Merge pull request #2932 from wpaulino/sync-manager-improvements

discovery: SyncManager improvements
This commit is contained in:
Olaoluwa Osuntokun 2019-04-26 15:59:38 -07:00 committed by GitHub
commit a783f35ad4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 666 additions and 839 deletions

@ -306,12 +306,11 @@ func New(cfg Config, selfKey *btcec.PublicKey) *AuthenticatedGossiper {
channelMtx: multimutex.NewMutex(), channelMtx: multimutex.NewMutex(),
recentRejects: make(map[uint64]struct{}), recentRejects: make(map[uint64]struct{}),
syncMgr: newSyncManager(&SyncManagerCfg{ syncMgr: newSyncManager(&SyncManagerCfg{
ChainHash: cfg.ChainHash, ChainHash: cfg.ChainHash,
ChanSeries: cfg.ChanSeries, ChanSeries: cfg.ChanSeries,
RotateTicker: cfg.RotateTicker, RotateTicker: cfg.RotateTicker,
HistoricalSyncTicker: cfg.HistoricalSyncTicker, HistoricalSyncTicker: cfg.HistoricalSyncTicker,
ActiveSyncerTimeoutTicker: cfg.ActiveSyncerTimeoutTicker, NumActiveSyncers: cfg.NumActiveSyncers,
NumActiveSyncers: cfg.NumActiveSyncers,
}), }),
} }

@ -741,17 +741,16 @@ func createTestCtx(startHeight uint32) (*testCtx, func(), error) {
c := make(chan struct{}) c := make(chan struct{})
return c return c
}, },
Router: router, Router: router,
TrickleDelay: trickleDelay, TrickleDelay: trickleDelay,
RetransmitDelay: retransmitDelay, RetransmitDelay: retransmitDelay,
ProofMatureDelta: proofMatureDelta, ProofMatureDelta: proofMatureDelta,
WaitingProofStore: waitingProofStore, WaitingProofStore: waitingProofStore,
MessageStore: newMockMessageStore(), MessageStore: newMockMessageStore(),
RotateTicker: ticker.NewForce(DefaultSyncerRotationInterval), RotateTicker: ticker.NewForce(DefaultSyncerRotationInterval),
HistoricalSyncTicker: ticker.NewForce(DefaultHistoricalSyncInterval), HistoricalSyncTicker: ticker.NewForce(DefaultHistoricalSyncInterval),
ActiveSyncerTimeoutTicker: ticker.NewForce(DefaultActiveSyncerTimeout), NumActiveSyncers: 3,
NumActiveSyncers: 3, AnnSigner: &mockSigner{nodeKeyPriv1},
AnnSigner: &mockSigner{nodeKeyPriv1},
}, nodeKeyPub1) }, nodeKeyPub1)
if err := gossiper.Start(); err != nil { if err := gossiper.Start(); err != nil {
@ -1480,20 +1479,19 @@ func TestSignatureAnnouncementRetryAtStartup(t *testing.T) {
// the message to the peer. // the message to the peer.
ctx.gossiper.Stop() ctx.gossiper.Stop()
gossiper := New(Config{ gossiper := New(Config{
Notifier: ctx.gossiper.cfg.Notifier, Notifier: ctx.gossiper.cfg.Notifier,
Broadcast: ctx.gossiper.cfg.Broadcast, Broadcast: ctx.gossiper.cfg.Broadcast,
NotifyWhenOnline: ctx.gossiper.reliableSender.cfg.NotifyWhenOnline, NotifyWhenOnline: ctx.gossiper.reliableSender.cfg.NotifyWhenOnline,
NotifyWhenOffline: ctx.gossiper.reliableSender.cfg.NotifyWhenOffline, NotifyWhenOffline: ctx.gossiper.reliableSender.cfg.NotifyWhenOffline,
Router: ctx.gossiper.cfg.Router, Router: ctx.gossiper.cfg.Router,
TrickleDelay: trickleDelay, TrickleDelay: trickleDelay,
RetransmitDelay: retransmitDelay, RetransmitDelay: retransmitDelay,
ProofMatureDelta: proofMatureDelta, ProofMatureDelta: proofMatureDelta,
WaitingProofStore: ctx.gossiper.cfg.WaitingProofStore, WaitingProofStore: ctx.gossiper.cfg.WaitingProofStore,
MessageStore: ctx.gossiper.cfg.MessageStore, MessageStore: ctx.gossiper.cfg.MessageStore,
RotateTicker: ticker.NewForce(DefaultSyncerRotationInterval), RotateTicker: ticker.NewForce(DefaultSyncerRotationInterval),
HistoricalSyncTicker: ticker.NewForce(DefaultHistoricalSyncInterval), HistoricalSyncTicker: ticker.NewForce(DefaultHistoricalSyncInterval),
ActiveSyncerTimeoutTicker: ticker.NewForce(DefaultActiveSyncerTimeout), NumActiveSyncers: 3,
NumActiveSyncers: 3,
}, ctx.gossiper.selfKey) }, ctx.gossiper.selfKey)
if err != nil { if err != nil {
t.Fatalf("unable to recreate gossiper: %v", err) t.Fatalf("unable to recreate gossiper: %v", err)

@ -1,6 +1,7 @@
package discovery package discovery
import ( import (
"errors"
"net" "net"
"sync" "sync"
@ -30,6 +31,7 @@ func (p *mockPeer) SendMessage(_ bool, msgs ...lnwire.Message) error {
select { select {
case p.sentMsgs <- msg: case p.sentMsgs <- msg:
case <-p.quit: case <-p.quit:
return errors.New("peer disconnected")
} }
} }

@ -1,7 +1,6 @@
package discovery package discovery
import ( import (
"container/list"
"errors" "errors"
"sync" "sync"
"time" "time"
@ -22,11 +21,6 @@ const (
// force a historical sync to ensure we have as much of the public // force a historical sync to ensure we have as much of the public
// network as possible. // network as possible.
DefaultHistoricalSyncInterval = time.Hour DefaultHistoricalSyncInterval = time.Hour
// DefaultActiveSyncerTimeout is the default timeout interval in which
// we'll wait until an active syncer has completed its state machine and
// reached its final chansSynced state.
DefaultActiveSyncerTimeout = 5 * time.Minute
) )
var ( var (
@ -36,21 +30,28 @@ var (
ErrSyncManagerExiting = errors.New("sync manager exiting") ErrSyncManagerExiting = errors.New("sync manager exiting")
) )
// staleActiveSyncer is an internal message the SyncManager will use in order to // newSyncer in an internal message we'll use within the SyncManager to signal
// handle a peer corresponding to an active syncer being disconnected. // that we should create a GossipSyncer for a newly connected peer.
type staleActiveSyncer struct { type newSyncer struct {
// syncer is the active syncer to be removed. // peer is the newly connected peer.
syncer *GossipSyncer peer lnpeer.Peer
// transitioned, if true, signals that the active GossipSyncer is stale // doneChan serves as a signal to the caller that the SyncManager's
// due to being transitioned to a PassiveSync state. // internal state correctly reflects the stale active syncer.
transitioned bool doneChan chan struct{}
}
// done serves as a signal to the caller that the SyncManager's internal // staleSyncer is an internal message we'll use within the SyncManager to signal
// state correctly reflects the stale active syncer. This is needed to // that a peer has disconnected and its GossipSyncer should be removed.
// ensure we always create a new syncer for a flappy peer after they type staleSyncer struct {
// disconnect if they happened to be an active syncer. // peer is the peer that has disconnected.
done chan struct{} peer routing.Vertex
// doneChan serves as a signal to the caller that the SyncManager's
// internal state correctly reflects the stale active syncer. This is
// needed to ensure we always create a new syncer for a flappy peer
// after they disconnect if they happened to be an active syncer.
doneChan chan struct{}
} }
// SyncManagerCfg contains all of the dependencies required for the SyncManager // SyncManagerCfg contains all of the dependencies required for the SyncManager
@ -81,12 +82,6 @@ type SyncManagerCfg struct {
// SyncManager when it should attempt a historical sync with a gossip // SyncManager when it should attempt a historical sync with a gossip
// sync peer. // sync peer.
HistoricalSyncTicker ticker.Ticker HistoricalSyncTicker ticker.Ticker
// ActiveSyncerTimeoutTicker is a ticker responsible for notifying the
// SyncManager when it should attempt to start the next pending
// activeSyncer due to the current one not completing its state machine
// within the timeout.
ActiveSyncerTimeoutTicker ticker.Ticker
} }
// SyncManager is a subsystem of the gossiper that manages the gossip syncers // SyncManager is a subsystem of the gossiper that manages the gossip syncers
@ -108,6 +103,18 @@ type SyncManager struct {
// _once_ with a peer during the SyncManager's startup. // _once_ with a peer during the SyncManager's startup.
historicalSync sync.Once historicalSync sync.Once
// newSyncers is a channel we'll use to process requests to create
// GossipSyncers for newly connected peers.
newSyncers chan *newSyncer
// staleSyncers is a channel we'll use to process requests to tear down
// GossipSyncers for disconnected peers.
staleSyncers chan *staleSyncer
// syncersMu guards the read and write access to the activeSyncers and
// inactiveSyncers maps below.
syncersMu sync.Mutex
// activeSyncers is the set of all syncers for which we are currently // activeSyncers is the set of all syncers for which we are currently
// receiving graph updates from. The number of possible active syncers // receiving graph updates from. The number of possible active syncers
// is bounded by NumActiveSyncers. // is bounded by NumActiveSyncers.
