {
predErr = fmt.Errorf("bob should have pending htlc " +
"but doesn't")
return false
}
stage := forceCloseChan.PendingHtlcs[0].Stage
if stage != 1 {
predErr = fmt.Errorf("bob's htlc should have "+
"advanced to the first stage but was "+
"stage: %v", stage)
return false
}
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
}
// We'll now mine a block which should confirm Bob's second layer
// transaction.
block = mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("expected 2 transactions in block, got %v",
len(block.Transactions))
}
assertTxInBlock(t, block, bobSecondLvlTx)
// Keep track of Bob's second level maturity, and decrement our track
// of Carol's.
bobSecondLevelCSV := uint32(defaultCSV)
carolSecondLevelCSV--
// If we then mine 3 additional blocks, Carol's second level tx should
// mature, and she can pull the funds from it with a sweep tx.
if _, err := net.Miner.Node.Generate(carolSecondLevelCSV); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
bobSecondLevelCSV -= carolSecondLevelCSV
carolSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's sweeping transaction: %v", err)
}
// Mining one additional block, Bob's second level tx is mature, and he
// can sweep the output.
block = mineBlocks(t, net, bobSecondLevelCSV, 1)[0]
assertTxInBlock(t, block, carolSweep)
bobSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction")
}
// Make sure it spends from the second level tx.
tx, err = net.Miner.Node.GetRawTransaction(bobSweep)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *bobSecondLvlTx {
t.Fatalf("tx did not spend from bob's second level tx")
}
// When we mine one additional block, that will confirm Bob's sweep.
// Now Bob should have no pending channels anymore, as this just
// resolved it by the confirmation of the sweep transaction.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, bobSweep)
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
req := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanInfo, err := net.Bob.ListChannels(ctxt, req)
if err != nil {
predErr = fmt.Errorf("unable to query for open "+
"channels: %v", err)
return false
}
if len(chanInfo.Channels) != 0 {
predErr = fmt.Errorf("Bob should have no open "+
"channels, instead he has %v",
len(chanInfo.Channels))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// Also Carol should have no channels left (open nor pending).
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := carol.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob carol has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
req := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanInfo, err := carol.ListChannels(ctxt, req)
if err != nil {
predErr = fmt.Errorf("unable to query for open "+
"channels: %v", err)
return false
}
if len(chanInfo.Channels) != 0 {
predErr = fmt.Errorf("carol should have no open "+
"channels, instead she has %v",
len(chanInfo.Channels))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
}

@ -0,0 +1,265 @@
// +build rpctest
package lnd
import (
"context"
"fmt"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lntest"
)
// testMultiHopReceiverChainClaim tests that in the multi-hop setting, if the
// receiver of an HTLC knows the preimage, but wasn't able to settle the HTLC
// off-chain, then it goes on chain to claim the HTLC. In this scenario, the
// node that sent the outgoing HTLC should extract the preimage from the sweep
// transaction, and finish settling the HTLC backwards into the route.
func testMultiHopReceiverChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
// With the network active, we'll now add a new invoice at Carol's end.
// Make sure the cltv expiry delta is large enough, otherwise Bob won't
// send out the outgoing htlc.
const invoiceAmt = 100000
invoiceReq := &lnrpc.Invoice{
Value: invoiceAmt,
CltvExpiry: 40,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Now that we've created the invoice, we'll send a single payment from
// Alice to Carol. We won't wait for the response however, as Carol
// will not immediately settle the payment.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// At this point, all 3 nodes should now have an active channel with
// the created HTLC pending on all of them.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// Now we'll mine enough blocks to prompt carol to actually go to the
// chain in order to sweep her HTLC since the value is high enough.
// TODO(roasbeef): modify once go to chain policy changes
numBlocks := uint32(
invoiceReq.CltvExpiry - defaultIncomingBroadcastDelta,
)
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks")
}
// At this point, Carol should broadcast her active commitment
// transaction in order to go to the chain and sweep her HTLC.
txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
if err != nil {
t.Fatalf("expected transaction not found in mempool: %v", err)
}
bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundingPoint := wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
}
// The commitment transaction should be spending from the funding
// transaction.
commitHash := txids[0]
tx, err := net.Miner.Node.GetRawTransaction(commitHash)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
commitTx := tx.MsgTx()
if commitTx.TxIn[0].PreviousOutPoint != carolFundingPoint {
t.Fatalf("commit transaction not spending from expected "+
"outpoint: %v", spew.Sdump(commitTx))
}
// Confirm the commitment.
