itest: move revocation related tests into one file

This commit creates a new file lnd_revocation_test.go to hold
revocation-related tests, further breaking down the lnd_test.go file.
This commit is contained in:
yyforyongyu 2021-06-29 03:35:53 +08:00
parent f62cdf7bfc
commit 6ca068660c
No known key found for this signature in database
GPG Key ID: 9BCD95C4FF296868
2 changed files with 1331 additions and 1313 deletions

@ -0,0 +1,1331 @@
package itest
import (
"bytes"
"context"
"fmt"
"strings"
"testing"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcutil"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/funding"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/watchtowerrpc"
"github.com/lightningnetwork/lnd/lnrpc/wtclientrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/wait"
)
// testRevokedCloseRetribution tests that Carol is able carry out
// retribution in the event that she fails immediately after detecting Bob's
// breach txn in the mempool.
func testRevokedCloseRetribution(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = funding.MaxBtcFundingAmount
paymentAmt = 10000
numInvoices = 6
)
// Carol will be the breached party. We set --nolisten to ensure Bob
// won't be able to connect to her and trigger the channel data
// protection logic automatically. We also can't have Carol
// automatically re-connect too early, otherwise DLP would be initiated
// instead of the breach we want to provoke.
carol := net.NewNode(
t.t, "Carol",
[]string{"--hodl.exit-settle", "--nolisten", "--minbackoff=1h"},
)
defer shutdownAndAssert(net, t, carol)
// We must let Bob communicate with Carol before they are able to open
// channel, so we connect Bob and Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
net.ConnectNodes(ctxt, t.t, carol, net.Bob)
// Before we make a channel, we'll load up Carol with some coins sent
// directly from the miner.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
// In order to test Carol's response to an uncooperative channel
// closure by Bob, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, carol, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// With the channel open, we'll create a few invoices for Bob that
// Carol will pay to in order to advance the state of the channel.
bobPayReqs, _, _, err := createPayReqs(
net.Bob, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Carol to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("carol didn't see the carol->bob channel before "+
"timeout: %v", err)
}
// Send payments from Carol to Bob using 3 of Bob's payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, carol.RouterClient, bobPayReqs[:numInvoices/2],
true,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Next query for Bob's channel state, as we sent 3 payments of 10k
// satoshis each, Bob should now see his balance as being 30k satoshis.
var bobChan *lnrpc.Channel
var predErr error
err = wait.Predicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bChan, err := getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if bChan.LocalBalance != 30000 {
predErr = fmt.Errorf("bob's balance is incorrect, "+
"got %v, expected %v", bChan.LocalBalance,
30000)
return false
}
bobChan = bChan
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("%v", predErr)
}
// Grab Bob's current commitment height (update number), we'll later
// revert him to this state after additional updates to force him to
// broadcast this soon to be revoked state.
bobStateNumPreCopy := bobChan.NumUpdates
// With the temporary file created, copy Bob's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := net.BackupDb(net.Bob); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Carol to Bob, consuming Bob's remaining
// payment hashes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, carol.RouterClient, bobPayReqs[numInvoices/2:],
true,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobChan, err = getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
// Now we shutdown Bob, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Bob to travel back in time
// within the channel's history.
if err = net.RestartNode(net.Bob, func() error {
return net.RestoreDb(net.Bob)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Bob's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobChan, err = getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
if bobChan.NumUpdates != bobStateNumPreCopy {
t.Fatalf("db copy failed: %v", bobChan.NumUpdates)
}
// Now force Bob to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Carol's retribution.
var closeUpdates lnrpc.Lightning_CloseChannelClient
force := true
err = wait.Predicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, _, err = net.CloseChannel(ctxt, net.Bob, chanPoint, force)
if err != nil {
predErr = err
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("unable to close channel: %v", predErr)
}
// Wait for Bob's breach transaction to show up in the mempool to ensure
// that Carol's node has started waiting for confirmations.
