Merge pull request #2419 from cfromknecht/brontide-buffer-pool

brontide: read buffer pool
This commit is contained in:
Olaoluwa Osuntokun 2019-02-18 17:51:17 -08:00 committed by GitHub
commit 9d23d382fc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 579 additions and 214 deletions

@ -61,7 +61,11 @@ func Dial(localPriv *btcec.PrivateKey, netAddr *lnwire.NetAddress,
// We'll ensure that we get ActTwo from the remote peer in a timely
// manner. If they don't respond within 1s, then we'll kill the
// connection.
conn.SetReadDeadline(time.Now().Add(handshakeReadTimeout))
err = conn.SetReadDeadline(time.Now().Add(handshakeReadTimeout))
if err != nil {
b.conn.Close()
return nil, err
}
// If the first act was successful (we know that address is actually
// remotePub), then read the second act after which we'll be able to
@ -91,7 +95,11 @@ func Dial(localPriv *btcec.PrivateKey, netAddr *lnwire.NetAddress,
// We'll reset the deadline as it's no longer critical beyond the
// initial handshake.
conn.SetReadDeadline(time.Time{})
err = conn.SetReadDeadline(time.Time{})
if err != nil {
b.conn.Close()
return nil, err
}
return b, nil
}

@ -116,7 +116,12 @@ func (l *Listener) doHandshake(conn net.Conn) {
// We'll ensure that we get ActOne from the remote peer in a timely
// manner. If they don't respond within 1s, then we'll kill the
// connection.
conn.SetReadDeadline(time.Now().Add(handshakeReadTimeout))
err := conn.SetReadDeadline(time.Now().Add(handshakeReadTimeout))
if err != nil {
brontideConn.conn.Close()
l.rejectConn(rejectedConnErr(err, remoteAddr))
return
}
// Attempt to carry out the first act of the handshake protocol. If the
// connecting node doesn't know our long-term static public key, then
@ -156,7 +161,12 @@ func (l *Listener) doHandshake(conn net.Conn) {
// We'll ensure that we get ActTwo from the remote peer in a timely
// manner. If they don't respond within 1 second, then we'll kill the
// connection.
conn.SetReadDeadline(time.Now().Add(handshakeReadTimeout))
err = conn.SetReadDeadline(time.Now().Add(handshakeReadTimeout))
if err != nil {
brontideConn.conn.Close()
l.rejectConn(rejectedConnErr(err, remoteAddr))
return
}
// Finally, finish the handshake processes by reading and decrypting
// the connection peer's static public key. If this succeeds then both
@ -175,7 +185,12 @@ func (l *Listener) doHandshake(conn net.Conn) {
// We'll reset the deadline as it's no longer critical beyond the
// initial handshake.
conn.SetReadDeadline(time.Time{})
err = conn.SetReadDeadline(time.Time{})
if err != nil {
brontideConn.conn.Close()
l.rejectConn(rejectedConnErr(err, remoteAddr))
return
}
l.acceptConn(brontideConn)
}

