breacharbiter_test: add table-driven breach spend tests

This commit is contained in:
Conner Fromknecht 2019-03-19 19:22:59 -07:00
parent 6f06c30421
commit 9523b420bc
No known key found for this signature in database
GPG Key ID: E7D737B67FA592C7

@ -29,6 +29,7 @@ import (
"github.com/lightningnetwork/lnd/htlcswitch" "github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/input" "github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain" "github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/shachain" "github.com/lightningnetwork/lnd/shachain"
@ -1156,10 +1157,162 @@ func TestBreachHandoffFail(t *testing.T) {
assertArbiterBreach(t, brar, chanPoint) assertArbiterBreach(t, brar, chanPoint)
} }
// TestBreachSecondLevelTransfer tests that sweep of a HTLC output on a type publAssertion func(*testing.T, map[wire.OutPoint]*wire.MsgTx,
// breached commitment is transferred to a second level spend if the output is chan *wire.MsgTx)
// already spent.
func TestBreachSecondLevelTransfer(t *testing.T) { type breachTest struct {
name string
// spend2ndLevel requests that second level htlcs be spent *again*, as
// if by a remote party or watchtower. The outpoint of the second level
// htlc is in effect "readded" to the set of inputs.
spend2ndLevel bool
// sendFinalConf informs the test to send a confirmation for the justice
// transaction before asserting the arbiter is cleaned up.
sendFinalConf bool
// whenNonZeroInputs is called after spending an input but there are
// further inputs to spend in the test.
whenNonZeroInputs publAssertion
// whenZeroInputs is called after spending an input but there are no
// further inputs to spend in the test.
whenZeroInputs publAssertion
}
var (
// commitSpendTx is used to spend commitment outputs.
commitSpendTx = &wire.MsgTx{
TxOut: []*wire.TxOut{
{Value: 500000000},
},
}
// htlc2ndLevlTx is used to transition an htlc output on the commitment
// transaction to a second level htlc.
htlc2ndLevlTx = &wire.MsgTx{
TxOut: []*wire.TxOut{
{Value: 20000},
},
}
// htlcSpendTx is used to spend from a second level htlc.
htlcSpendTx = &wire.MsgTx{
TxOut: []*wire.TxOut{
{Value: 10000},
},
}
)
var breachTests = []breachTest{
{
name: "all spends",
spend2ndLevel: true,
whenNonZeroInputs: func(t *testing.T,
inputs map[wire.OutPoint]*wire.MsgTx,
publTx chan *wire.MsgTx) {
var tx *wire.MsgTx
select {
case tx = <-publTx:
case <-time.After(5 * time.Second):
t.Fatalf("tx was not published")
}
// The justice transaction should have thee same number
// of inputs as we are tracking in the test.
if len(tx.TxIn) != len(inputs) {
t.Fatalf("expected justice txn to have %d "+
"inputs, found %d", len(inputs),
len(tx.TxIn))
}
// Ensure that each input exists on the justice
// transaction.
for in := range inputs {
findInputIndex(t, in, tx)
}
},
whenZeroInputs: func(t *testing.T,
inputs map[wire.OutPoint]*wire.MsgTx,
publTx chan *wire.MsgTx) {
// Sanity check to ensure the brar doesn't try to
// broadcast another sweep, since all outputs have been
// spent externally.
select {
case <-publTx:
t.Fatalf("tx published unexpectedly")
case <-time.After(50 * time.Millisecond):
}
},
},
{
name: "commit spends, second level sweep",
spend2ndLevel: false,
sendFinalConf: true,
whenNonZeroInputs: func(t *testing.T,
inputs map[wire.OutPoint]*wire.MsgTx,
publTx chan *wire.MsgTx) {
select {
case <-publTx:
case <-time.After(5 * time.Second):
t.Fatalf("tx was not published")
}
},
whenZeroInputs: func(t *testing.T,
inputs map[wire.OutPoint]*wire.MsgTx,
publTx chan *wire.MsgTx) {
// Now a transaction attempting to spend from the second
// level tx should be published instead. Let this
// publish succeed by setting the publishing error to
// nil.
var tx *wire.MsgTx
select {
case tx = <-publTx:
case <-time.After(5 * time.Second):
t.Fatalf("tx was not published")
}
// The commitment outputs should be gone, and there
// should only be a single htlc spend.
if len(tx.TxIn) != 1 {
t.Fatalf("expect 1 htlc output, found %d "+
"outputs", len(tx.TxIn))
}
// The remaining TxIn previously attempting to spend
// the HTLC outpoint should now be spending from the
// second level tx.