@ -117,26 +124,6 @@ type SyncManager struct {
// currently receiving new graph updates from. // currently receiving new graph updates from.
inactiveSyncers map[routing.Vertex]*GossipSyncer inactiveSyncers map[routing.Vertex]*GossipSyncer
// pendingActiveSyncers is a map that tracks our set of pending active
// syncers. This map will be queried when choosing the next pending
// active syncer in the queue to ensure it is not stale.
pendingActiveSyncers map[routing.Vertex]*GossipSyncer
// pendingActiveSyncerQueue is the list of active syncers which are
// pending to be started. Syncers will be added to this list through the
// newActiveSyncers and staleActiveSyncers channels.
pendingActiveSyncerQueue *list.List
// newActiveSyncers is a channel that will serve as a signal to the
// roundRobinHandler to allow it to transition the next pending active
// syncer in the queue.
newActiveSyncers chan struct{}
// staleActiveSyncers is a channel through which we'll send any stale
// active syncers that should be removed from the round-robin.
staleActiveSyncers chan *staleActiveSyncer
sync.Mutex
wg sync.WaitGroup wg sync.WaitGroup
quit chan struct{} quit chan struct{}
} }
@ -144,25 +131,22 @@ type SyncManager struct {
// newSyncManager constructs a new SyncManager backed by the given config. // newSyncManager constructs a new SyncManager backed by the given config.
func newSyncManager(cfg *SyncManagerCfg) *SyncManager { func newSyncManager(cfg *SyncManagerCfg) *SyncManager {
return &SyncManager{ return &SyncManager{
cfg: *cfg, cfg: *cfg,
newSyncers: make(chan *newSyncer),
staleSyncers: make(chan *staleSyncer),
activeSyncers: make( activeSyncers: make(
map[routing.Vertex]*GossipSyncer, cfg.NumActiveSyncers, map[routing.Vertex]*GossipSyncer, cfg.NumActiveSyncers,
), ),
inactiveSyncers: make(map[routing.Vertex]*GossipSyncer), inactiveSyncers: make(map[routing.Vertex]*GossipSyncer),
pendingActiveSyncers: make(map[routing.Vertex]*GossipSyncer), quit: make(chan struct{}),
pendingActiveSyncerQueue: list.New(),
newActiveSyncers: make(chan struct{}),
staleActiveSyncers: make(chan *staleActiveSyncer),
quit: make(chan struct{}),
} }
} }
// Start starts the SyncManager in order to properly carry out its duties. // Start starts the SyncManager in order to properly carry out its duties.
func (m *SyncManager) Start() { func (m *SyncManager) Start() {
m.start.Do(func() { m.start.Do(func() {
m.wg.Add(2) m.wg.Add(1)
go m.syncerHandler() go m.syncerHandler()
go m.roundRobinHandler()
}) })
} }
@ -172,15 +156,9 @@ func (m *SyncManager) Stop() {
close(m.quit) close(m.quit)
m.wg.Wait() m.wg.Wait()
m.Lock()
defer m.Unlock()
for _, syncer := range m.inactiveSyncers { for _, syncer := range m.inactiveSyncers {
syncer.Stop() syncer.Stop()
} }
for _, syncer := range m.pendingActiveSyncers {
syncer.Stop()
}
for _, syncer := range m.activeSyncers { for _, syncer := range m.activeSyncers {
syncer.Stop() syncer.Stop()
} }
@ -189,11 +167,13 @@ func (m *SyncManager) Stop() {
// syncerHandler is the SyncManager's main event loop responsible for: // syncerHandler is the SyncManager's main event loop responsible for:
// //
// 1. Finding new peers to receive graph updates from to ensure we don't only // 1. Creating and tearing down GossipSyncers for connected/disconnected peers.
// receive them from the same set of peers.
// // 2. Finding new peers to receive graph updates from to ensure we don't only
// 2. Finding new peers to force a historical sync with to ensure we have as // receive them from the same set of peers.
// much of the public network as possible.
// 3. Finding new peers to force a historical sync with to ensure we have as
// much of the public network as possible.
// //
// NOTE: This must be run as a goroutine. // NOTE: This must be run as a goroutine.
func (m *SyncManager) syncerHandler() { func (m *SyncManager) syncerHandler() {
@ -205,8 +185,175 @@ func (m *SyncManager) syncerHandler() {
m.cfg.HistoricalSyncTicker.Resume() m.cfg.HistoricalSyncTicker.Resume()
defer m.cfg.HistoricalSyncTicker.Stop() defer m.cfg.HistoricalSyncTicker.Stop()
var (
// attemptInitialHistoricalSync determines whether we should
// attempt an initial historical sync when a new peer connects.
attemptInitialHistoricalSync = true
// initialHistoricalSyncCompleted serves as a barrier when
// initializing new active GossipSyncers. If false, the initial
// historical sync has not completed, so we'll defer
// initializing any active GossipSyncers. If true, then we can
// transition the GossipSyncer immediately. We set up this
// barrier to ensure we have most of the graph before attempting
// to accept new updates at tip.
initialHistoricalSyncCompleted = false
// initialHistoricalSyncer is the syncer we are currently
// performing an initial historical sync with.
initialHistoricalSyncer *GossipSyncer
// initialHistoricalSyncSignal is a signal that will fire once
// the intiial historical sync has been completed. This is
// crucial to ensure that another historical sync isn't
// attempted just because the initialHistoricalSyncer was
// disconnected.
initialHistoricalSyncSignal chan struct{}
)
for { for {
select { select {
// A new peer has been connected, so we'll create its
// accompanying GossipSyncer.
case newSyncer := <-m.newSyncers:
// If we already have a syncer, then we'll exit early as
// we don't want to override it.
if _, ok := m.GossipSyncer(newSyncer.peer.PubKey()); ok {
close(newSyncer.doneChan)
continue
}
s := m.createGossipSyncer(newSyncer.peer)
m.syncersMu.Lock()
switch {
// If we've exceeded our total number of active syncers,
// we'll initialize this GossipSyncer as passive.
case len(m.activeSyncers) >= m.cfg.NumActiveSyncers:
fallthrough
// Otherwise, it should be initialized as active. If the
// initial historical sync has yet to complete, then
// we'll declare is as passive and attempt to transition
// it when the initial historical sync completes.
case !initialHistoricalSyncCompleted:
s.setSyncType(PassiveSync)
m.inactiveSyncers[s.cfg.peerPub] = s
// The initial historical sync has completed, so we can
// immediately start the GossipSyncer as active.
default:
s.setSyncType(ActiveSync)
m.activeSyncers[s.cfg.peerPub] = s
}
m.syncersMu.Unlock()
s.Start()
// Once we create the GossipSyncer, we'll signal to the
// caller that they can proceed since the SyncManager's
// internal state has been updated.
close(newSyncer.doneChan)
// We'll force a historical sync with the first peer we
// connect to, to ensure we get as much of the graph as
// possible.
if !attemptInitialHistoricalSync {
continue
}
log.Debugf("Attempting initial historical sync with "+
"GossipSyncer(%x)", s.cfg.peerPub)
if err := s.historicalSync(); err != nil {
log.Errorf("Unable to attempt initial "+
"historical sync with "+
"GossipSyncer(%x): %v", s.cfg.peerPub,
err)
continue
}
// Once the historical sync has started, we'll get a
// keep track of the corresponding syncer to properly
// handle disconnects. We'll also use a signal to know
// when the historical sync completed.
attemptInitialHistoricalSync = false
initialHistoricalSyncer = s
initialHistoricalSyncSignal = s.ResetSyncedSignal()
// An existing peer has disconnected, so we'll tear down its
// corresponding GossipSyncer.
case staleSyncer := <-m.staleSyncers:
// Once the corresponding GossipSyncer has been stopped
// and removed, we'll signal to the caller that they can
// proceed since the SyncManager's internal state has
// been updated.
m.removeGossipSyncer(staleSyncer.peer)
close(staleSyncer.doneChan)
// If we don't have an initialHistoricalSyncer, or we do
// but it is not the peer being disconnected, then we
// have nothing left to do and can proceed.
switch {
case initialHistoricalSyncer == nil:
fallthrough
case staleSyncer.peer != initialHistoricalSyncer.cfg.peerPub:
continue
}
// Otherwise, our initialHistoricalSyncer corresponds to
// the peer being disconnected, so we'll have to find a
// replacement.
log.Debug("Finding replacement for intitial " +
"historical sync")
s := m.forceHistoricalSync()
if s == nil {
log.Debug("No eligible replacement found " +
"for initial historical sync")
attemptInitialHistoricalSync = true
continue
}
log.Debugf("Replaced initial historical "+
"GossipSyncer(%v) with GossipSyncer(%x)",
staleSyncer.peer, s.cfg.peerPub)
initialHistoricalSyncer = s
initialHistoricalSyncSignal = s.ResetSyncedSignal()
// Our initial historical sync signal has completed, so we'll
// nil all of the relevant fields as they're no longer needed.
case <-initialHistoricalSyncSignal:
initialHistoricalSyncer = nil
initialHistoricalSyncSignal = nil
initialHistoricalSyncCompleted = true
log.Debug("Initial historical sync completed")
// With the initial historical sync complete, we can
// begin receiving new graph updates at tip. We'll
// determine whether we can have any more active
// GossipSyncers. If we do, we'll randomly select some
// that are currently passive to transition.
m.syncersMu.Lock()
numActiveLeft := m.cfg.NumActiveSyncers - len(m.activeSyncers)
if numActiveLeft <= 0 {
m.syncersMu.Unlock()
continue
}
log.Debugf("Attempting to transition %v passive "+
"GossipSyncers to active", numActiveLeft)
for i := 0; i < numActiveLeft; i++ {
chooseRandomSyncer(
m.inactiveSyncers, m.transitionPassiveSyncer,
)
}
m.syncersMu.Unlock()
// Our RotateTicker has ticked, so we'll attempt to rotate a // Our RotateTicker has ticked, so we'll attempt to rotate a
// single active syncer with a passive one. // single active syncer with a passive one.
case <-m.cfg.RotateTicker.Ticks(): case <-m.cfg.RotateTicker.Ticks():
@ -223,402 +370,9 @@ func (m *SyncManager) syncerHandler() {
} }
} }
// signalNewActiveSyncer sends a signal to the roundRobinHandler to ensure it // createGossipSyncer creates the GossipSyncer for a newly connected peer.