@ -8,12 +8,15 @@ import (
"fmt"
"io"
"math"
"runtime"
"time"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/crypto/hkdf"
"github.com/btcsuite/btcd/btcec"
"github.com/lightningnetwork/lnd/buffer"
"github.com/lightningnetwork/lnd/pool"
)
const (
@ -47,6 +50,24 @@ var (
// the cipher session exceeds the maximum allowed message payload.
ErrMaxMessageLengthExceeded = errors.New("the generated payload exceeds " +
"the max allowed message length of (2^16)-1")
// lightningPrologue is the noise prologue that is used to initialize
// the brontide noise handshake.
lightningPrologue = []byte("lightning")
// ephemeralGen is the default ephemeral key generator, used to derive a
// unique ephemeral key for each brontide handshake.
ephemeralGen = func() (*btcec.PrivateKey, error) {
return btcec.NewPrivateKey(btcec.S256())
}
// readBufferPool is a singleton instance of a buffer pool, used to
// conserve memory allocations due to read buffers across the entire
// brontide package.
readBufferPool = pool.NewReadBuffer(
pool.DefaultReadBufferGCInterval,
pool.DefaultReadBufferExpiryInterval,
)
)
// TODO(roasbeef): free buffer pool?
@ -365,7 +386,7 @@ type Machine struct {
// read the next one. Having a fixed buffer that's re-used also means
// that we save on allocations as we don't need to create a new one
// each time.
nextCipherText [math.MaxUint16 + macSize]byte
nextCipherText *buffer.Read
}
// NewBrontideMachine creates a new instance of the brontide state-machine. If
@ -377,15 +398,13 @@ type Machine struct {
func NewBrontideMachine(initiator bool, localPub *btcec.PrivateKey,
remotePub *btcec.PublicKey, options ...func(*Machine)) *Machine {
handshake := newHandshakeState(initiator, []byte("lightning"), localPub,
remotePub)
handshake := newHandshakeState(
initiator, lightningPrologue, localPub, remotePub,
)
m := &Machine{handshakeState: handshake}
// With the initial base machine created, we'll assign our default
// version of the ephemeral key generator.
m.ephemeralGen = func() (*btcec.PrivateKey, error) {
return btcec.NewPrivateKey(btcec.S256())
m := &Machine{
handshakeState: handshake,
ephemeralGen: ephemeralGen,
}
// With the default options established, we'll now process all the
@ -731,6 +750,15 @@ func (b *Machine) ReadMessage(r io.Reader) ([]byte, error) {
return nil, err
}
// If this is the first message being read, take a read buffer from the
// buffer pool. This is delayed until this point to avoid allocating
// read buffers until after the peer has successfully completed the
// handshake, and is ready to begin sending lnwire messages.
if b.nextCipherText == nil {
b.nextCipherText = readBufferPool.Take()
runtime.SetFinalizer(b, freeReadBuffer)
}
// Next, using the length read from the packet header, read the
// encrypted packet itself.
pktLen := uint32(binary.BigEndian.Uint16(pktLenBytes)) + macSize
@ -741,3 +769,12 @@ func (b *Machine) ReadMessage(r io.Reader) ([]byte, error) {
// TODO(roasbeef): modify to let pass in slice
return b.recvCipher.Decrypt(nil, nil, b.nextCipherText[:pktLen])
}
// freeReadBuffer returns the Machine's read buffer back to the package wide
// read buffer pool.
//
// NOTE: This method should only be called by a Machine's finalizer.
func freeReadBuffer(b *Machine) {
readBufferPool.Return(b.nextCipherText)
b.nextCipherText = nil
}

44
buffer/buffer_test.go Normal file

@ -0,0 +1,44 @@
package buffer_test
import (
"bytes"
"testing"
"github.com/lightningnetwork/lnd/buffer"
)
// TestRecycleSlice asserts that RecycleSlice always zeros a byte slice.
func TestRecycleSlice(t *testing.T) {
tests := []struct {
name string
slice []byte
}{
{
name: "length zero",
},
{
name: "length one",
slice: []byte("a"),
},
{
name: "length power of two length",
slice: bytes.Repeat([]byte("b"), 16),
},
{
name: "length non power of two",
slice: bytes.Repeat([]byte("c"), 27),
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
buffer.RecycleSlice(test.slice)
expSlice := make([]byte, len(test.slice))
if !bytes.Equal(expSlice, test.slice) {
t.Fatalf("slice not recycled, want: %v, got: %v",
expSlice, test.slice)
}
})
}
}

19
buffer/read.go Normal file

@ -0,0 +1,19 @@
package buffer
import (
"github.com/lightningnetwork/lnd/lnwire"
)
// ReadSize represents the size of the maximum message that can be read off the
// wire by brontide. The buffer is used to hold the ciphertext while the
// brontide state machine decrypts the message.
const ReadSize = lnwire.MaxMessagePayload + 16
// Read is a static byte array sized to the maximum-allowed Lightning message
// size, plus 16 bytes for the MAC.
type Read [ReadSize]byte
// Recycle zeroes the Read, making it fresh for another use.
func (b *Read) Recycle() {
RecycleSlice(b[:])
}