//
// NOTE: Commitment outputs and htlc sweeps are spent
// with a different transactions (and thus txids),
// ensuring we aren't mistaking this for a different
// output type.
onlyInput := tx.TxIn[0].PreviousOutPoint.Hash
if onlyInput != htlc2ndLevlTx.TxHash() {
t.Fatalf("tx not attempting to spend second "+
"level tx, %v", tx.TxIn[0])
}
},
},
}
// TestBreachSpends checks the behavior of the breach arbiter in response to
// spend events on a channels outputs by asserting that it properly removes or
// modifies the inputs from the justice txn.
func TestBreachSpends(t *testing.T) {
for _, test := range breachTests {
tc := test
t.Run(tc.name, func(t *testing.T) {
testBreachSpends(t, tc)
})
}
}
func testBreachSpends(t *testing.T, test breachTest) {
brar, alice, _, bobClose, contractBreaches, brar, alice, _, bobClose, contractBreaches,
cleanUpChans, cleanUpArb := initBreachedState(t) cleanUpChans, cleanUpArb := initBreachedState(t)
defer cleanUpChans() defer cleanUpChans()
@ -1171,12 +1324,16 @@ func TestBreachSecondLevelTransfer(t *testing.T) {
chanPoint = alice.ChanPoint chanPoint = alice.ChanPoint
publTx = make(chan *wire.MsgTx) publTx = make(chan *wire.MsgTx)
publErr error publErr error
publMtx sync.Mutex
) )
// Make PublishTransaction always return ErrDoubleSpend to begin with. // Make PublishTransaction always return ErrDoubleSpend to begin with.
publErr = lnwallet.ErrDoubleSpend publErr = lnwallet.ErrDoubleSpend
brar.cfg.PublishTransaction = func(tx *wire.MsgTx) error { brar.cfg.PublishTransaction = func(tx *wire.MsgTx) error {
publTx <- tx publTx <- tx
publMtx.Lock()
defer publMtx.Unlock()
return publErr return publErr
} }
@ -1204,11 +1361,32 @@ func TestBreachSecondLevelTransfer(t *testing.T) {
t.Fatalf("breach arbiter didn't send ack back") t.Fatalf("breach arbiter didn't send ack back")
} }
state := alice.State()
err = state.CloseChannel(&channeldb.ChannelCloseSummary{
ChanPoint: state.FundingOutpoint,
ChainHash: state.ChainHash,
RemotePub: state.IdentityPub,
CloseType: channeldb.BreachClose,
Capacity: state.Capacity,
IsPending: true,
ShortChanID: state.ShortChanID(),
RemoteCurrentRevocation: state.RemoteCurrentRevocation,
RemoteNextRevocation: state.RemoteNextRevocation,
LocalChanConfig: state.LocalChanCfg,
})
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// After exiting, the breach arbiter should have persisted the // After exiting, the breach arbiter should have persisted the
// retribution information and the channel should be shown as pending // retribution information and the channel should be shown as pending
// force closed. // force closed.
assertArbiterBreach(t, brar, chanPoint) assertArbiterBreach(t, brar, chanPoint)
// Assert that the database sees the channel as pending close, otherwise
// the breach arbiter won't be able to fully close it.
assertPendingClosed(t, alice)
// Notify that the breaching transaction is confirmed, to trigger the // Notify that the breaching transaction is confirmed, to trigger the
// retribution logic. // retribution logic.