// transitions any pending active syncers. func (m *SyncManager) createGossipSyncer(peer lnpeer.Peer) *GossipSyncer {
func (m *SyncManager) signalNewActiveSyncer() {
select {
case m.newActiveSyncers <- struct{}{}:
case <-m.quit:
}
}
// signalStaleActiveSyncer removes the syncer for the given peer from the
// round-robin queue.
func (m *SyncManager) signalStaleActiveSyncer(s *GossipSyncer, transitioned bool) {
done := make(chan struct{})
select {
case m.staleActiveSyncers <- &staleActiveSyncer{
syncer: s,
transitioned: transitioned,
done: done,
}:
case <-m.quit:
}
// Before returning to the caller, we'll wait for the roundRobinHandler
// to signal us that the SyncManager has correctly updated its internal
// state after handling the stale active syncer.
select {
case <-done:
case <-m.quit:
}
}
// roundRobinHandler is the SyncManager's event loop responsible for managing
// the round-robin queue of our active syncers to ensure they don't overlap and
// request the same set of channels, which significantly reduces bandwidth
// usage.
//
// NOTE: This must be run as a goroutine.
func (m *SyncManager) roundRobinHandler() {
defer m.wg.Done()
defer m.cfg.ActiveSyncerTimeoutTicker.Stop()
var (
// current will hold the current active syncer we're waiting for
// to complete its state machine.
current *GossipSyncer
// transitionNext will be responsible for containing the signal
// of when the current active syncer has completed its state
// machine. This signal allows us to transition the next pending
// active syncer, if any.
transitionNext chan struct{}
)
// transitionNextSyncer is a helper closure that we'll use to transition
// the next syncer queued up. If there aren't any, this will act as a
// NOP.
transitionNextSyncer := func() {
m.Lock()
current = m.nextPendingActiveSyncer()
m.Unlock()
for current != nil {
// Ensure we properly handle a shutdown signal.
select {
case <-m.quit:
return
default:
}
// We'll avoid performing the transition with the lock
// as it can potentially stall the SyncManager due to
// the syncTransitionTimeout.
err := m.transitionPassiveSyncer(current)
// If we timed out attempting to transition the syncer,
// we'll re-queue it to retry at a later time and move
// on to the next.
if err == ErrSyncTransitionTimeout {
log.Debugf("Timed out attempting to "+
"transition pending active "+
"GossipSyncer(%x)", current.cfg.peerPub)
m.Lock()
m.queueActiveSyncer(current)
current = m.nextPendingActiveSyncer()
m.Unlock()
continue
}
if err != nil {
log.Errorf("Unable to transition pending "+
"active GossipSyncer(%x): %v",
current.cfg.peerPub, err)
m.Lock()
current = m.nextPendingActiveSyncer()
m.Unlock()
continue
}
// The transition succeeded, so we'll set our signal to
// know when we should attempt to transition the next
// pending active syncer in our queue.
transitionNext = current.ResetSyncedSignal()
m.cfg.ActiveSyncerTimeoutTicker.Resume()
return
}
transitionNext = nil
m.cfg.ActiveSyncerTimeoutTicker.Pause()
}
for {
select {
// A new active syncer signal has been received, which indicates
// a new pending active syncer has been added to our queue.
// We'll only attempt to transition it now if we're not already
// in the middle of transitioning another one. We do this to
// ensure we don't overlap when requesting channels from
// different peers.
case <-m.newActiveSyncers:
if current == nil {
transitionNextSyncer()
}
// A stale active syncer has been received, so we'll need to
// remove them from our queue. If we are currently waiting for
// its state machine to complete, we'll move on to the next
// active syncer in the queue.
case staleActiveSyncer := <-m.staleActiveSyncers:
s := staleActiveSyncer.syncer
m.Lock()
// If the syncer has transitioned from an ActiveSync
// type, rather than disconnecting, we'll include it in
// the set of inactive syncers.
if staleActiveSyncer.transitioned {
m.inactiveSyncers[s.cfg.peerPub] = s
} else {
// Otherwise, since the peer is disconnecting,
// we'll attempt to find a passive syncer that
// can replace it.
newActiveSyncer := m.chooseRandomSyncer(nil, false)
if newActiveSyncer != nil {
m.queueActiveSyncer(newActiveSyncer)
}
}
// Remove the internal active syncer references for this
// peer.
delete(m.pendingActiveSyncers, s.cfg.peerPub)
delete(m.activeSyncers, s.cfg.peerPub)
m.Unlock()
// Signal to the caller that they can now proceed since
// the SyncManager's state correctly reflects the
// stale active syncer.
close(staleActiveSyncer.done)
// If we're not currently waiting for an active syncer
// to reach its terminal state, or if we are but we are
// currently waiting for the peer being
// disconnected/transitioned, then we'll move on to the
// next active syncer in our queue.
if current == nil || (current != nil &&
current.cfg.peerPub == s.cfg.peerPub) {
transitionNextSyncer()
}
// Our current active syncer has reached its terminal
// chansSynced state, so we'll proceed to transitioning the next
// pending active syncer if there is one.
case <-transitionNext:
transitionNextSyncer()
// We've timed out waiting for the current active syncer to
// reach its terminal chansSynced state, so we'll just
// move on to the next and avoid retrying as its already been
// transitioned.
case <-m.cfg.ActiveSyncerTimeoutTicker.Ticks():
log.Warnf("Timed out waiting for GossipSyncer(%x) to "+
"be fully synced", current.cfg.peerPub)
transitionNextSyncer()
case <-m.quit:
return
}
}
}
// queueActiveSyncer queues the given pending active gossip syncer to the end of
// the round-robin queue.
func (m *SyncManager) queueActiveSyncer(s *GossipSyncer) {
log.Debugf("Queueing next pending active GossipSyncer(%x)",
s.cfg.peerPub)
delete(m.inactiveSyncers, s.cfg.peerPub)
m.pendingActiveSyncers[s.cfg.peerPub] = s
m.pendingActiveSyncerQueue.PushBack(s)
}
// nextPendingActiveSyncer returns the next active syncer pending to be
// transitioned. If there aren't any, then `nil` is returned.
func (m *SyncManager) nextPendingActiveSyncer() *GossipSyncer {
next := m.pendingActiveSyncerQueue.Front()
for next != nil {
s := m.pendingActiveSyncerQueue.Remove(next).(*GossipSyncer)
// If the next pending active syncer is no longer in our lookup
// map, then the corresponding peer has disconnected, so we'll
// skip them.
if _, ok := m.pendingActiveSyncers[s.cfg.peerPub]; !ok {
next = m.pendingActiveSyncerQueue.Front()
continue
}
return s
}
return nil
}
// rotateActiveSyncerCandidate rotates a single active syncer. In order to
// achieve this, the active syncer must be in a chansSynced state in order to
// process the sync transition.
func (m *SyncManager) rotateActiveSyncerCandidate() {
// If we don't have a candidate to rotate with, we can return early.
m.Lock()
candidate := m.chooseRandomSyncer(nil, false)
if candidate == nil {
m.Unlock()
log.Debug("No eligible candidate to rotate active syncer")
return
}
// We'll choose an active syncer at random that's within a chansSynced
// state to rotate.
var activeSyncer *GossipSyncer
for _, s := range m.activeSyncers {
// The active syncer must be in a chansSynced state in order to
// process sync transitions.
if s.syncState() != chansSynced {
continue
}
activeSyncer = s
break
}
m.Unlock()
// If we couldn't find an eligible one, we can return early.
if activeSyncer == nil {
log.Debug("No eligible active syncer to rotate")
return
}
// Otherwise, we'll attempt to transition each syncer to their
// respective new sync type. We'll avoid performing the transition with
// the lock as it can potentially stall the SyncManager due to the
// syncTransitionTimeout.
if err := m.transitionActiveSyncer(activeSyncer); err != nil {
log.Errorf("Unable to transition active "+
"GossipSyncer(%x): %v", activeSyncer.cfg.peerPub, err)
return
}
m.Lock()
m.queueActiveSyncer(candidate)
m.Unlock()
m.signalNewActiveSyncer()
}
// transitionActiveSyncer transitions an active syncer to a passive one.
func (m *SyncManager) transitionActiveSyncer(s *GossipSyncer) error {
log.Debugf("Transitioning active GossipSyncer(%x) to passive",
s.cfg.peerPub)
if err := s.ProcessSyncTransition(PassiveSync); err != nil {
return err
}
m.signalStaleActiveSyncer(s, true)
return nil
}
// transitionPassiveSyncer transitions a passive syncer to an active one.
func (m *SyncManager) transitionPassiveSyncer(s *GossipSyncer) error {
log.Debugf("Transitioning passive GossipSyncer(%x) to active",
s.cfg.peerPub)
if err := s.ProcessSyncTransition(ActiveSync); err != nil {
return err
}
m.Lock()
m.activeSyncers[s.cfg.peerPub] = s
delete(m.pendingActiveSyncers, s.cfg.peerPub)
m.Unlock()
return nil
}
// forceHistoricalSync chooses a syncer with a remote peer at random and forces
// a historical sync with it.
func (m *SyncManager) forceHistoricalSync() {
m.Lock()
defer m.Unlock()
// We'll choose a random peer with whom we can perform a historical sync
// with. We'll set useActive to true to make sure we can still do one if
// we don't happen to have any non-active syncers.
candidatesChosen := make(map[routing.Vertex]struct{})
s := m.chooseRandomSyncer(candidatesChosen, true)
for s != nil {
// Ensure we properly handle a shutdown signal.
select {
case <-m.quit:
return
default:
}
// Blacklist the candidate to ensure it's not chosen again.
candidatesChosen[s.cfg.peerPub] = struct{}{}
err := s.historicalSync()
if err == nil {
return
}
log.Errorf("Unable to perform historical sync with "+
"GossipSyncer(%x): %v", s.cfg.peerPub, err)
s = m.chooseRandomSyncer(candidatesChosen, true)
}
}
// chooseRandomSyncer returns a random non-active syncer that's eligible for a
// sync transition. A blacklist can be used to skip any previously chosen
// candidates. The useActive boolean can be used to also filter active syncers.
//
// NOTE: It's possible for a nil value to be returned if there are no eligible
// candidate syncers.