17
buffer/utils.go Normal file

@ -0,0 +1,17 @@
package buffer
// RecycleSlice zeroes byte slice, making it fresh for another use.
// Zeroing the buffer using a logarithmic number of calls to the optimized copy
// method. Benchmarking shows this to be ~30 times faster than a for loop that
// sets each index to 0 for ~65KB buffers use for wire messages. Inspired by:
// https://stackoverflow.com/questions/30614165/is-there-analog-of-memset-in-go
func RecycleSlice(b []byte) {
if len(b) == 0 {
return
}
b[0] = 0
for i := 1; i < len(b); i *= 2 {
copy(b[i:], b[:i])
}
}

19
buffer/write.go Normal file

@ -0,0 +1,19 @@
package buffer
import (
"github.com/lightningnetwork/lnd/lnwire"
)
// WriteSize represents the size of the maximum plaintext message than can be
// sent using brontide. The buffer does not include extra space for the MAC, as
// that is applied by the Noise protocol after encrypting the plaintext.
const WriteSize = lnwire.MaxMessagePayload
// Write is static byte array occupying to maximum-allowed plaintext-message
// size.
type Write [WriteSize]byte
// Recycle zeroes the Write, making it fresh for another use.
func (b *Write) Recycle() {
RecycleSlice(b[:])
}

@ -1,79 +0,0 @@
package lnpeer
import (
"time"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/queue"
)
const (
// DefaultGCInterval is the default interval that the WriteBufferPool
// will perform a sweep to see which expired buffers can be released to
// the runtime.
DefaultGCInterval = 15 * time.Second
// DefaultExpiryInterval is the default, minimum interval that must
// elapse before a WriteBuffer will be released. The maximum time before
// the buffer can be released is equal to the expiry interval plus the
// gc interval.
DefaultExpiryInterval = 30 * time.Second
)
// WriteBuffer is static byte array occupying to maximum-allowed
// plaintext-message size.
type WriteBuffer [lnwire.MaxMessagePayload]byte
// Recycle zeroes the WriteBuffer, making it fresh for another use.
// Zeroing the buffer using a logarithmic number of calls to the optimized copy
// method. Benchmarking shows this to be ~30 times faster than a for loop that
// sets each index to 0 for this buffer size. Inspired by:
// https://stackoverflow.com/questions/30614165/is-there-analog-of-memset-in-go
//
// This is part of the queue.Recycler interface.
func (b *WriteBuffer) Recycle() {
b[0] = 0
for i := 1; i < lnwire.MaxMessagePayload; i *= 2 {
copy(b[i:], b[:i])
}
}
// newRecyclableWriteBuffer is a constructor that returns a WriteBuffer typed as
// a queue.Recycler.
func newRecyclableWriteBuffer() queue.Recycler {
return new(WriteBuffer)
}
// A compile-time constraint to ensure that *WriteBuffer implements the
// queue.Recycler interface.
var _ queue.Recycler = (*WriteBuffer)(nil)
// WriteBufferPool acts a global pool of WriteBuffers, that dynamically
// allocates and reclaims buffers in response to load.
type WriteBufferPool struct {
pool *queue.GCQueue
}
// NewWriteBufferPool returns a freshly instantiated WriteBufferPool, using the
// given gcInterval and expiryIntervals.
func NewWriteBufferPool(
gcInterval, expiryInterval time.Duration) *WriteBufferPool {
return &WriteBufferPool{
pool: queue.NewGCQueue(
newRecyclableWriteBuffer, 100,
gcInterval, expiryInterval,
),
}
}
// Take returns a fresh WriteBuffer to the caller.
func (p *WriteBufferPool) Take() *WriteBuffer {
return p.pool.Take().(*WriteBuffer)
}
// Return returns the WriteBuffer to the pool, so that it can be recycled or
// released.
func (p *WriteBufferPool) Return(buf *WriteBuffer) {
p.pool.Return(buf)
}