notifier := brar.cfg.Notifier.(*mockSpendNotifier) notifier := brar.cfg.Notifier.(*mockSpendNotifier)
@ -1224,47 +1402,93 @@ func TestBreachSecondLevelTransfer(t *testing.T) {
t.Fatalf("tx was not published") t.Fatalf("tx was not published")
} }
if tx.TxIn[0].PreviousOutPoint.Hash != forceCloseTx.TxHash() { // All outputs should initially spend from the force closed txn.
t.Fatalf("tx not attempting to spend commitment") forceTxID := forceCloseTx.TxHash()
for _, txIn := range tx.TxIn {
if txIn.PreviousOutPoint.Hash != forceTxID {
t.Fatalf("og justice tx not spending commitment")
}
} }
// Find the index of the TxIn spending the HTLC output. localOutpoint := retribution.LocalOutpoint
htlcOutpoint := &retribution.HtlcRetributions[0].OutPoint remoteOutpoint := retribution.RemoteOutpoint
htlcIn := -1 htlcOutpoint := retribution.HtlcRetributions[0].OutPoint
for i, txIn := range tx.TxIn {
if txIn.PreviousOutPoint == *htlcOutpoint { // Construct a map from outpoint on the force close to the transaction
htlcIn = i // we want it to be spent by. As the test progresses, this map will be
} // updated to contain only the set of commitment or second level
} // outpoints that remain to be spent.
if htlcIn == -1 { inputs := map[wire.OutPoint]*wire.MsgTx{
t.Fatalf("htlc in not found") htlcOutpoint: htlc2ndLevlTx,
localOutpoint: commitSpendTx,
remoteOutpoint: commitSpendTx,
} }
// Since publishing the transaction failed above, the breach arbiter // Until no more inputs to spend remain, deliver the spend events and
// will attempt another second level check. Now notify that the htlc // process the assertions prescribed by the test case.
// output is spent by a second level tx. for len(inputs) > 0 {
secondLvlTx := &wire.MsgTx{ var (
TxOut: []*wire.TxOut{ op wire.OutPoint
{Value: 1}, spendTx *wire.MsgTx
}, )
}
notifier.Spend(htlcOutpoint, 2, secondLvlTx)
// Now a transaction attempting to spend from the second level tx // Pick an outpoint at random from the set of inputs.
// should be published instead. Let this publish succeed by setting the for op, spendTx = range inputs {
// publishing error to nil. delete(inputs, op)
break
}
// Deliver the spend notification for the chosen transaction.
notifier.Spend(&op, 2, spendTx)
// When the second layer transfer is detected, add back the
// outpoint of the second layer tx so that we can spend it
// again. Only do so if the test requests this behavior.
spendTxID := spendTx.TxHash()
if test.spend2ndLevel && spendTxID == htlc2ndLevlTx.TxHash() {
// Create the second level outpoint that will be spent,
// the index is always zero for these 1-in-1-out txns.
spendOp := wire.OutPoint{Hash: spendTxID}
inputs[spendOp] = htlcSpendTx
}
if len(inputs) > 0 {
test.whenNonZeroInputs(t, inputs, publTx)
} else {
// Reset the publishing error so that any publication,
// made by the breach arbiter, if any, will succeed.
publMtx.Lock()
publErr = nil publErr = nil
select { publMtx.Unlock()
case tx = <-publTx: test.whenZeroInputs(t, inputs, publTx)
case <-time.After(5 * time.Second): }
t.Fatalf("tx was not published")
} }
// The TxIn previously attempting to spend the HTLC outpoint should now // Deliver confirmation of sweep if the test expects it.