//
// NOTE: This method must be called with the syncersMtx lock held.
func (m *SyncManager) chooseRandomSyncer(blacklist map[routing.Vertex]struct{},
useActive bool) *GossipSyncer {
eligible := func(s *GossipSyncer) bool {
// Skip any syncers that exist within the blacklist.
if blacklist != nil {
if _, ok := blacklist[s.cfg.peerPub]; ok {
return false
}
}
// Only syncers in a chansSynced state are viable for sync
// transitions, so skip any that aren't.
return s.syncState() == chansSynced
}
for _, s := range m.inactiveSyncers {
if !eligible(s) {
continue
}
return s
}
if useActive {
for _, s := range m.activeSyncers {
if !eligible(s) {
continue
}
return s
}
}
return nil
}
// InitSyncState is called by outside sub-systems when a connection is
// established to a new peer that understands how to perform channel range
// queries. We'll allocate a new GossipSyncer for it, and start any goroutines
// needed to handle new queries. The first GossipSyncer registered with the
// SyncManager will attempt a historical sync to ensure we have as much of the
// public channel graph as possible.
//
// TODO(wilmer): Only mark as ActiveSync if this isn't a channel peer.
func (m *SyncManager) InitSyncState(peer lnpeer.Peer) {
// If we already have a syncer, then we'll exit early as we don't want
// to override it.
nodeID := routing.Vertex(peer.PubKey()) nodeID := routing.Vertex(peer.PubKey())
if _, ok := m.GossipSyncer(nodeID); ok {
return
}
log.Infof("Creating new GossipSyncer for peer=%x", nodeID[:]) log.Infof("Creating new GossipSyncer for peer=%x", nodeID[:])
encoding := lnwire.EncodingSortedPlain encoding := lnwire.EncodingSortedPlain
@ -634,79 +388,226 @@ func (m *SyncManager) InitSyncState(peer lnpeer.Peer) {
}, },
}) })
// Gossip syncers are initialized by default as passive and in a // Gossip syncers are initialized by default in a PassiveSync type
// chansSynced state so that they can reply to any peer queries or // and chansSynced state so that they can reply to any peer queries or
// handle any sync transitions. // handle any sync transitions.
s.setSyncType(PassiveSync)
s.setSyncState(chansSynced) s.setSyncState(chansSynced)
s.Start() s.setSyncType(PassiveSync)
return s
m.Lock()
m.inactiveSyncers[nodeID] = s
// We'll force a historical sync with the first peer we connect to
// ensure we get as much of the graph as possible.
var err error
m.historicalSync.Do(func() {
log.Infof("Attempting historical sync with GossipSyncer(%x)",
s.cfg.peerPub)
err = s.historicalSync()
})
if err != nil {
log.Errorf("Unable to perform historical sync with "+
"GossipSyncer(%x): %v", s.cfg.peerPub, err)
// Reset historicalSync to ensure it is tried again with a
// different peer.
m.historicalSync = sync.Once{}
}
// If we've yet to reach our desired number of active syncers, then
// we'll use this one.
numActiveSyncers := len(m.activeSyncers) + len(m.pendingActiveSyncers)
if numActiveSyncers < m.cfg.NumActiveSyncers {
m.queueActiveSyncer(s)
m.Unlock()
m.signalNewActiveSyncer()
return
}
m.Unlock()
} }
// PruneSyncState is called by outside sub-systems once a peer that we were // removeGossipSyncer removes all internal references to the disconnected peer's
// previously connected to has been disconnected. In this case we can stop the // GossipSyncer and stops it. In the event of an active GossipSyncer being
// existing GossipSyncer assigned to the peer and free up resources. // disconnected, a passive GossipSyncer, if any, will take its place.
func (m *SyncManager) PruneSyncState(peer routing.Vertex) { func (m *SyncManager) removeGossipSyncer(peer routing.Vertex) {
s, ok := m.GossipSyncer(peer) m.syncersMu.Lock()
defer m.syncersMu.Unlock()
s, ok := m.gossipSyncer(peer)
if !ok { if !ok {
return return
} }
log.Infof("Removing GossipSyncer for peer=%v", peer) log.Infof("Removing GossipSyncer for peer=%v", peer)
// We'll start by stopping the GossipSyncer for the disconnected peer. // We'll stop the GossipSyncer for the disconnected peer in a goroutine
s.Stop() // to prevent blocking the SyncManager.
go s.Stop()
// If it's a non-active syncer, then we can just exit now. // If it's a non-active syncer, then we can just exit now.
m.Lock() if _, ok := m.inactiveSyncers[peer]; ok {
if _, ok := m.inactiveSyncers[s.cfg.peerPub]; ok { delete(m.inactiveSyncers, peer)
delete(m.inactiveSyncers, s.cfg.peerPub)
m.Unlock()
return return
} }
m.Unlock()
// Otherwise, we'll need to dequeue it from our pending active syncers // Otherwise, we'll need find a new one to replace it, if any.
// queue and find a new one to replace it, if any. delete(m.activeSyncers, peer)
m.signalStaleActiveSyncer(s, false) newActiveSyncer := chooseRandomSyncer(
m.inactiveSyncers, m.transitionPassiveSyncer,
)
if newActiveSyncer == nil {
return
}
log.Debugf("Replaced active GossipSyncer(%x) with GossipSyncer(%x)",
peer, newActiveSyncer.cfg.peerPub)
}
// rotateActiveSyncerCandidate rotates a single active syncer. In order to
// achieve this, the active syncer must be in a chansSynced state in order to
// process the sync transition.
func (m *SyncManager) rotateActiveSyncerCandidate() {
m.syncersMu.Lock()
defer m.syncersMu.Unlock()
// If we couldn't find an eligible active syncer to rotate, we can
// return early.
activeSyncer := chooseRandomSyncer(m.activeSyncers, nil)
if activeSyncer == nil {
log.Debug("No eligible active syncer to rotate")
return
}
// Similarly, if we don't have a candidate to rotate with, we can return
// early as well.
candidate := chooseRandomSyncer(m.inactiveSyncers, nil)
if candidate == nil {
log.Debug("No eligible candidate to rotate active syncer")
return
}
// Otherwise, we'll attempt to transition each syncer to their
// respective new sync type.
log.Debugf("Rotating active GossipSyncer(%x) with GossipSyncer(%x)",
activeSyncer.cfg.peerPub, candidate.cfg.peerPub)
if err := m.transitionActiveSyncer(activeSyncer); err != nil {
log.Errorf("Unable to transition active GossipSyncer(%x): %v",
activeSyncer.cfg.peerPub, err)
return
}
if err := m.transitionPassiveSyncer(candidate); err != nil {
log.Errorf("Unable to transition passive GossipSyncer(%x): %v",
activeSyncer.cfg.peerPub, err)
return
}
}
// transitionActiveSyncer transitions an active syncer to a passive one.
//
// NOTE: This must be called with the syncersMu lock held.
func (m *SyncManager) transitionActiveSyncer(s *GossipSyncer) error {
log.Debugf("Transitioning active GossipSyncer(%x) to passive",
s.cfg.peerPub)
if err := s.ProcessSyncTransition(PassiveSync); err != nil {
return err
}
delete(m.activeSyncers, s.cfg.peerPub)
m.inactiveSyncers[s.cfg.peerPub] = s
return nil
}
// transitionPassiveSyncer transitions a passive syncer to an active one.
//
// NOTE: This must be called with the syncersMu lock held.
func (m *SyncManager) transitionPassiveSyncer(s *GossipSyncer) error {
log.Debugf("Transitioning passive GossipSyncer(%x) to active",
s.cfg.peerPub)
if err := s.ProcessSyncTransition(ActiveSync); err != nil {
return err
}
delete(m.inactiveSyncers, s.cfg.peerPub)
m.activeSyncers[s.cfg.peerPub] = s
return nil
}
// forceHistoricalSync chooses a syncer with a remote peer at random and forces
// a historical sync with it.
func (m *SyncManager) forceHistoricalSync() *GossipSyncer {
m.syncersMu.Lock()
defer m.syncersMu.Unlock()
// We'll sample from both sets of active and inactive syncers in the
// event that we don't have any inactive syncers.
return chooseRandomSyncer(m.gossipSyncers(), func(s *GossipSyncer) error {
return s.historicalSync()
})
}
// chooseRandomSyncer iterates through the set of syncers given and returns the
// first one which was able to successfully perform the action enclosed in the
// function closure.
//
// NOTE: It's possible for a nil value to be returned if there are no eligible
// candidate syncers.
func chooseRandomSyncer(syncers map[routing.Vertex]*GossipSyncer,
action func(*GossipSyncer) error) *GossipSyncer {
for _, s := range syncers {
// Only syncers in a chansSynced state are viable for sync
// transitions, so skip any that aren't.
if s.syncState() != chansSynced {
continue
}
if action != nil {
if err := action(s); err != nil {
log.Debugf("Skipping eligible candidate "+
"GossipSyncer(%x): %v", s.cfg.peerPub,
err)
continue
}
}
return s
}
return nil
}
// InitSyncState is called by outside sub-systems when a connection is
// established to a new peer that understands how to perform channel range
// queries. We'll allocate a new GossipSyncer for it, and start any goroutines
// needed to handle new queries. The first GossipSyncer registered with the
// SyncManager will attempt a historical sync to ensure we have as much of the
// public channel graph as possible.