mineBlocks(t, net, 1, 1)
// After the force close transaction is mined, Carol should broadcast
// her second level HTLC transaction. Bob will broadcast a sweep tx to
// sweep his output in the channel with Carol. When Bob notices Carol's
// second level transaction in the mempool, he will extract the
// preimage and settle the HTLC back off-chain.
secondLevelHashes, err := waitForNTxsInMempool(net.Miner.Node, 2,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// Carol's second level transaction should be spending from
// the commitment transaction.
var secondLevelHash *chainhash.Hash
for _, txid := range secondLevelHashes {
tx, err := net.Miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash == *commitHash {
secondLevelHash = txid
}
}
if secondLevelHash == nil {
t.Fatalf("Carol's second level tx not found")
}
// We'll now mine an additional block which should confirm both the
// second layer transactions.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
time.Sleep(time.Second * 4)
// TODO(roasbeef): assert bob pending state as well
// Carol's pending channel report should now show two outputs under
// limbo: her commitment output, as well as the second-layer claim
// output.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := carol.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
t.Fatalf("carol should have pending for close chan but doesn't")
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if forceCloseChan.LimboBalance == 0 {
t.Fatalf("carol should have nonzero limbo balance instead "+
"has: %v", forceCloseChan.LimboBalance)
}
// The pending HTLC carol has should also now be in stage 2.
if len(forceCloseChan.PendingHtlcs) != 1 {
t.Fatalf("carol should have pending htlc but doesn't")
}
if forceCloseChan.PendingHtlcs[0].Stage != 2 {
t.Fatalf("carol's htlc should have advanced to the second "+
"stage: %v", err)
}
// Once the second-level transaction confirmed, Bob should have
// extracted the preimage from the chain, and sent it back to Alice,
// clearing the HTLC off-chain.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// If we mine 4 additional blocks, then both outputs should now be
// mature.
if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// We should have a new transaction in the mempool.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction: %v", err)
}
// Finally, if we mine an additional block to confirm these two sweep
// transactions, Carol should not show a pending channel in her report
// afterwards.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine block: %v", err)
}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err = carol.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("carol still has pending channels: %v",
spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// The invoice should show as settled for Carol, indicating that it was
// swept on-chain.
invoicesReq := &lnrpc.ListInvoiceRequest{}
invoicesResp, err := carol.ListInvoices(ctxb, invoicesReq)
if err != nil {
t.Fatalf("unable to retrieve invoices: %v", err)
}
if len(invoicesResp.Invoices) != 1 {
t.Fatalf("expected 1 invoice, got %d", len(invoicesResp.Invoices))
}
invoice := invoicesResp.Invoices[0]
if invoice.State != lnrpc.Invoice_SETTLED {
t.Fatalf("expected invoice to be settled on chain")
}
if invoice.AmtPaidSat != invoiceAmt {
t.Fatalf("expected invoice to be settled with %d sat, got "+
"%d sat", invoiceAmt, invoice.AmtPaidSat)
}
// We'll close out the channel between Alice and Bob, then shutdown
// carol to conclude the test.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}

@ -0,0 +1,293 @@
// +build rpctest
package lnd
import (
"context"
"fmt"
"time"
"github.com/btcsuite/btcd/wire"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lntest"
)
// testMultiHopHtlcRemoteChainClaim tests that in the multi-hop HTLC scenario,
// if the remote party goes to chain while we have an incoming HTLC, then when
// we found out the preimage via the witness beacon, we properly settle the
// HTLC on-chain in order to ensure that we don't lose any funds.
func testMultiHopHtlcRemoteChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
// With the network active, we'll now add a new invoice at Carol's end.
const invoiceAmt = 100000
invoiceReq := &lnrpc.Invoice{
Value: invoiceAmt,
CltvExpiry: 40,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Now that we've created the invoice, we'll send a single payment from
// Alice to Carol. We won't wait for the response however, as Carol
// will not immediately settle the payment.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// We'll now wait until all 3 nodes have the HTLC as just sent fully
// locked in.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// Next, Alice decides that she wants to exit the channel, so she'll
// immediately force close the channel by broadcast her commitment
// transaction.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
aliceForceClose := closeChannelAndAssert(ctxt, t, net, net.Alice,
aliceChanPoint, true)
// Wait for the channel to be marked pending force close.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = waitForChannelPendingForceClose(ctxt, net.Alice, aliceChanPoint)
if err != nil {
t.Fatalf("channel not pending force close: %v", err)
}
// Mine enough blocks for Alice to sweep her funds from the force
// closed channel.