@ -1,67 +0,0 @@
package lnpeer_test
import (
"testing"
"time"
"github.com/lightningnetwork/lnd/lnpeer"
)
// TestWriteBufferPool verifies that buffer pool properly resets used write
// buffers.
func TestWriteBufferPool(t *testing.T) {
const (
gcInterval = time.Second
expiryInterval = 250 * time.Millisecond
)
bp := lnpeer.NewWriteBufferPool(gcInterval, expiryInterval)
// Take a fresh write buffer from the pool.
writeBuf := bp.Take()
// Dirty the write buffer.
for i := range writeBuf[:] {
writeBuf[i] = 0xff
}
// Return the buffer to the pool.
bp.Return(writeBuf)
// Take buffers from the pool until we find the original. We expect at
// most two, in the even that a fresh buffer is populated after the
// first is taken.
for i := 0; i < 2; i++ {
// Wait a small duration to ensure the tests behave reliable,
// and don't activate the non-blocking case unintentionally.
<-time.After(time.Millisecond)
// Take a buffer, skipping those whose pointer does not match
// the one we dirtied.
writeBuf2 := bp.Take()
if writeBuf2 != writeBuf {
continue
}
// Finally, verify that the buffer has been properly cleaned.
for i := range writeBuf2[:] {
if writeBuf2[i] != 0 {
t.Fatalf("buffer was not recycled")
}
}
return
}
t.Fatalf("original buffer not found")
}
// BenchmarkWriteBufferRecycle tests how quickly a WriteBuffer can be zeroed.
func BenchmarkWriteBufferRecycle(b *testing.B) {
b.ReportAllocs()
buffer := new(lnpeer.WriteBuffer)
for i := 0; i < b.N; i++ {
buffer.Recycle()
}
}

@ -18,6 +18,7 @@ import (
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/brontide"
"github.com/lightningnetwork/lnd/buffer"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/contractcourt"
@ -212,7 +213,7 @@ type peer struct {
// messages to write out directly on the socket. By re-using this
// buffer, we avoid needing to allocate more memory each time a new
// message is to be sent to a peer.
writeBuf *lnpeer.WriteBuffer
writeBuf *buffer.Write
queueQuit chan struct{}
quit chan struct{}

48
pool/read_buffer.go Normal file

@ -0,0 +1,48 @@
package pool
import (
"time"
"github.com/lightningnetwork/lnd/buffer"
)
const (
// DefaultReadBufferGCInterval is the default interval that a Read will
// perform a sweep to see which expired buffer.Reads can be released to
// the runtime.
DefaultReadBufferGCInterval = 15 * time.Second
// DefaultReadBufferExpiryInterval is the default, minimum interval that
// must elapse before a Read will release a buffer.Read. The maximum
// time before the buffer can be released is equal to the expiry
// interval plus the gc interval.
DefaultReadBufferExpiryInterval = 30 * time.Second
)
// ReadBuffer is a pool of buffer.Read items, that dynamically allocates and
// reclaims buffers in response to load.
type ReadBuffer struct {
pool *Recycle
}
// NewReadBuffer returns a freshly instantiated ReadBuffer, using the given
// gcInterval and expieryInterval.
func NewReadBuffer(gcInterval, expiryInterval time.Duration) *ReadBuffer {
return &ReadBuffer{
pool: NewRecycle(
func() interface{} { return new(buffer.Read) },
100, gcInterval, expiryInterval,
),
}
}
// Take returns a fresh buffer.Read to the caller.
func (p *ReadBuffer) Take() *buffer.Read {
return p.pool.Take().(*buffer.Read)
}
// Return returns the buffer.Read to the pool, so that it can be cycled or
// released.
func (p *ReadBuffer) Return(buf *buffer.Read) {
p.pool.Return(buf)
}