//
// TODO(wilmer): Only mark as ActiveSync if this isn't a channel peer.
func (m *SyncManager) InitSyncState(peer lnpeer.Peer) error {
done := make(chan struct{})
select {
case m.newSyncers <- &newSyncer{
peer: peer,
doneChan: done,
}:
case <-m.quit:
return ErrSyncManagerExiting
}
select {
case <-done:
return nil
case <-m.quit:
return ErrSyncManagerExiting
}
}
// PruneSyncState is called by outside sub-systems once a peer that we were
// previously connected to has been disconnected. In this case we can stop the
// existing GossipSyncer assigned to the peer and free up resources.
func (m *SyncManager) PruneSyncState(peer routing.Vertex) {
done := make(chan struct{})
// We avoid returning an error when the SyncManager is stopped since the
// GossipSyncer will be stopped then anyway.
select {
case m.staleSyncers <- &staleSyncer{
peer: peer,
doneChan: done,
}:
case <-m.quit:
return
}
select {
case <-done:
case <-m.quit:
}
} }
// GossipSyncer returns the associated gossip syncer of a peer. The boolean // GossipSyncer returns the associated gossip syncer of a peer. The boolean
// returned signals whether there exists a gossip syncer for the peer. // returned signals whether there exists a gossip syncer for the peer.
func (m *SyncManager) GossipSyncer(peer routing.Vertex) (*GossipSyncer, bool) { func (m *SyncManager) GossipSyncer(peer routing.Vertex) (*GossipSyncer, bool) {
m.Lock() m.syncersMu.Lock()
defer m.Unlock() defer m.syncersMu.Unlock()
return m.gossipSyncer(peer) return m.gossipSyncer(peer)
} }
@ -717,10 +618,6 @@ func (m *SyncManager) gossipSyncer(peer routing.Vertex) (*GossipSyncer, bool) {
if ok { if ok {
return syncer, true return syncer, true
} }
syncer, ok = m.pendingActiveSyncers[peer]
if ok {
return syncer, true
}
syncer, ok = m.activeSyncers[peer] syncer, ok = m.activeSyncers[peer]
if ok { if ok {
return syncer, true return syncer, true
@ -730,19 +627,19 @@ func (m *SyncManager) gossipSyncer(peer routing.Vertex) (*GossipSyncer, bool) {
// GossipSyncers returns all of the currently initialized gossip syncers. // GossipSyncers returns all of the currently initialized gossip syncers.
func (m *SyncManager) GossipSyncers() map[routing.Vertex]*GossipSyncer { func (m *SyncManager) GossipSyncers() map[routing.Vertex]*GossipSyncer {
m.Lock() m.syncersMu.Lock()
defer m.Unlock() defer m.syncersMu.Unlock()
return m.gossipSyncers()
}
numSyncers := len(m.inactiveSyncers) + len(m.activeSyncers) + // gossipSyncers returns all of the currently initialized gossip syncers.
len(m.inactiveSyncers) func (m *SyncManager) gossipSyncers() map[routing.Vertex]*GossipSyncer {
numSyncers := len(m.inactiveSyncers) + len(m.activeSyncers)
syncers := make(map[routing.Vertex]*GossipSyncer, numSyncers) syncers := make(map[routing.Vertex]*GossipSyncer, numSyncers)
for _, syncer := range m.inactiveSyncers { for _, syncer := range m.inactiveSyncers {
syncers[syncer.cfg.peerPub] = syncer syncers[syncer.cfg.peerPub] = syncer
} }
for _, syncer := range m.pendingActiveSyncers {
syncers[syncer.cfg.peerPub] = syncer
}
for _, syncer := range m.activeSyncers { for _, syncer := range m.activeSyncers {
syncers[syncer.cfg.peerPub] = syncer syncers[syncer.cfg.peerPub] = syncer
} }

@ -30,11 +30,10 @@ func randPeer(t *testing.T, quit chan struct{}) *mockPeer {
func newTestSyncManager(numActiveSyncers int) *SyncManager { func newTestSyncManager(numActiveSyncers int) *SyncManager {
hID := lnwire.ShortChannelID{BlockHeight: latestKnownHeight} hID := lnwire.ShortChannelID{BlockHeight: latestKnownHeight}
return newSyncManager(&SyncManagerCfg{ return newSyncManager(&SyncManagerCfg{
ChanSeries: newMockChannelGraphTimeSeries(hID), ChanSeries: newMockChannelGraphTimeSeries(hID),
RotateTicker: ticker.NewForce(DefaultSyncerRotationInterval), RotateTicker: ticker.NewForce(DefaultSyncerRotationInterval),
HistoricalSyncTicker: ticker.NewForce(DefaultHistoricalSyncInterval), HistoricalSyncTicker: ticker.NewForce(DefaultHistoricalSyncInterval),
ActiveSyncerTimeoutTicker: ticker.NewForce(DefaultActiveSyncerTimeout), NumActiveSyncers: numActiveSyncers,
NumActiveSyncers: numActiveSyncers,
}) })
} }
@ -57,21 +56,22 @@ func TestSyncManagerNumActiveSyncers(t *testing.T) {
for i := 0; i < numActiveSyncers; i++ { for i := 0; i < numActiveSyncers; i++ {
peer := randPeer(t, syncMgr.quit) peer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(peer) syncMgr.InitSyncState(peer)
s := assertSyncerExistence(t, syncMgr, peer)
// The first syncer registered always attempts a historical // The first syncer registered always attempts a historical
// sync. // sync.
if i == 0 { if i == 0 {
assertTransitionToChansSynced(t, syncMgr, peer, true) assertTransitionToChansSynced(t, s, peer)
} }
assertActiveGossipTimestampRange(t, peer)
assertPassiveSyncerTransition(t, syncMgr, peer) assertSyncerStatus(t, s, chansSynced, ActiveSync)
assertSyncerStatus(t, syncMgr, peer, chansSynced, ActiveSync)
} }
for i := 0; i < numSyncers-numActiveSyncers; i++ { for i := 0; i < numSyncers-numActiveSyncers; i++ {
peer := randPeer(t, syncMgr.quit) peer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(peer) syncMgr.InitSyncState(peer)
assertSyncerStatus(t, syncMgr, peer, chansSynced, PassiveSync) s := assertSyncerExistence(t, syncMgr, peer)
assertSyncerStatus(t, s, chansSynced, PassiveSync)
} }
} }
@ -80,39 +80,52 @@ func TestSyncManagerNumActiveSyncers(t *testing.T) {
func TestSyncManagerNewActiveSyncerAfterDisconnect(t *testing.T) { func TestSyncManagerNewActiveSyncerAfterDisconnect(t *testing.T) {
t.Parallel() t.Parallel()
// We'll create our test sync manager to only have one active syncer. // We'll create our test sync manager to have two active syncers.
syncMgr := newTestSyncManager(1) syncMgr := newTestSyncManager(2)
syncMgr.Start() syncMgr.Start()
defer syncMgr.Stop() defer syncMgr.Stop()
// peer1 will represent an active syncer that performs a historical // The first will be an active syncer that performs a historical sync
// sync since it is the first registered peer with the SyncManager. // since it is the first one registered with the SyncManager.
peer1 := randPeer(t, syncMgr.quit) historicalSyncPeer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(peer1) syncMgr.InitSyncState(historicalSyncPeer)
assertTransitionToChansSynced(t, syncMgr, peer1, true) historicalSyncer := assertSyncerExistence(t, syncMgr, historicalSyncPeer)
assertPassiveSyncerTransition(t, syncMgr, peer1) assertTransitionToChansSynced(t, historicalSyncer, historicalSyncPeer)
assertActiveGossipTimestampRange(t, historicalSyncPeer)
assertSyncerStatus(t, historicalSyncer, chansSynced, ActiveSync)
// Then, we'll create the second active syncer, which is the one we'll
// disconnect.
activeSyncPeer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(activeSyncPeer)
activeSyncer := assertSyncerExistence(t, syncMgr, activeSyncPeer)
assertActiveGossipTimestampRange(t, activeSyncPeer)
assertSyncerStatus(t, activeSyncer, chansSynced, ActiveSync)
// It will then be torn down to simulate a disconnection. Since there // It will then be torn down to simulate a disconnection. Since there
// are no other candidate syncers available, the active syncer won't be // are no other candidate syncers available, the active syncer won't be
// replaced. // replaced.
syncMgr.PruneSyncState(peer1.PubKey()) syncMgr.PruneSyncState(activeSyncPeer.PubKey())
// Then, we'll start our active syncer again, but this time we'll also // Then, we'll start our active syncer again, but this time we'll also
// have a passive syncer available to replace the active syncer after // have a passive syncer available to replace the active syncer after
// the peer disconnects. // the peer disconnects.
syncMgr.InitSyncState(peer1) syncMgr.InitSyncState(activeSyncPeer)
assertPassiveSyncerTransition(t, syncMgr, peer1) activeSyncer = assertSyncerExistence(t, syncMgr, activeSyncPeer)
assertActiveGossipTimestampRange(t, activeSyncPeer)
assertSyncerStatus(t, activeSyncer, chansSynced, ActiveSync)
// Create our second peer, which should be initialized as a passive // Create our second peer, which should be initialized as a passive
// syncer. // syncer.
peer2 := randPeer(t, syncMgr.quit) newActiveSyncPeer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(peer2) syncMgr.InitSyncState(newActiveSyncPeer)
assertSyncerStatus(t, syncMgr, peer2, chansSynced, PassiveSync) newActiveSyncer := assertSyncerExistence(t, syncMgr, newActiveSyncPeer)
assertSyncerStatus(t, newActiveSyncer, chansSynced, PassiveSync)
// Disconnect our active syncer, which should trigger the SyncManager to // Disconnect our active syncer, which should trigger the SyncManager to
// replace it with our passive syncer. // replace it with our passive syncer.
syncMgr.PruneSyncState(peer1.PubKey()) go syncMgr.PruneSyncState(activeSyncPeer.PubKey())
assertPassiveSyncerTransition(t, syncMgr, peer2) assertPassiveSyncerTransition(t, newActiveSyncer, newActiveSyncPeer)
} }
// TestSyncManagerRotateActiveSyncerCandidate tests that we can successfully // TestSyncManagerRotateActiveSyncerCandidate tests that we can successfully
@ -128,19 +141,22 @@ func TestSyncManagerRotateActiveSyncerCandidate(t *testing.T) {
// The first syncer registered always performs a historical sync. // The first syncer registered always performs a historical sync.
activeSyncPeer := randPeer(t, syncMgr.quit) activeSyncPeer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(activeSyncPeer) syncMgr.InitSyncState(activeSyncPeer)
assertTransitionToChansSynced(t, syncMgr, activeSyncPeer, true) activeSyncer := assertSyncerExistence(t, syncMgr, activeSyncPeer)
assertPassiveSyncerTransition(t, syncMgr, activeSyncPeer) assertTransitionToChansSynced(t, activeSyncer, activeSyncPeer)
assertActiveGossipTimestampRange(t, activeSyncPeer)
assertSyncerStatus(t, activeSyncer, chansSynced, ActiveSync)
// We'll send a tick to force a rotation. Since there aren't any // We'll send a tick to force a rotation. Since there aren't any
// candidates, none of the active syncers will be rotated. // candidates, none of the active syncers will be rotated.
syncMgr.cfg.RotateTicker.(*ticker.Force).Force <- time.Time{} syncMgr.cfg.RotateTicker.(*ticker.Force).Force <- time.Time{}
assertNoMsgSent(t, activeSyncPeer) assertNoMsgSent(t, activeSyncPeer)
assertSyncerStatus(t, syncMgr, activeSyncPeer, chansSynced, ActiveSync) assertSyncerStatus(t, activeSyncer, chansSynced, ActiveSync)
// We'll then go ahead and add a passive syncer. // We'll then go ahead and add a passive syncer.
passiveSyncPeer := randPeer(t, syncMgr.quit) passiveSyncPeer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(passiveSyncPeer) syncMgr.InitSyncState(passiveSyncPeer)
assertSyncerStatus(t, syncMgr, passiveSyncPeer, chansSynced, PassiveSync) passiveSyncer := assertSyncerExistence(t, syncMgr, passiveSyncPeer)
assertSyncerStatus(t, passiveSyncer, chansSynced, PassiveSync)
// We'll force another rotation - this time, since we have a passive // We'll force another rotation - this time, since we have a passive
// syncer available, they should be rotated. // syncer available, they should be rotated.