_, err = waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Bob's breach tx in mempool: %v", err)
}
// Here, Carol sees Bob's breach transaction in the mempool, but is waiting
// for it to confirm before continuing her retribution. We restart Carol to
// ensure that she is persisting her retribution state and continues
// watching for the breach transaction to confirm even after her node
// restarts.
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("unable to restart Carol's node: %v", err)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Carol's justice transaction, this should be
// broadcast as Bob's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's justice tx in mempool: %v", err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Bob's breach transaction above.
justiceTx, err := net.Miner.Client.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// We restart Carol here to ensure that she persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Carol has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Carol restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("unable to restart Carol's node: %v", err)
}
// Now mine a block, this transaction should include Carol's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
assertNodeNumChannels(t, carol, 0)
// Mine enough blocks for Bob's channel arbitrator to wrap up the
// references to the breached channel. The chanarb waits for commitment
// tx's confHeight+CSV-1 blocks and since we've already mined one that
// included the justice tx we only need to mine extra DefaultCSV-2
// blocks to unlock it.
mineBlocks(t, net, lntest.DefaultCSV-2, 0)
assertNumPendingChannels(t, net.Bob, 0, 0)
}
// testRevokedCloseRetributionZeroValueRemoteOutput tests that Dave is able
// carry out retribution in the event that she fails in state where the remote
// commitment output has zero-value.
func testRevokedCloseRetributionZeroValueRemoteOutput(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = funding.MaxBtcFundingAmount
paymentAmt = 10000
numInvoices = 6
)
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carol := net.NewNode(t.t, "Carol", []string{"--hodl.exit-settle"})
defer shutdownAndAssert(net, t, carol)
// Dave will be the breached party. We set --nolisten to ensure Carol
// won't be able to connect to him and trigger the channel data
// protection logic automatically. We also can't have Dave automatically
// re-connect too early, otherwise DLP would be initiated instead of the
// breach we want to provoke.
dave := net.NewNode(
t.t, "Dave",
[]string{"--hodl.exit-settle", "--nolisten", "--minbackoff=1h"},
)
defer shutdownAndAssert(net, t, dave)
// We must let Dave have an open channel before she can send a node
// announcement, so we open a channel with Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
net.ConnectNodes(ctxt, t.t, dave, carol)
// Before we make a channel, we'll load up Dave with some coins sent
// directly from the miner.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, dave)
// In order to test Dave's response to an uncooperative channel
// closure by Carol, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, dave, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// With the channel open, we'll create a few invoices for Carol that
// Dave will pay to in order to advance the state of the channel.
carolPayReqs, _, _, err := createPayReqs(
carol, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Dave to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("dave didn't see the dave->carol channel before "+
"timeout: %v", err)
}
// Next query for Carol's channel state, as we sent 0 payments, Carol
// should now see her balance as being 0 satoshis.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != 0 {
t.Fatalf("carol's balance is incorrect, got %v, expected %v",
carolChan.LocalBalance, 0)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force him to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := net.BackupDb(carol); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Dave to Carol, consuming Carol's remaining
// payment hashes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, dave, dave.RouterClient, carolPayReqs, false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
// Now we shutdown Carol, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return net.RestoreDb(carol)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Carol's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Dave's retribution.
var (
closeUpdates lnrpc.Lightning_CloseChannelClient
closeTxID *chainhash.Hash
closeErr error
)
force := true
err = wait.Predicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, closeTxID, closeErr = net.CloseChannel(
ctxt, carol, chanPoint, force,
)
return closeErr == nil
}, defaultTimeout)
if err != nil {
t.Fatalf("unable to close channel: %v", closeErr)
}
// Query the mempool for the breaching closing transaction, this should
// be broadcast by Carol when she force closes the channel above.
txid, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxID {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxID, txid)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
// Here, Dave receives a confirmation of Carol's breach transaction.