52
pool/recycle.go Normal file

@ -0,0 +1,52 @@
package pool
import (
"time"
"github.com/lightningnetwork/lnd/queue"
)
// Recycler is an interface that allows an object to be reclaimed without
// needing to be returned to the runtime.
type Recycler interface {
// Recycle resets the object to its default state.
Recycle()
}
// Recycle is a generic queue for recycling objects implementing the Recycler
// interface. It is backed by an underlying queue.GCQueue, and invokes the
// Recycle method on returned objects before returning them to the queue.
type Recycle struct {
queue *queue.GCQueue
}
// NewRecycle initializes a fresh Recycle instance.
func NewRecycle(newItem func() interface{}, returnQueueSize int,
gcInterval, expiryInterval time.Duration) *Recycle {
return &Recycle{
queue: queue.NewGCQueue(
newItem, returnQueueSize,
gcInterval, expiryInterval,
),
}
}
// Take returns an element from the pool.
func (r *Recycle) Take() interface{} {
return r.queue.Take()
}
// Return returns an item implementing the Recycler interface to the pool. The
// Recycle method is invoked before returning the item to improve performance
// and utilization under load.
func (r *Recycle) Return(item Recycler) {
// Recycle the item to ensure that a dirty instance is never offered
// from Take. The call is done here so that the CPU cycles spent
// clearing the buffer are owned by the caller, and not by the queue
// itself. This makes the queue more likely to be available to deliver
// items in the free list.
item.Recycle()
r.queue.Return(item)
}

217
pool/recycle_test.go Normal file

@ -0,0 +1,217 @@
package pool_test
import (
"bytes"
"testing"
"time"
"github.com/lightningnetwork/lnd/buffer"
"github.com/lightningnetwork/lnd/pool"
)
type mockRecycler bool
func (m *mockRecycler) Recycle() {
*m = false
}
// TestRecyclers verifies that known recyclable types properly return to their
// zero-value after invoking Recycle.
func TestRecyclers(t *testing.T) {
tests := []struct {
name string
newItem func() interface{}
}{
{
"mock recycler",
func() interface{} { return new(mockRecycler) },
},
{
"write_buffer",
func() interface{} { return new(buffer.Write) },
},
{
"read_buffer",
func() interface{} { return new(buffer.Read) },
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
// Initialize the Recycler to test.
r := test.newItem().(pool.Recycler)
// Dirty the item.
dirtyGeneric(t, r)
// Invoke Recycle to clear the item.
r.Recycle()
// Assert the item is now clean.
isCleanGeneric(t, r)
})
}
}
type recyclePoolTest struct {
name string
newPool func() interface{}
}
// TestGenericRecyclePoolTests generically tests that pools derived from the
// base Recycle pool properly are properly configured.
func TestConcreteRecyclePoolTests(t *testing.T) {
const (
gcInterval = time.Second
expiryInterval = 250 * time.Millisecond
)
tests := []recyclePoolTest{
{
name: "write buffer pool",
newPool: func() interface{} {
return pool.NewWriteBuffer(
gcInterval, expiryInterval,
)
},
},
{
name: "read buffer pool",
newPool: func() interface{} {
return pool.NewReadBuffer(
gcInterval, expiryInterval,
)
},
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
testRecyclePool(t, test)
})
}
}
func testRecyclePool(t *testing.T, test recyclePoolTest) {
p := test.newPool()
// Take an item from the pool.
r1 := takeGeneric(t, p)
// Dirty the item.
dirtyGeneric(t, r1)
// Return the item to the pool.
returnGeneric(t, p, r1)
// Take items from the pool until we find the original. We expect at
// most two, in the event that a fresh item is populated after the
// first is taken.
for i := 0; i < 2; i++ {
// Wait a small duration to ensure the tests are reliable, and
// don't to active the non-blocking case unintentionally.
<-time.After(time.Millisecond)
r2 := takeGeneric(t, p)
// Take an item, skipping those whose pointer does not match the
// one we dirtied.
if r1 != r2 {
continue
}
// Finally, verify that the item has been properly cleaned.
isCleanGeneric(t, r2)
return
}
t.Fatalf("original item not found")
}
func takeGeneric(t *testing.T, p interface{}) pool.Recycler {
t.Helper()
switch pp := p.(type) {
case *pool.WriteBuffer:
return pp.Take()
case *pool.ReadBuffer:
return pp.Take()
default:
t.Fatalf("unknown pool type: %T", p)
}
return nil
}
func returnGeneric(t *testing.T, p, item interface{}) {
t.Helper()
switch pp := p.(type) {
case *pool.WriteBuffer:
pp.Return(item.(*buffer.Write))
case *pool.ReadBuffer:
pp.Return(item.(*buffer.Read))
default:
t.Fatalf("unknown pool type: %T", p)
}
}
func dirtyGeneric(t *testing.T, i interface{}) {
t.Helper()
switch item := i.(type) {
case *mockRecycler:
*item = true
case *buffer.Write:
dirtySlice(item[:])
case *buffer.Read:
dirtySlice(item[:])
default:
t.Fatalf("unknown item type: %T", i)
}
}
func dirtySlice(slice []byte) {
for i := range slice {
slice[i] = 0xff
}
}
func isCleanGeneric(t *testing.T, i interface{}) {
t.Helper()
switch item := i.(type) {
case *mockRecycler:
if isDirty := *item; isDirty {
t.Fatalf("mock recycler still diry")
}
case *buffer.Write:
isCleanSlice(t, item[:])
case *buffer.Read:
isCleanSlice(t, item[:])
default:
t.Fatalf("unknown item type: %T", i)
}
}
func isCleanSlice(t *testing.T, slice []byte) {
t.Helper()
expSlice := make([]byte, len(slice))
if !bytes.Equal(expSlice, slice) {
t.Fatalf("slice not recycled, want: %v, got: %v",
expSlice, slice)
}
}