@ -149,7 +165,7 @@ func TestSyncManagerRotateActiveSyncerCandidate(t *testing.T) {
// The transition from an active syncer to a passive syncer causes the // The transition from an active syncer to a passive syncer causes the
// peer to send out a new GossipTimestampRange in the past so that they // peer to send out a new GossipTimestampRange in the past so that they
// don't receive new graph updates. // don't receive new graph updates.
assertActiveSyncerTransition(t, syncMgr, activeSyncPeer) assertActiveSyncerTransition(t, activeSyncer, activeSyncPeer)
// The transition from a passive syncer to an active syncer causes the // The transition from a passive syncer to an active syncer causes the
// peer to send a new GossipTimestampRange with the current timestamp to // peer to send a new GossipTimestampRange with the current timestamp to
@ -158,13 +174,54 @@ func TestSyncManagerRotateActiveSyncerCandidate(t *testing.T) {
// machine, starting from its initial syncingChans state. We'll then // machine, starting from its initial syncingChans state. We'll then
// need to transition it to its final chansSynced state to ensure the // need to transition it to its final chansSynced state to ensure the
// next syncer is properly started in the round-robin. // next syncer is properly started in the round-robin.
assertPassiveSyncerTransition(t, syncMgr, passiveSyncPeer) assertPassiveSyncerTransition(t, passiveSyncer, passiveSyncPeer)
} }
// TestSyncManagerHistoricalSync ensures that we only attempt a single // TestSyncManagerInitialHistoricalSync ensures that we only attempt a single
// historical sync during the SyncManager's startup, and that we can routinely // historical sync during the SyncManager's startup. If the peer corresponding
// force historical syncs whenever the HistoricalSyncTicker fires. // to the initial historical syncer disconnects, we should attempt to find a
func TestSyncManagerHistoricalSync(t *testing.T) { // replacement.
func TestSyncManagerInitialHistoricalSync(t *testing.T) {
t.Parallel()
syncMgr := newTestSyncManager(0)
syncMgr.Start()
defer syncMgr.Stop()
// We should expect to see a QueryChannelRange message with a
// FirstBlockHeight of the genesis block, signaling that an initial
// historical sync is being attempted.
peer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(peer)
assertMsgSent(t, peer, &lnwire.QueryChannelRange{
FirstBlockHeight: 0,
NumBlocks: math.MaxUint32,
})
// If an additional peer connects, then another historical sync should
// not be attempted.
finalHistoricalPeer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(finalHistoricalPeer)
finalHistoricalSyncer := assertSyncerExistence(t, syncMgr, finalHistoricalPeer)
assertNoMsgSent(t, finalHistoricalPeer)
// If we disconnect the peer performing the initial historical sync, a
// new one should be chosen.
syncMgr.PruneSyncState(peer.PubKey())
assertTransitionToChansSynced(t, finalHistoricalSyncer, finalHistoricalPeer)
// Once the initial historical sync has succeeded, another one should
// not be attempted by disconnecting the peer who performed it.
extraPeer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(extraPeer)
assertNoMsgSent(t, extraPeer)
syncMgr.PruneSyncState(finalHistoricalPeer.PubKey())
assertNoMsgSent(t, extraPeer)
}
// TestSyncManagerForceHistoricalSync ensures that we can perform routine
// historical syncs whenever the HistoricalSyncTicker fires.
func TestSyncManagerForceHistoricalSync(t *testing.T) {
t.Parallel() t.Parallel()
syncMgr := newTestSyncManager(0) syncMgr := newTestSyncManager(0)
@ -197,190 +254,64 @@ func TestSyncManagerHistoricalSync(t *testing.T) {
}) })
} }
// TestSyncManagerRoundRobinQueue ensures that any subsequent active syncers can // TestSyncManagerWaitUntilInitialHistoricalSync ensures that no GossipSyncers
// only be started after the previous one has completed its state machine. // are initialized as ActiveSync until the initial historical sync has been
func TestSyncManagerRoundRobinQueue(t *testing.T) { // completed. Once it does, the pending GossipSyncers should be transitioned to
// ActiveSync.
func TestSyncManagerWaitUntilInitialHistoricalSync(t *testing.T) {
t.Parallel() t.Parallel()
const numActiveSyncers = 3 const numActiveSyncers = 2
// We'll start by creating our sync manager with support for three // We'll start by creating our test sync manager which will hold up to
// active syncers. // 2 active syncers.
syncMgr := newTestSyncManager(numActiveSyncers) syncMgr := newTestSyncManager(numActiveSyncers)
syncMgr.Start() syncMgr.Start()
defer syncMgr.Stop() defer syncMgr.Stop()
// We'll go ahead and create our syncers.
peers := make([]*mockPeer, 0, numActiveSyncers) peers := make([]*mockPeer, 0, numActiveSyncers)
syncers := make([]*GossipSyncer, 0, numActiveSyncers)
// The first syncer registered always attempts a historical sync. for i := 0; i < numActiveSyncers; i++ {
firstPeer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(firstPeer)
peers = append(peers, firstPeer)
assertTransitionToChansSynced(t, syncMgr, firstPeer, true)
// After completing the historical sync, a sync transition to ActiveSync
// should happen. It should transition immediately since it has no
// dependents.
assertActiveGossipTimestampRange(t, firstPeer)
// We'll create the remaining numActiveSyncers. These will be queued in
// the round robin since the first syncer has yet to reach chansSynced.
queuedPeers := make([]*mockPeer, 0, numActiveSyncers-1)
for i := 0; i < numActiveSyncers-1; i++ {
peer := randPeer(t, syncMgr.quit) peer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(peer)
peers = append(peers, peer) peers = append(peers, peer)
queuedPeers = append(queuedPeers, peer)
}
// Ensure they cannot transition without sending a GossipTimestampRange
// message first.
for _, peer := range queuedPeers {
assertNoMsgSent(t, peer)
}
// Transition the first syncer to chansSynced, which should allow the
// second to transition next.
assertTransitionToChansSynced(t, syncMgr, firstPeer, false)
// assertSyncerTransitioned ensures the target peer's syncer is the only
// that has transitioned.
assertSyncerTransitioned := func(target *mockPeer) {
t.Helper()
for _, peer := range peers {
if peer.PubKey() != target.PubKey() {
assertNoMsgSent(t, peer)
continue
}
assertActiveGossipTimestampRange(t, target)
}
}
// For each queued syncer, we'll ensure they have transitioned to an
// ActiveSync type and reached their final chansSynced state to allow
// the next one to transition.
for _, peer := range queuedPeers {
assertSyncerTransitioned(peer)
assertTransitionToChansSynced(t, syncMgr, peer, false)
}
}
// TestSyncManagerRoundRobinTimeout ensures that if we timeout while waiting for
// an active syncer to reach its final chansSynced state, then we will go on to
// start the next.
func TestSyncManagerRoundRobinTimeout(t *testing.T) {
t.Parallel()
// Create our sync manager with support for two active syncers.
syncMgr := newTestSyncManager(2)
syncMgr.Start()
defer syncMgr.Stop()
// peer1 will be the first peer we start, which will time out and cause
// peer2 to start.
peer1 := randPeer(t, syncMgr.quit)
peer2 := randPeer(t, syncMgr.quit)
// The first syncer registered always attempts a historical sync.
syncMgr.InitSyncState(peer1)
assertTransitionToChansSynced(t, syncMgr, peer1, true)
// We assume the syncer for peer1 has transitioned once we see it send a
// lnwire.GossipTimestampRange message.
assertActiveGossipTimestampRange(t, peer1)
// We'll then create the syncer for peer2. This should cause it to be
// queued so that it starts once the syncer for peer1 is done.
syncMgr.InitSyncState(peer2)
assertNoMsgSent(t, peer2)
// Send a force tick to pretend the sync manager has timed out waiting
// for peer1's syncer to reach chansSynced.
syncMgr.cfg.ActiveSyncerTimeoutTicker.(*ticker.Force).Force <- time.Time{}
// Finally, ensure that the syncer for peer2 has transitioned.
assertActiveGossipTimestampRange(t, peer2)
}
// TestSyncManagerRoundRobinStaleSyncer ensures that any stale active syncers we
// are currently waiting for or are queued up to start are properly removed and
// stopped.
func TestSyncManagerRoundRobinStaleSyncer(t *testing.T) {
t.Parallel()
const numActiveSyncers = 4
// We'll create and start our sync manager with some active syncers.
syncMgr := newTestSyncManager(numActiveSyncers)
syncMgr.Start()
defer syncMgr.Stop()
peers := make([]*mockPeer, 0, numActiveSyncers)
// The first syncer registered always attempts a historical sync.