_, err = net.Miner.Node.Generate(defaultCSV)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Alice should now sweep her funds.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find sweeping tx in mempool: %v", err)
}
// We'll now mine enough blocks so Carol decides that she needs to go
// on-chain to claim the HTLC as Bob has been inactive.
numBlocks := uint32(invoiceReq.CltvExpiry-
defaultIncomingBroadcastDelta) - defaultCSV
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks")
}
// Carol's commitment transaction should now be in the mempool.
txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundingPoint := wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
}
// The transaction should be spending from the funding transaction
commitHash := txids[0]
tx1, err := net.Miner.Node.GetRawTransaction(commitHash)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx1.MsgTx().TxIn[0].PreviousOutPoint != carolFundingPoint {
t.Fatalf("commit transaction not spending fundingtx: %v",
spew.Sdump(tx1))
}
// Mine a block, which should contain the commitment.
block := mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("expected 2 transactions in block, got %v",
len(block.Transactions))
}
assertTxInBlock(t, block, commitHash)
// After the force close transacion is mined, Carol should broadcast
// her second level HTLC transacion. Bob will broadcast a sweep tx to
// sweep his output in the channel with Carol. He can do this
// immediately, as the output is not timelocked since Carol was the one
// force closing.
commitSpends, err := waitForNTxsInMempool(net.Miner.Node, 2,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// Both Carol's second level transaction and Bob's sweep should be
// spending from the commitment transaction.
for _, txid := range commitSpends {
tx, err := net.Miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("tx did not spend from commitment tx")
}
}
// Mine a block to confirm the two transactions (+ coinbase).
block = mineBlocks(t, net, 1, 2)[0]
if len(block.Transactions) != 3 {
t.Fatalf("expected 3 transactions in block, got %v",
len(block.Transactions))
}
for _, txid := range commitSpends {
assertTxInBlock(t, block, txid)
}
// Keep track of the second level tx maturity.
carolSecondLevelCSV := uint32(defaultCSV)
// When Bob notices Carol's second level transaction in the block, he
// will extract the preimage and broadcast a sweep tx to directly claim
// the HTLC in his (already closed) channel with Alice.
bobHtlcSweep, err := waitForTxInMempool(net.Miner.Node,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// It should spend from the commitment in the channel with Alice.
tx, err := net.Miner.Node.GetRawTransaction(bobHtlcSweep)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *aliceForceClose {
t.Fatalf("tx did not spend from alice's force close tx")
}
// We'll now mine a block which should confirm Bob's HTLC sweep
// transaction.
block = mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("expected 2 transactions in block, got %v",
len(block.Transactions))
}
assertTxInBlock(t, block, bobHtlcSweep)
carolSecondLevelCSV--
// Now that the sweeping transaction has been confirmed, Bob should now
// recognize that all contracts have been fully resolved, and show no
// pending close channels.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// If we then mine 3 additional blocks, Carol's second level tx will
// mature, and she should pull the funds.
if _, err := net.Miner.Node.Generate(carolSecondLevelCSV); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
carolSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's sweeping transaction: %v", err)
}
// When Carol's sweep gets confirmed, she should have no more pending
// channels.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, carolSweep)
pendingChansRequest = &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := carol.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("carol still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// The invoice should show as settled for Carol, indicating that it was
// swept on-chain.
invoicesReq := &lnrpc.ListInvoiceRequest{}
invoicesResp, err := carol.ListInvoices(ctxb, invoicesReq)
if err != nil {
t.Fatalf("unable to retrieve invoices: %v", err)
}
if len(invoicesResp.Invoices) != 1 {
t.Fatalf("expected 1 invoice, got %d", len(invoicesResp.Invoices))
}
invoice := invoicesResp.Invoices[0]
if invoice.State != lnrpc.Invoice_SETTLED {
t.Fatalf("expected invoice to be settled on chain")
}
if invoice.AmtPaidSat != invoiceAmt {
t.Fatalf("expected invoice to be settled with %d sat, got "+
"%d sat", invoiceAmt, invoice.AmtPaidSat)
}
}

@ -9614,256 +9614,6 @@ func testMultiHopHtlcLocalTimeout(net *lntest.NetworkHarness, t *harnessTest) {
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}
// testMultiHopReceiverChainClaim tests that in the multi-hop setting, if the
// receiver of an HTLC knows the preimage, but wasn't able to settle the HTLC
// off-chain, then it goes on chain to claim the HTLC. In this scenario, the
// node that sent the outgoing HTLC should extract the preimage from the sweep
// transaction, and finish settling the HTLC backwards into the route.
func testMultiHopReceiverChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
// With the network active, we'll now add a new invoice at Carol's end.
// Make sure the cltv expiry delta is large enough, otherwise Bob won't
// send out the outgoing htlc.
const invoiceAmt = 100000
invoiceReq := &lnrpc.Invoice{
Value: invoiceAmt,
CltvExpiry: 40,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Now that we've created the invoice, we'll send a single payment from
// Alice to Carol. We won't wait for the response however, as Carol
// will not immediately settle the payment.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// At this point, all 3 nodes should now have an active channel with
// the created HTLC pending on all of them.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// Now we'll mine enough blocks to prompt carol to actually go to the
// chain in order to sweep her HTLC since the value is high enough.
// TODO(roasbeef): modify once go to chain policy changes
numBlocks := uint32(
invoiceReq.CltvExpiry - defaultIncomingBroadcastDelta,
)
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks")
}
// At this point, Carol should broadcast her active commitment
// transaction in order to go to the chain and sweep her HTLC.
txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
if err != nil {
t.Fatalf("expected transaction not found in mempool: %v", err)
}
bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundingPoint := wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
}
// The commitment transaction should be spending from the funding
// transaction.
commitHash := txids[0]
tx, err := net.Miner.Node.GetRawTransaction(commitHash)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
commitTx := tx.MsgTx()
if commitTx.TxIn[0].PreviousOutPoint != carolFundingPoint {
t.Fatalf("commit transaction not spending from expected "+
"outpoint: %v", spew.Sdump(commitTx))
}
// Confirm the commitment.
mineBlocks(t, net, 1, 1)
// After the force close transaction is mined, Carol should broadcast
// her second level HTLC transaction. Bob will broadcast a sweep tx to
// sweep his output in the channel with Carol. When Bob notices Carol's
// second level transaction in the mempool, he will extract the
// preimage and settle the HTLC back off-chain.
secondLevelHashes, err := waitForNTxsInMempool(net.Miner.Node, 2,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// Carol's second level transaction should be spending from
// the commitment transaction.
var secondLevelHash *chainhash.Hash
for _, txid := range secondLevelHashes {
tx, err := net.Miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash == *commitHash {
secondLevelHash = txid
}
}
if secondLevelHash == nil {
t.Fatalf("Carol's second level tx not found")
}
// We'll now mine an additional block which should confirm both the
// second layer transactions.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
time.Sleep(time.Second * 4)
// TODO(roasbeef): assert bob pending state as well
// Carol's pending channel report should now show two outputs under
// limbo: her commitment output, as well as the second-layer claim
// output.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := carol.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
t.Fatalf("carol should have pending for close chan but doesn't")
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if forceCloseChan.LimboBalance == 0 {
t.Fatalf("carol should have nonzero limbo balance instead "+
"has: %v", forceCloseChan.LimboBalance)
}
// The pending HTLC carol has should also now be in stage 2.
if len(forceCloseChan.PendingHtlcs) != 1 {
t.Fatalf("carol should have pending htlc but doesn't")
}
if forceCloseChan.PendingHtlcs[0].Stage != 2 {
t.Fatalf("carol's htlc should have advanced to the second "+
"stage: %v", err)
}
// Once the second-level transaction confirmed, Bob should have
// extracted the preimage from the chain, and sent it back to Alice,
// clearing the HTLC off-chain.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, 0)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// If we mine 4 additional blocks, then both outputs should now be
// mature.
if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// We should have a new transaction in the mempool.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction: %v", err)
}
// Finally, if we mine an additional block to confirm these two sweep
// transactions, Carol should not show a pending channel in her report
// afterwards.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine block: %v", err)
}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err = carol.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("carol still has pending channels: %v",
spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// The invoice should show as settled for Carol, indicating that it was
// swept on-chain.