48
pool/write_buffer.go Normal file

@ -0,0 +1,48 @@
package pool
import (
"time"
"github.com/lightningnetwork/lnd/buffer"
)
const (
// DefaultWriteBufferGCInterval is the default interval that a Write
// will perform a sweep to see which expired buffer.Writes can be
// released to the runtime.
DefaultWriteBufferGCInterval = 15 * time.Second
// DefaultWriteBufferExpiryInterval is the default, minimum interval
// that must elapse before a Write will release a buffer.Write. The
// maximum time before the buffer can be released is equal to the expiry
// interval plus the gc interval.
DefaultWriteBufferExpiryInterval = 30 * time.Second
)
// WriteBuffer is a pool of recycled buffer.Write items, that dynamically
// allocates and reclaims buffers in response to load.
type WriteBuffer struct {
pool *Recycle
}
// NewWriteBuffer returns a freshly instantiated WriteBuffer, using the given
// gcInterval and expiryIntervals.
func NewWriteBuffer(gcInterval, expiryInterval time.Duration) *WriteBuffer {
return &WriteBuffer{
pool: NewRecycle(
func() interface{} { return new(buffer.Write) },
100, gcInterval, expiryInterval,
),
}
}
// Take returns a fresh buffer.Write to the caller.
func (p *WriteBuffer) Take() *buffer.Write {
return p.pool.Take().(*buffer.Write)
}
// Return returns the buffer.Write to the pool, so that it can be recycled or
// released.
func (p *WriteBuffer) Return(buf *buffer.Write) {
p.pool.Return(buf)
}