firstPeer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(firstPeer)
peers = append(peers, firstPeer)
assertTransitionToChansSynced(t, syncMgr, firstPeer, true)
// After completing the historical sync, a sync transition to ActiveSync
// should happen. It should transition immediately since it has no
// dependents.
assertActiveGossipTimestampRange(t, firstPeer)
assertMsgSent(t, firstPeer, &lnwire.QueryChannelRange{
FirstBlockHeight: startHeight,
NumBlocks: math.MaxUint32 - startHeight,
})
// We'll create the remaining numActiveSyncers. These will be queued in
// the round robin since the first syncer has yet to reach chansSynced.
queuedPeers := make([]*mockPeer, 0, numActiveSyncers-1)
for i := 0; i < numActiveSyncers-1; i++ {
peer := randPeer(t, syncMgr.quit)
syncMgr.InitSyncState(peer) syncMgr.InitSyncState(peer)
peers = append(peers, peer) s := assertSyncerExistence(t, syncMgr, peer)
queuedPeers = append(queuedPeers, peer) syncers = append(syncers, s)
}
// Ensure they cannot transition without sending a GossipTimestampRange // The first one always attempts a historical sync. We won't
// message first. // transition it to chansSynced to ensure the remaining syncers
for _, peer := range queuedPeers { // aren't started as active.
assertNoMsgSent(t, peer) if i == 0 {
} assertSyncerStatus(t, s, syncingChans, PassiveSync)
// assertSyncerTransitioned ensures the target peer's syncer is the only
// that has transitioned.
assertSyncerTransitioned := func(target *mockPeer) {
t.Helper()
for _, peer := range peers {
if peer.PubKey() != target.PubKey() {
assertNoMsgSent(t, peer)
continue
}
assertPassiveSyncerTransition(t, syncMgr, target)
}
}
// We'll then remove the syncers in the middle to cover the case where
// they are queued up in the sync manager's pending list.
for i, peer := range peers {
if i == 0 || i == len(peers)-1 {
continue continue
} }
syncMgr.PruneSyncState(peer.PubKey()) // The rest should remain in a passive and chansSynced state,
// and they should be queued to transition to active once the
// initial historical sync is completed.
assertNoMsgSent(t, peer)
assertSyncerStatus(t, s, chansSynced, PassiveSync)
} }
// We'll then remove the syncer we are currently waiting for. This // To ensure we don't transition any pending active syncers that have
// should prompt the last syncer to start since it is the only one left // previously disconnected, we'll disconnect the last one.
// pending. We'll do this in a goroutine since the peer behind the new stalePeer := peers[numActiveSyncers-1]
// active syncer will need to send out its new GossipTimestampRange. syncMgr.PruneSyncState(stalePeer.PubKey())
go syncMgr.PruneSyncState(peers[0].PubKey())
assertSyncerTransitioned(peers[len(peers)-1]) // Then, we'll complete the initial historical sync by transitioning the
// historical syncer to its final chansSynced state. This should trigger
// all of the pending active syncers to transition, except for the one
// we disconnected.
assertTransitionToChansSynced(t, syncers[0], peers[0])
for i, s := range syncers {
if i == numActiveSyncers-1 {
assertNoMsgSent(t, peers[i])
continue
}
assertPassiveSyncerTransition(t, s, peers[i])
}
} }
// assertNoMsgSent is a helper function that ensures a peer hasn't sent any // assertNoMsgSent is a helper function that ensures a peer hasn't sent any
@ -423,7 +354,7 @@ func assertActiveGossipTimestampRange(t *testing.T, peer *mockPeer) {
var msgSent lnwire.Message var msgSent lnwire.Message
select { select {
case msgSent = <-peer.sentMsgs: case msgSent = <-peer.sentMsgs:
case <-time.After(time.Second): case <-time.After(2 * time.Second):
t.Fatalf("expected peer %x to send lnwire.GossipTimestampRange "+ t.Fatalf("expected peer %x to send lnwire.GossipTimestampRange "+
"message", peer.PubKey()) "message", peer.PubKey())
} }
@ -443,10 +374,9 @@ func assertActiveGossipTimestampRange(t *testing.T, peer *mockPeer) {
} }
} }
// assertSyncerStatus asserts that the gossip syncer for the given peer matches // assertSyncerExistence asserts that a GossipSyncer exists for the given peer.
// the expected sync state and type. func assertSyncerExistence(t *testing.T, syncMgr *SyncManager,
func assertSyncerStatus(t *testing.T, syncMgr *SyncManager, peer *mockPeer, peer *mockPeer) *GossipSyncer {
syncState syncerState, syncType SyncerType) {
t.Helper() t.Helper()
@ -455,19 +385,29 @@ func assertSyncerStatus(t *testing.T, syncMgr *SyncManager, peer *mockPeer,
t.Fatalf("gossip syncer for peer %x not found", peer.PubKey()) t.Fatalf("gossip syncer for peer %x not found", peer.PubKey())
} }
return s
}
// assertSyncerStatus asserts that the gossip syncer for the given peer matches
// the expected sync state and type.
func assertSyncerStatus(t *testing.T, s *GossipSyncer, syncState syncerState,
syncType SyncerType) {
t.Helper()
// We'll check the status of our syncer within a WaitPredicate as some // We'll check the status of our syncer within a WaitPredicate as some
// sync transitions might cause this to be racy. // sync transitions might cause this to be racy.
err := lntest.WaitNoError(func() error { err := lntest.WaitNoError(func() error {
state := s.syncState() state := s.syncState()
if s.syncState() != syncState { if s.syncState() != syncState {
return fmt.Errorf("expected syncState %v for peer "+ return fmt.Errorf("expected syncState %v for peer "+
"%x, got %v", syncState, peer.PubKey(), state) "%x, got %v", syncState, s.cfg.peerPub, state)
} }
typ := s.SyncType() typ := s.SyncType()
if s.SyncType() != syncType { if s.SyncType() != syncType {
return fmt.Errorf("expected syncType %v for peer "+ return fmt.Errorf("expected syncType %v for peer "+
"%x, got %v", syncType, peer.PubKey(), typ) "%x, got %v", syncType, s.cfg.peerPub, typ)
} }
return nil return nil
@ -479,28 +419,17 @@ func assertSyncerStatus(t *testing.T, syncMgr *SyncManager, peer *mockPeer,
// assertTransitionToChansSynced asserts the transition of an ActiveSync // assertTransitionToChansSynced asserts the transition of an ActiveSync
// GossipSyncer to its final chansSynced state. // GossipSyncer to its final chansSynced state.
func assertTransitionToChansSynced(t *testing.T, syncMgr *SyncManager, func assertTransitionToChansSynced(t *testing.T, s *GossipSyncer, peer *mockPeer) {
peer *mockPeer, historicalSync bool) {
t.Helper() t.Helper()
s, ok := syncMgr.GossipSyncer(peer.PubKey())
if !ok {
t.Fatalf("gossip syncer for peer %x not found", peer.PubKey())
}
firstBlockHeight := uint32(startHeight)
if historicalSync {
firstBlockHeight = 0
}
assertMsgSent(t, peer, &lnwire.QueryChannelRange{ assertMsgSent(t, peer, &lnwire.QueryChannelRange{
FirstBlockHeight: firstBlockHeight, FirstBlockHeight: 0,
NumBlocks: math.MaxUint32 - firstBlockHeight, NumBlocks: math.MaxUint32,
}) })
s.ProcessQueryMsg(&lnwire.ReplyChannelRange{Complete: 1}, nil) s.ProcessQueryMsg(&lnwire.ReplyChannelRange{Complete: 1}, nil)
chanSeries := syncMgr.cfg.ChanSeries.(*mockChannelGraphTimeSeries) chanSeries := s.cfg.channelSeries.(*mockChannelGraphTimeSeries)
select { select {
case <-chanSeries.filterReq: case <-chanSeries.filterReq:
@ -525,25 +454,22 @@ func assertTransitionToChansSynced(t *testing.T, syncMgr *SyncManager,
// assertPassiveSyncerTransition asserts that a gossip syncer goes through all // assertPassiveSyncerTransition asserts that a gossip syncer goes through all
// of its expected steps when transitioning from passive to active. // of its expected steps when transitioning from passive to active.
func assertPassiveSyncerTransition(t *testing.T, syncMgr *SyncManager, func assertPassiveSyncerTransition(t *testing.T, s *GossipSyncer, peer *mockPeer) {
peer *mockPeer) {
t.Helper() t.Helper()
assertActiveGossipTimestampRange(t, peer) assertActiveGossipTimestampRange(t, peer)
assertTransitionToChansSynced(t, syncMgr, peer, false) assertSyncerStatus(t, s, chansSynced, ActiveSync)
} }
// assertActiveSyncerTransition asserts that a gossip syncer goes through all of // assertActiveSyncerTransition asserts that a gossip syncer goes through all of
// its expected steps when transitioning from active to passive. // its expected steps when transitioning from active to passive.
func assertActiveSyncerTransition(t *testing.T, syncMgr *SyncManager, func assertActiveSyncerTransition(t *testing.T, s *GossipSyncer, peer *mockPeer) {
peer *mockPeer) {
t.Helper() t.Helper()
assertMsgSent(t, peer, &lnwire.GossipTimestampRange{ assertMsgSent(t, peer, &lnwire.GossipTimestampRange{
FirstTimestamp: uint32(zeroTimestamp.Unix()), FirstTimestamp: uint32(zeroTimestamp.Unix()),
TimestampRange: 0, TimestampRange: 0,
}) })
assertSyncerStatus(t, syncMgr, peer, chansSynced, PassiveSync) assertSyncerStatus(t, s, chansSynced, PassiveSync)
} }

@ -18,16 +18,23 @@ import (
type SyncerType uint8 type SyncerType uint8
const ( const (
// ActiveSync denotes that a gossip syncer should exercise its default // ActiveSync denotes that a gossip syncer:
// behavior. This includes reconciling the set of missing graph updates //
// with the remote peer _and_ receiving new updates from them. // 1. Should not attempt to synchronize with the remote peer for
// missing channels.
// 2. Should respond to queries from the remote peer.
// 3. Should receive new updates from the remote peer.