// We restart Dave to ensure that she is persisting her retribution
// state and continues exacting justice after her node restarts.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to stop Dave's node: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Dave's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Dave's justice tx in mempool: %v",
err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Carol's breach transaction above.
justiceTx, err := net.Miner.Client.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// We restart Dave here to ensure that he persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Dave has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Dave restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart Dave's node: %v", err)
}
// Now mine a block, this transaction should include Dave's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
assertNodeNumChannels(t, dave, 0)
}
// testRevokedCloseRetributionRemoteHodl tests that Dave properly responds to a
// channel breach made by the remote party, specifically in the case that the
// remote party breaches before settling extended HTLCs.
func testRevokedCloseRetributionRemoteHodl(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = funding.MaxBtcFundingAmount
pushAmt = 200000
paymentAmt = 10000
numInvoices = 6
)
// Since this test will result in the counterparty being left in a
// weird state, we will introduce another node into our test network:
// Carol.
carol := net.NewNode(t.t, "Carol", []string{"--hodl.exit-settle"})
defer shutdownAndAssert(net, t, carol)
// We'll also create a new node Dave, who will have a channel with
// Carol, and also use similar settings so we can broadcast a commit
// with active HTLCs. Dave will be the breached party. We set
// --nolisten to ensure Carol won't be able to connect to him and
// trigger the channel data protection logic automatically.
dave := net.NewNode(
t.t, "Dave",
[]string{"--hodl.exit-settle", "--nolisten"},
)
defer shutdownAndAssert(net, t, dave)
// We must let Dave communicate with Carol before they are able to open
// channel, so we connect Dave and Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
net.ConnectNodes(ctxt, t.t, dave, carol)
// Before we make a channel, we'll load up Dave with some coins sent
// directly from the miner.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, dave)
// In order to test Dave's response to an uncooperative channel closure
// by Carol, we'll first open up a channel between them with a
// funding.MaxBtcFundingAmount (2^24) satoshis value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, dave, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
// With the channel open, we'll create a few invoices for Carol that
// Dave will pay to in order to advance the state of the channel.
carolPayReqs, _, _, err := createPayReqs(
carol, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll introduce a closure to validate that Carol's current balance
// matches the given expected amount.
checkCarolBalance := func(expectedAmt int64) {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != expectedAmt {
t.Fatalf("carol's balance is incorrect, "+
"got %v, expected %v", carolChan.LocalBalance,
expectedAmt)
}
}
// We'll introduce another closure to validate that Carol's current
// number of updates is at least as large as the provided minimum
// number.
checkCarolNumUpdatesAtLeast := func(minimum uint64) {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.NumUpdates < minimum {
t.Fatalf("carol's numupdates is incorrect, want %v "+
"to be at least %v", carolChan.NumUpdates,
minimum)
}
}
// Wait for Dave to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("dave didn't see the dave->carol channel before "+
"timeout: %v", err)
}
// Ensure that carol's balance starts with the amount we pushed to her.
checkCarolBalance(pushAmt)
// Send payments from Dave to Carol using 3 of Carol's payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, dave, dave.RouterClient, carolPayReqs[:numInvoices/2],
false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// At this point, we'll also send over a set of HTLC's from Carol to
// Dave. This ensures that the final revoked transaction has HTLC's in
// both directions.
davePayReqs, _, _, err := createPayReqs(
dave, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Send payments from Carol to Dave using 3 of Dave's payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, carol.RouterClient, davePayReqs[:numInvoices/2],
false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Next query for Carol's channel state, as we sent 3 payments of 10k
// satoshis each, however Carol should now see her balance as being
// equal to the push amount in satoshis since she has not settled.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force her to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// Ensure that carol's balance still reflects the original amount we
// pushed to her, minus the HTLCs she just sent to Dave.
checkCarolBalance(pushAmt - 3*paymentAmt)
// Since Carol has not settled, she should only see at least one update
// to her channel.