// be spending from the second level tx. if test.sendFinalConf {
if tx.TxIn[htlcIn].PreviousOutPoint.Hash != secondLvlTx.TxHash() { notifier.confChannel <- &chainntnfs.TxConfirmation{}
t.Fatalf("tx not attempting to spend second level tx, %v", tx.TxIn[0])
} }
// Assert that the channel is fully resolved.
assertBrarCleanup(t, brar, alice.ChanPoint, alice.State().Db)
}
// findInputIndex returns the index of the input that spends from the given
// outpoint. This method fails if the outpoint is not found.
func findInputIndex(t *testing.T, op wire.OutPoint, tx *wire.MsgTx) int {
t.Helper()
inputIdx := -1
for i, txIn := range tx.TxIn {
if txIn.PreviousOutPoint == op {
inputIdx = i
}
}
if inputIdx == -1 {
t.Fatalf("input %v in not found", op)
}
return inputIdx
} }
// assertArbiterBreach checks that the breach arbiter has persisted the breach // assertArbiterBreach checks that the breach arbiter has persisted the breach
@ -1272,6 +1496,8 @@ func TestBreachSecondLevelTransfer(t *testing.T) {
func assertArbiterBreach(t *testing.T, brar *breachArbiter, func assertArbiterBreach(t *testing.T, brar *breachArbiter,
chanPoint *wire.OutPoint) { chanPoint *wire.OutPoint) {
t.Helper()
isBreached, err := brar.IsBreached(chanPoint) isBreached, err := brar.IsBreached(chanPoint)
if err != nil { if err != nil {
t.Fatalf("unable to determine if channel is "+ t.Fatalf("unable to determine if channel is "+
@ -1290,6 +1516,8 @@ func assertArbiterBreach(t *testing.T, brar *breachArbiter,
func assertNoArbiterBreach(t *testing.T, brar *breachArbiter, func assertNoArbiterBreach(t *testing.T, brar *breachArbiter,
chanPoint *wire.OutPoint) { chanPoint *wire.OutPoint) {
t.Helper()
isBreached, err := brar.IsBreached(chanPoint) isBreached, err := brar.IsBreached(chanPoint)
if err != nil { if err != nil {
t.Fatalf("unable to determine if channel is "+ t.Fatalf("unable to determine if channel is "+
@ -1302,9 +1530,77 @@ func assertNoArbiterBreach(t *testing.T, brar *breachArbiter,
} }
} }
// assertBrarCleanup blocks until the given channel point has been removed the
// retribution store and the channel is fully closed in the database.
func assertBrarCleanup(t *testing.T, brar *breachArbiter,
chanPoint *wire.OutPoint, db *channeldb.DB) {
t.Helper()
err := lntest.WaitNoError(func() error {
isBreached, err := brar.IsBreached(chanPoint)
if err != nil {
return err
}
if isBreached {
return fmt.Errorf("channel %v still breached",
chanPoint)
}
closedChans, err := db.FetchClosedChannels(false)
if err != nil {
return err
}
for _, channel := range closedChans {
switch {
// Wrong channel.
case channel.ChanPoint != *chanPoint:
continue
// Right channel, fully closed!
case !channel.IsPending:
return nil
}
// Still pending.
return fmt.Errorf("channel %v still pending "+
"close", chanPoint)
}
return fmt.Errorf("channel %v not closed", chanPoint)
}, time.Second)
if err != nil {
t.Fatalf(err.Error())
}
}
// assertPendingClosed checks that the channel has been marked pending closed in
// the channel database.
func assertPendingClosed(t *testing.T, c *lnwallet.LightningChannel) {
t.Helper()
closedChans, err := c.State().Db.FetchClosedChannels(true)
if err != nil {
t.Fatalf("unable to load pending closed channels: %v", err)
}
for _, chanSummary := range closedChans {
if chanSummary.ChanPoint == *c.ChanPoint {
return
}
}
t.Fatalf("channel %v was not marked pending closed", c.ChanPoint)
}
// assertNotPendingClosed checks that the channel has not been marked pending // assertNotPendingClosed checks that the channel has not been marked pending
// closed in the channel database. // closed in the channel database.
func assertNotPendingClosed(t *testing.T, c *lnwallet.LightningChannel) { func assertNotPendingClosed(t *testing.T, c *lnwallet.LightningChannel) {
t.Helper()
closedChans, err := c.State().Db.FetchClosedChannels(true) closedChans, err := c.State().Db.FetchClosedChannels(true)
if err != nil { if err != nil {
t.Fatalf("unable to load pending closed channels: %v", err) t.Fatalf("unable to load pending closed channels: %v", err)