//
// They are started in a chansSynced state in order to accomplish their
// responsibilities above.
ActiveSync SyncerType = iota ActiveSync SyncerType = iota
// PassiveSync denotes that a gossip syncer: // PassiveSync denotes that a gossip syncer:
// //
// 1. Should not attempt to query the remote peer for graph updates. // 1. Should not attempt to synchronize with the remote peer for
// 2. Should respond to queries from the remote peer. // missing channels.
// 3. Should not receive new updates from the remote peer. // 2. Should respond to queries from the remote peer.
// 3. Should not receive new updates from the remote peer.
// //
// They are started in a chansSynced state in order to accomplish their // They are started in a chansSynced state in order to accomplish their
// responsibilities above. // responsibilities above.
@ -161,6 +168,14 @@ type syncTransitionReq struct {
errChan chan error errChan chan error
} }
// historicalSyncReq encapsulates a request for a gossip syncer to perform a
// historical sync.
type historicalSyncReq struct {
// doneChan is a channel that serves as a signal and is closed to ensure
// the historical sync is attempted by the time we return to the caller.
doneChan chan struct{}
}
// gossipSyncerCfg is a struct that packages all the information a GossipSyncer // gossipSyncerCfg is a struct that packages all the information a GossipSyncer
// needs to carry out its duties. // needs to carry out its duties.
type gossipSyncerCfg struct { type gossipSyncerCfg struct {
@ -246,7 +261,7 @@ type GossipSyncer struct {
// gossip syncer to perform a historical sync. Theese can only be done // gossip syncer to perform a historical sync. Theese can only be done
// once the gossip syncer is in a chansSynced state to ensure its state // once the gossip syncer is in a chansSynced state to ensure its state
// machine behaves as expected. // machine behaves as expected.
historicalSyncReqs chan struct{} historicalSyncReqs chan *historicalSyncReq
// genHistoricalChanRangeQuery when true signals to the gossip syncer // genHistoricalChanRangeQuery when true signals to the gossip syncer
// that it should request the remote peer for all of its known channel // that it should request the remote peer for all of its known channel
@ -315,7 +330,7 @@ func newGossipSyncer(cfg gossipSyncerCfg) *GossipSyncer {
cfg: cfg, cfg: cfg,
rateLimiter: rateLimiter, rateLimiter: rateLimiter,
syncTransitionReqs: make(chan *syncTransitionReq), syncTransitionReqs: make(chan *syncTransitionReq),
historicalSyncReqs: make(chan struct{}), historicalSyncReqs: make(chan *historicalSyncReq),
gossipMsgs: make(chan lnwire.Message, 100), gossipMsgs: make(chan lnwire.Message, 100),
quit: make(chan struct{}), quit: make(chan struct{}),
} }
@ -515,8 +530,8 @@ func (g *GossipSyncer) channelGraphSyncer() {
case req := <-g.syncTransitionReqs: case req := <-g.syncTransitionReqs:
req.errChan <- g.handleSyncTransition(req) req.errChan <- g.handleSyncTransition(req)
case <-g.historicalSyncReqs: case req := <-g.historicalSyncReqs:
g.handleHistoricalSync() g.handleHistoricalSync(req)
case <-g.quit: case <-g.quit:
return return
@ -1128,7 +1143,6 @@ func (g *GossipSyncer) handleSyncTransition(req *syncTransitionReq) error {
var ( var (
firstTimestamp time.Time firstTimestamp time.Time
timestampRange uint32 timestampRange uint32
newState syncerState
) )
switch req.newSyncType { switch req.newSyncType {
@ -1137,11 +1151,6 @@ func (g *GossipSyncer) handleSyncTransition(req *syncTransitionReq) error {
case ActiveSync: case ActiveSync:
firstTimestamp = time.Now() firstTimestamp = time.Now()
timestampRange = math.MaxUint32 timestampRange = math.MaxUint32
newState = syncingChans
// We'll set genHistoricalChanRangeQuery to false since in order
// to not perform another historical sync if we previously have.
g.genHistoricalChanRangeQuery = false
// If a PassiveSync transition has been requested, then we should no // If a PassiveSync transition has been requested, then we should no
// longer receive any new updates from the remote peer. We can do this // longer receive any new updates from the remote peer. We can do this
@ -1150,7 +1159,6 @@ func (g *GossipSyncer) handleSyncTransition(req *syncTransitionReq) error {
case PassiveSync: case PassiveSync:
firstTimestamp = zeroTimestamp firstTimestamp = zeroTimestamp
timestampRange = 0 timestampRange = 0
newState = chansSynced
default: default:
return fmt.Errorf("unhandled sync transition %v", return fmt.Errorf("unhandled sync transition %v",
@ -1162,7 +1170,6 @@ func (g *GossipSyncer) handleSyncTransition(req *syncTransitionReq) error {
return fmt.Errorf("unable to send local update horizon: %v", err) return fmt.Errorf("unable to send local update horizon: %v", err)
} }
g.setSyncState(newState)
g.setSyncType(req.newSyncType) g.setSyncType(req.newSyncType)
return nil return nil
@ -1184,22 +1191,33 @@ func (g *GossipSyncer) SyncType() SyncerType {
// NOTE: This can only be done once the gossip syncer has reached its final // NOTE: This can only be done once the gossip syncer has reached its final
// chansSynced state. // chansSynced state.
func (g *GossipSyncer) historicalSync() error { func (g *GossipSyncer) historicalSync() error {
done := make(chan struct{})
select { select {
case g.historicalSyncReqs <- struct{}{}: case g.historicalSyncReqs <- &historicalSyncReq{
return nil doneChan: done,
}:
case <-time.After(syncTransitionTimeout): case <-time.After(syncTransitionTimeout):
return ErrSyncTransitionTimeout return ErrSyncTransitionTimeout
case <-g.quit: case <-g.quit:
return ErrGossiperShuttingDown return ErrGossiperShuttingDown
} }
select {
case <-done:
return nil
case <-g.quit:
return ErrGossiperShuttingDown
}
} }
// handleHistoricalSync handles a request to the gossip syncer to perform a // handleHistoricalSync handles a request to the gossip syncer to perform a
// historical sync. // historical sync.
func (g *GossipSyncer) handleHistoricalSync() { func (g *GossipSyncer) handleHistoricalSync(req *historicalSyncReq) {
// We'll go back to our initial syncingChans state in order to request // We'll go back to our initial syncingChans state in order to request
// the remote peer to give us all of the channel IDs they know of // the remote peer to give us all of the channel IDs they know of
// starting from the genesis block. // starting from the genesis block.
g.genHistoricalChanRangeQuery = true g.genHistoricalChanRangeQuery = true
g.setSyncState(syncingChans) g.setSyncState(syncingChans)
close(req.doneChan)
} }

@ -2014,8 +2014,7 @@ func TestGossipSyncerSyncTransitions(t *testing.T) {
syncState := g.syncState() syncState := g.syncState()
if syncState != chansSynced { if syncState != chansSynced {
t.Fatalf("expected syncerState %v, "+ t.Fatalf("expected syncerState %v, "+
"got %v", chansSynced, "got %v", chansSynced, syncState)
syncState)
} }
}, },
}, },
@ -2037,21 +2036,10 @@ func TestGossipSyncerSyncTransitions(t *testing.T) {
TimestampRange: math.MaxUint32, TimestampRange: math.MaxUint32,
}) })
// The local update horizon should be followed
// by a QueryChannelRange message sent to the
// remote peer requesting all channels it
// knows of from the highest height the syncer
// knows of.
assertMsgSent(t, msgChan, &lnwire.QueryChannelRange{
FirstBlockHeight: startHeight,
NumBlocks: math.MaxUint32 - startHeight,
})
syncState := g.syncState() syncState := g.syncState()
if syncState != waitingQueryRangeReply { if syncState != chansSynced {
t.Fatalf("expected syncerState %v, "+ t.Fatalf("expected syncerState %v, "+
"got %v", waitingQueryRangeReply, "got %v", chansSynced, syncState)
syncState)
} }
}, },
}, },

@ -673,23 +673,22 @@ func newServer(listenAddrs []net.Addr, chanDB *channeldb.DB, cc *chainControl,
} }
s.authGossiper = discovery.New(discovery.Config{ s.authGossiper = discovery.New(discovery.Config{
Router: s.chanRouter, Router: s.chanRouter,
Notifier: s.cc.chainNotifier, Notifier: s.cc.chainNotifier,
ChainHash: *activeNetParams.GenesisHash, ChainHash: *activeNetParams.GenesisHash,
Broadcast: s.BroadcastMessage, Broadcast: s.BroadcastMessage,
ChanSeries: chanSeries, ChanSeries: chanSeries,
NotifyWhenOnline: s.NotifyWhenOnline, NotifyWhenOnline: s.NotifyWhenOnline,
NotifyWhenOffline: s.NotifyWhenOffline, NotifyWhenOffline: s.NotifyWhenOffline,
ProofMatureDelta: 0, ProofMatureDelta: 0,
TrickleDelay: time.Millisecond * time.Duration(cfg.TrickleDelay), TrickleDelay: time.Millisecond * time.Duration(cfg.TrickleDelay),
RetransmitDelay: time.Minute * 30, RetransmitDelay: time.Minute * 30,
WaitingProofStore: waitingProofStore, WaitingProofStore: waitingProofStore,
MessageStore: gossipMessageStore, MessageStore: gossipMessageStore,
AnnSigner: s.nodeSigner, AnnSigner: s.nodeSigner,
RotateTicker: ticker.New(discovery.DefaultSyncerRotationInterval), RotateTicker: ticker.New(discovery.DefaultSyncerRotationInterval),
HistoricalSyncTicker: ticker.New(cfg.HistoricalSyncInterval), HistoricalSyncTicker: ticker.New(cfg.HistoricalSyncInterval),
ActiveSyncerTimeoutTicker: ticker.New(discovery.DefaultActiveSyncerTimeout), NumActiveSyncers: cfg.NumGraphSyncPeers,
NumActiveSyncers: cfg.NumGraphSyncPeers,
}, },
s.identityPriv.PubKey(), s.identityPriv.PubKey(),
) )