invoicesReq := &lnrpc.ListInvoiceRequest{}
invoicesResp, err := carol.ListInvoices(ctxb, invoicesReq)
if err != nil {
t.Fatalf("unable to retrieve invoices: %v", err)
}
if len(invoicesResp.Invoices) != 1 {
t.Fatalf("expected 1 invoice, got %d", len(invoicesResp.Invoices))
}
invoice := invoicesResp.Invoices[0]
if invoice.State != lnrpc.Invoice_SETTLED {
t.Fatalf("expected invoice to be settled on chain")
}
if invoice.AmtPaidSat != invoiceAmt {
t.Fatalf("expected invoice to be settled with %d sat, got "+
"%d sat", invoiceAmt, invoice.AmtPaidSat)
}
// We'll close out the channel between Alice and Bob, then shutdown
// carol to conclude the test.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}
// testMultiHopLocalForceCloseOnChainHtlcTimeout tests that in a multi-hop HTLC
// scenario, if the node that extended the HTLC to the final node closes their
// commitment on-chain early, then it eventually recognizes this HTLC as one
@ -10344,623 +10094,6 @@ func testMultiHopRemoteForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}
// testMultiHopHtlcLocalChainClaim tests that in a multi-hop HTLC scenario, if
// we're forced to go to chain with an incoming HTLC, then when we find out the
// preimage via the witness beacon, we properly settle the HTLC on-chain in
// order to ensure we don't lose any funds.
func testMultiHopHtlcLocalChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
// With the network active, we'll now add a new invoice at Carol's end.
invoiceReq := &lnrpc.Invoice{
Value: 100000,
CltvExpiry: 40,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Now that we've created the invoice, we'll send a single payment from
// Alice to Carol. We won't wait for the response however, as Carol
// will not immediately settle the payment.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// We'll now wait until all 3 nodes have the HTLC as just sent fully
// locked in.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// At this point, Bob decides that he wants to exit the channel
// immediately, so he force closes his commitment transaction.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
bobForceClose := closeChannelAndAssert(ctxt, t, net, net.Bob,
aliceChanPoint, true)
// Alice will sweep her output immediately.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find alice's sweep tx in miner mempool: %v",
err)
}
// We'll now mine enough blocks so Carol decides that she needs to go
// on-chain to claim the HTLC as Bob has been inactive.
numBlocks := uint32(invoiceReq.CltvExpiry -
defaultIncomingBroadcastDelta)
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks")
}
// Carol's commitment transaction should now be in the mempool.
txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundingPoint := wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
}
// The tx should be spending from the funding transaction,
commitHash := txids[0]
tx1, err := net.Miner.Node.GetRawTransaction(commitHash)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx1.MsgTx().TxIn[0].PreviousOutPoint != carolFundingPoint {
t.Fatalf("commit transaction not spending fundingtx: %v",
spew.Sdump(tx1))
}
// Mine a block that should confirm the commit tx.
block := mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("expected 2 transactions in block, got %v",
len(block.Transactions))
}
assertTxInBlock(t, block, commitHash)
// After the force close transacion is mined, Carol should broadcast
// her second level HTLC transacion. Bob will broadcast a sweep tx to
// sweep his output in the channel with Carol. He can do this
// immediately, as the output is not timelocked since Carol was the one
// force closing.
commitSpends, err := waitForNTxsInMempool(net.Miner.Node, 2,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// Both Carol's second level transaction and Bob's sweep should be
// spending from the commitment transaction.
for _, txid := range commitSpends {
tx, err := net.Miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("tx did not spend from commitment tx")
}
}
// Mine a block to confirm the two transactions (+ the coinbase).
block = mineBlocks(t, net, 1, 2)[0]
if len(block.Transactions) != 3 {
t.Fatalf("expected 3 transactions in block, got %v",
len(block.Transactions))
}
for _, txid := range commitSpends {
assertTxInBlock(t, block, txid)
}
// Keep track of the second level tx maturity.
carolSecondLevelCSV := uint32(defaultCSV)
// When Bob notices Carol's second level transaction in the block, he
// will extract the preimage and broadcast a second level tx to claim
// the HTLC in his (already closed) channel with Alice.
bobSecondLvlTx, err := waitForTxInMempool(net.Miner.Node,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// It should spend from the commitment in the channel with Alice.