@ -8,21 +8,6 @@ import (
"github.com/lightningnetwork/lnd/ticker"
)
// Recycler is an interface that allows an object to be reclaimed without
// needing to be returned to the runtime.
type Recycler interface {
// Recycle resets the object to its default state.
Recycle()
}
// gcQueueEntry is a tuple containing a Recycler and the time at which the item
// was added to the queue. The recorded time is used to determine when the entry
// becomes stale, and can be released if it has not already been taken.
type gcQueueEntry struct {
item Recycler
time time.Time
}
// GCQueue is garbage collecting queue, which dynamically grows and contracts
// based on load. If the queue has items which have been returned, the queue
// will check every gcInterval amount of time to see if any elements are
@ -36,15 +21,15 @@ type gcQueueEntry struct {
type GCQueue struct {
// takeBuffer coordinates the delivery of items taken from the queue
// such that they are delivered to requesters.
takeBuffer chan Recycler
takeBuffer chan interface{}
// returnBuffer coordinates the return of items back into the queue,
// where they will be kept until retaken or released.
returnBuffer chan Recycler
returnBuffer chan interface{}
// newItem is a constructor, used to generate new elements if none are
// otherwise available for reuse.
newItem func() Recycler
newItem func() interface{}
// expiryInterval is the minimum amount of time an element will remain
// in the queue before being released.
@ -75,12 +60,12 @@ type GCQueue struct {
// the steady state. The returnQueueSize parameter is used to size the maximal
// number of items that can be returned without being dropped during large
// bursts in attempts to return items to the GCQUeue.
func NewGCQueue(newItem func() Recycler, returnQueueSize int,
func NewGCQueue(newItem func() interface{}, returnQueueSize int,
gcInterval, expiryInterval time.Duration) *GCQueue {
q := &GCQueue{
takeBuffer: make(chan Recycler),
returnBuffer: make(chan Recycler, returnQueueSize),
takeBuffer: make(chan interface{}),
returnBuffer: make(chan interface{}, returnQueueSize),
expiryInterval: expiryInterval,
freeList: list.New(),
recycleTicker: ticker.New(gcInterval),
@ -95,7 +80,7 @@ func NewGCQueue(newItem func() Recycler, returnQueueSize int,
// Take returns either a recycled element from the queue, or creates a new item
// if none are available.
func (q *GCQueue) Take() Recycler {
func (q *GCQueue) Take() interface{} {
select {
case item := <-q.takeBuffer:
return item
@ -107,20 +92,21 @@ func (q *GCQueue) Take() Recycler {
// Return adds the returned item to freelist if the queue's returnBuffer has
// available capacity. Under load, items may be dropped to ensure this method
// does not block.
func (q *GCQueue) Return(item Recycler) {
// Recycle the item to ensure that a dirty instance is never offered
// from Take. The call is done here so that the CPU cycles spent
// clearing the buffer are owned by the caller, and not by the queue
// itself. This makes the queue more likely to be available to deliver
// items in the free list.
item.Recycle()
func (q *GCQueue) Return(item interface{}) {
select {
case q.returnBuffer <- item:
default:
}
}
// gcQueueEntry is a tuple containing an interface{} and the time at which the
// item was added to the queue. The recorded time is used to determine when the
// entry becomes stale, and can be released if it has not already been taken.
type gcQueueEntry struct {
item interface{}
time time.Time
}
// queueManager maintains the free list of elements by popping the head of the
// queue when items are needed, and appending them to the end of the queue when
// items are returned. The queueManager will periodically attempt to release any
@ -190,20 +176,20 @@ func (q *GCQueue) queueManager() {
next = e.Next()
entry := e.Value.(gcQueueEntry)
// Use now - insertTime > expiryInterval to
// determine if this entry has expired.
if time.Since(entry.time) > q.expiryInterval {
// Remove the expired entry from the
// linked-list.
q.freeList.Remove(e)
entry.item = nil
e.Value = nil
} else {
// Use now - insertTime <= expiryInterval to
// determine if this entry has not expired.
if time.Since(entry.time) <= q.expiryInterval {
// If this entry hasn't expired, then
// all entries that follow will still be
// valid.
break
}
// Otherwise, remove the expired entry from the
// linked-list.
q.freeList.Remove(e)
entry.item = nil
e.Value = nil
}
}
}