tx, err := net.Miner.Node.GetRawTransaction(bobSecondLvlTx)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *bobForceClose {
t.Fatalf("tx did not spend from bob's force close tx")
}
// At this point, Bob should have broadcast his second layer success
// transaction, and should have sent it to the nursery for incubation.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending for " +
"close chan but doesn't")
return false
}
for _, forceCloseChan := range pendingChanResp.PendingForceClosingChannels {
if forceCloseChan.Channel.LocalBalance != 0 {
continue
}
if len(forceCloseChan.PendingHtlcs) != 1 {
predErr = fmt.Errorf("bob should have pending htlc " +
"but doesn't")
return false
}
stage := forceCloseChan.PendingHtlcs[0].Stage
if stage != 1 {
predErr = fmt.Errorf("bob's htlc should have "+
"advanced to the first stage but was "+
"stage: %v", stage)
return false
}
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
}
// We'll now mine a block which should confirm Bob's second layer
// transaction.
block = mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("expected 2 transactions in block, got %v",
len(block.Transactions))
}
assertTxInBlock(t, block, bobSecondLvlTx)
// Keep track of Bob's second level maturity, and decrement our track
// of Carol's.
bobSecondLevelCSV := uint32(defaultCSV)
carolSecondLevelCSV--
// If we then mine 3 additional blocks, Carol's second level tx should
// mature, and she can pull the funds from it with a sweep tx.
if _, err := net.Miner.Node.Generate(carolSecondLevelCSV); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
bobSecondLevelCSV -= carolSecondLevelCSV
carolSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's sweeping transaction: %v", err)
}
// Mining one additional block, Bob's second level tx is mature, and he
// can sweep the output.
block = mineBlocks(t, net, bobSecondLevelCSV, 1)[0]
assertTxInBlock(t, block, carolSweep)
bobSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction")
}
// Make sure it spends from the second level tx.
tx, err = net.Miner.Node.GetRawTransaction(bobSweep)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *bobSecondLvlTx {
t.Fatalf("tx did not spend from bob's second level tx")
}
// When we mine one additional block, that will confirm Bob's sweep.
// Now Bob should have no pending channels anymore, as this just
// resolved it by the confirmation of the sweep transaction.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, bobSweep)
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
req := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanInfo, err := net.Bob.ListChannels(ctxt, req)
if err != nil {
predErr = fmt.Errorf("unable to query for open "+
"channels: %v", err)
return false
}
if len(chanInfo.Channels) != 0 {
predErr = fmt.Errorf("Bob should have no open "+
"channels, instead he has %v",
len(chanInfo.Channels))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// Also Carol should have no channels left (open nor pending).
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := carol.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob carol has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
req := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanInfo, err := carol.ListChannels(ctxt, req)
if err != nil {
predErr = fmt.Errorf("unable to query for open "+
"channels: %v", err)
return false
}
if len(chanInfo.Channels) != 0 {
predErr = fmt.Errorf("carol should have no open "+
"channels, instead she has %v",
len(chanInfo.Channels))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
}
// testMultiHopHtlcRemoteChainClaim tests that in the multi-hop HTLC scenario,
// if the remote party goes to chain while we have an incoming HTLC, then when
// we found out the preimage via the witness beacon, we properly settle the
// HTLC on-chain in order to ensure that we don't lose any funds.
func testMultiHopHtlcRemoteChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
// With the network active, we'll now add a new invoice at Carol's end.
const invoiceAmt = 100000
invoiceReq := &lnrpc.Invoice{
Value: invoiceAmt,
CltvExpiry: 40,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Now that we've created the invoice, we'll send a single payment from
// Alice to Carol. We won't wait for the response however, as Carol
// will not immediately settle the payment.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
alicePayStream, err := net.Alice.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// We'll now wait until all 3 nodes have the HTLC as just sent fully
// locked in.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// Next, Alice decides that she wants to exit the channel, so she'll
// immediately force close the channel by broadcast her commitment
// transaction.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
aliceForceClose := closeChannelAndAssert(ctxt, t, net, net.Alice,
aliceChanPoint, true)
// Wait for the channel to be marked pending force close.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = waitForChannelPendingForceClose(ctxt, net.Alice, aliceChanPoint)
if err != nil {
t.Fatalf("channel not pending force close: %v", err)
}
// Mine enough blocks for Alice to sweep her funds from the force
// closed channel.
_, err = net.Miner.Node.Generate(defaultCSV)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Alice should now sweep her funds.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find sweeping tx in mempool: %v", err)
}
// We'll now mine enough blocks so Carol decides that she needs to go
// on-chain to claim the HTLC as Bob has been inactive.
numBlocks := uint32(invoiceReq.CltvExpiry-
defaultIncomingBroadcastDelta) - defaultCSV
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks")
}
// Carol's commitment transaction should now be in the mempool.
txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundingPoint := wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
}
// The transaction should be spending from the funding transaction
commitHash := txids[0]
tx1, err := net.Miner.Node.GetRawTransaction(commitHash)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx1.MsgTx().TxIn[0].PreviousOutPoint != carolFundingPoint {
t.Fatalf("commit transaction not spending fundingtx: %v",
spew.Sdump(tx1))
}
// Mine a block, which should contain the commitment.
block := mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("expected 2 transactions in block, got %v",
len(block.Transactions))
}
assertTxInBlock(t, block, commitHash)
// After the force close transacion is mined, Carol should broadcast
// her second level HTLC transacion. Bob will broadcast a sweep tx to
// sweep his output in the channel with Carol. He can do this
// immediately, as the output is not timelocked since Carol was the one
// force closing.
commitSpends, err := waitForNTxsInMempool(net.Miner.Node, 2,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// Both Carol's second level transaction and Bob's sweep should be
// spending from the commitment transaction.
for _, txid := range commitSpends {
tx, err := net.Miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("tx did not spend from commitment tx")
}
}
// Mine a block to confirm the two transactions (+ coinbase).
block = mineBlocks(t, net, 1, 2)[0]
if len(block.Transactions) != 3 {
t.Fatalf("expected 3 transactions in block, got %v",
len(block.Transactions))
}
for _, txid := range commitSpends {
assertTxInBlock(t, block, txid)
}
// Keep track of the second level tx maturity.
carolSecondLevelCSV := uint32(defaultCSV)
// When Bob notices Carol's second level transaction in the block, he
// will extract the preimage and broadcast a sweep tx to directly claim
// the HTLC in his (already closed) channel with Alice.
bobHtlcSweep, err := waitForTxInMempool(net.Miner.Node,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// It should spend from the commitment in the channel with Alice.
tx, err := net.Miner.Node.GetRawTransaction(bobHtlcSweep)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *aliceForceClose {
t.Fatalf("tx did not spend from alice's force close tx")
}
// We'll now mine a block which should confirm Bob's HTLC sweep
// transaction.
block = mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("expected 2 transactions in block, got %v",
len(block.Transactions))
}
assertTxInBlock(t, block, bobHtlcSweep)
carolSecondLevelCSV--
// Now that the sweeping transaction has been confirmed, Bob should now
// recognize that all contracts have been fully resolved, and show no
// pending close channels.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := net.Bob.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// If we then mine 3 additional blocks, Carol's second level tx will
// mature, and she should pull the funds.
if _, err := net.Miner.Node.Generate(carolSecondLevelCSV); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
carolSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's sweeping transaction: %v", err)
}
// When Carol's sweep gets confirmed, she should have no more pending
// channels.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, carolSweep)
pendingChansRequest = &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := carol.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("carol still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// The invoice should show as settled for Carol, indicating that it was
// swept on-chain.
invoicesReq := &lnrpc.ListInvoiceRequest{}
invoicesResp, err := carol.ListInvoices(ctxb, invoicesReq)
if err != nil {
t.Fatalf("unable to retrieve invoices: %v", err)
}
if len(invoicesResp.Invoices) != 1 {
t.Fatalf("expected 1 invoice, got %d", len(invoicesResp.Invoices))
}
invoice := invoicesResp.Invoices[0]
if invoice.State != lnrpc.Invoice_SETTLED {
t.Fatalf("expected invoice to be settled on chain")
}
if invoice.AmtPaidSat != invoiceAmt {
t.Fatalf("expected invoice to be settled with %d sat, got "+
"%d sat", invoiceAmt, invoice.AmtPaidSat)
}
}
// testSwitchCircuitPersistence creates a multihop network to ensure the sender
// and intermediaries are persisting their open payment circuits. After
// forwarding a packet via an outgoing link, all are restarted, and expected to