@ -7,10 +7,8 @@ import (
"github.com/lightningnetwork/lnd/queue"
)
// mockRecycler implements the queue.Recycler interface using a NOP.
type mockRecycler bool
func (*mockRecycler) Recycle() {}
// testItem is an item type we'll be using to test the GCQueue.
type testItem uint32
// TestGCQueueGCCycle asserts that items that are kept in the GCQueue past their
// expiration will be released by a subsequent gc cycle.
@ -23,7 +21,7 @@ func TestGCQueueGCCycle(t *testing.T) {
numItems = 6
)
newItem := func() queue.Recycler { return new(mockRecycler) }
newItem := func() interface{} { return new(testItem) }
bp := queue.NewGCQueue(newItem, 100, gcInterval, expiryInterval)
@ -61,7 +59,7 @@ func TestGCQueuePartialGCCycle(t *testing.T) {
numItems = 6
)
newItem := func() queue.Recycler { return new(mockRecycler) }
newItem := func() interface{} { return new(testItem) }
bp := queue.NewGCQueue(newItem, 100, gcInterval, expiryInterval)
@ -104,10 +102,10 @@ func TestGCQueuePartialGCCycle(t *testing.T) {
// takeN draws n items from the provided GCQueue. This method also asserts that
// n unique items are drawn, and then returns the resulting set.
func takeN(t *testing.T, q *queue.GCQueue, n int) map[queue.Recycler]struct{} {
func takeN(t *testing.T, q *queue.GCQueue, n int) map[interface{}]struct{} {
t.Helper()
items := make(map[queue.Recycler]struct{})
items := make(map[interface{}]struct{})
for i := 0; i < n; i++ {
// Wait a small duration to ensure the tests behave reliable,
// and don't activate the non-blocking case unintentionally.
@ -125,7 +123,7 @@ func takeN(t *testing.T, q *queue.GCQueue, n int) map[queue.Recycler]struct{} {
}
// returnAll returns the items of the given set back to the GCQueue.
func returnAll(q *queue.GCQueue, items map[queue.Recycler]struct{}) {
func returnAll(q *queue.GCQueue, items map[interface{}]struct{}) {
for item := range items {
q.Return(item)
@ -138,11 +136,11 @@ func returnAll(q *queue.GCQueue, items map[queue.Recycler]struct{}) {
// returnN returns n items at random from the set of items back to the GCQueue.
// This method fails if the set's cardinality is smaller than n.
func returnN(t *testing.T, q *queue.GCQueue,
items map[queue.Recycler]struct{}, n int) map[queue.Recycler]struct{} {
items map[interface{}]struct{}, n int) map[interface{}]struct{} {
t.Helper()
var remainingItems = make(map[queue.Recycler]struct{})
var remainingItems = make(map[interface{}]struct{})
var numReturned int
for item := range items {
if numReturned < n {

@ -41,6 +41,7 @@ import (
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/nat"
"github.com/lightningnetwork/lnd/netann"
"github.com/lightningnetwork/lnd/pool"
"github.com/lightningnetwork/lnd/routing"
"github.com/lightningnetwork/lnd/sweep"
"github.com/lightningnetwork/lnd/ticker"
@ -170,7 +171,7 @@ type server struct {
sigPool *lnwallet.SigPool
writeBufferPool *lnpeer.WriteBufferPool
writeBufferPool *pool.WriteBuffer
// globalFeatures feature vector which affects HTLCs and thus are also
// advertised to other nodes.
@ -262,8 +263,9 @@ func newServer(listenAddrs []net.Addr, chanDB *channeldb.DB, cc *chainControl,
sharedSecretPath := filepath.Join(graphDir, "sphinxreplay.db")
replayLog := htlcswitch.NewDecayedLog(sharedSecretPath, cc.chainNotifier)
sphinxRouter := sphinx.NewRouter(privKey, activeNetParams.Params, replayLog)
writeBufferPool := lnpeer.NewWriteBufferPool(
lnpeer.DefaultGCInterval, lnpeer.DefaultExpiryInterval,
writeBufferPool := pool.NewWriteBuffer(
pool.DefaultWriteBufferGCInterval,
pool.DefaultWriteBufferExpiryInterval,
)
s := &server{