checkCarolNumUpdatesAtLeast(1)
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := net.BackupDb(carol); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Dave to Carol, consuming Carol's
// remaining payment hashes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, dave, dave.RouterClient, carolPayReqs[numInvoices/2:],
false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Ensure that carol's balance still shows the amount we originally
// pushed to her (minus the HTLCs she sent to Bob), and that at least
// one more update has occurred.
time.Sleep(500 * time.Millisecond)
checkCarolBalance(pushAmt - 3*paymentAmt)
checkCarolNumUpdatesAtLeast(carolStateNumPreCopy + 1)
// Suspend Dave, such that Carol won't reconnect at startup, triggering
// the data loss protection.
restartDave, err := net.SuspendNode(dave)
if err != nil {
t.Fatalf("unable to suspend Dave: %v", err)
}
// Now we shutdown Carol, copying over the her temporary database state
// which has the *prior* channel state over her current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return net.RestoreDb(carol)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Ensure that Carol's view of the channel is consistent with the state
// of the channel just before it was snapshotted.
checkCarolBalance(pushAmt - 3*paymentAmt)
checkCarolNumUpdatesAtLeast(1)
// Now query for Carol's channel state, it should show that she's at a
// state number in the past, *not* the latest state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting her current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so she'll soon
// feel the wrath of Dave's retribution.
force := true
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, closeTxID, err := net.CloseChannel(ctxt, carol,
chanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Query the mempool for the breaching closing transaction, this should
// be broadcast by Carol when she force closes the channel above.
txid, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxID {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxID, txid)
}
// Generate a single block to mine the breach transaction.
block := mineBlocks(t, net, 1, 1)[0]
// We resurrect Dave to ensure he will be exacting justice after his
// node restarts.
if err := restartDave(); err != nil {
t.Fatalf("unable to stop Dave's node: %v", err)
}
// Finally, wait for the final close status update, then ensure that
// the closing transaction was included in the block.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
if *breachTXID != *closeTxID {
t.Fatalf("expected breach ID(%v) to be equal to close ID (%v)",
breachTXID, closeTxID)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Dave's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above. Since Carol might have had the time to take some of the HTLC
// outputs to the second level before Dave broadcasts his justice tx,
// we'll search through the mempool for a tx that matches the number of
// expected inputs in the justice tx.
var predErr error
var justiceTxid *chainhash.Hash
errNotFound := errors.New("justice tx not found")
findJusticeTx := func() (*chainhash.Hash, error) {
mempool, err := net.Miner.Client.GetRawMempool()
if err != nil {
return nil, fmt.Errorf("unable to get mempool from "+
"miner: %v", err)
}
for _, txid := range mempool {
// Check that the justice tx has the appropriate number
// of inputs.
tx, err := net.Miner.Client.GetRawTransaction(txid)
if err != nil {
return nil, fmt.Errorf("unable to query for "+
"txs: %v", err)
}
exNumInputs := 2 + numInvoices
if len(tx.MsgTx().TxIn) == exNumInputs {
return txid, nil
}
}
return nil, errNotFound
}
err = wait.Predicate(func() bool {
txid, err := findJusticeTx()
if err != nil {
predErr = err
return false
}
justiceTxid = txid
return true
}, defaultTimeout)
if err != nil && predErr == errNotFound {
// If Dave is unable to broadcast his justice tx on first
// attempt because of the second layer transactions, he will
// wait until the next block epoch before trying again. Because
// of this, we'll mine a block if we cannot find the justice tx
// immediately. Since we cannot tell for sure how many
// transactions will be in the mempool at this point, we pass 0
// as the last argument, indicating we don't care what's in the
// mempool.
mineBlocks(t, net, 1, 0)
err = wait.Predicate(func() bool {
txid, err := findJusticeTx()
if err != nil {
predErr = err
return false
}
justiceTxid = txid
return true
}, defaultTimeout)
}
if err != nil {
t.Fatalf(predErr.Error())
}
justiceTx, err := net.Miner.Client.GetRawTransaction(justiceTxid)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
// isSecondLevelSpend checks that the passed secondLevelTxid is a
// potentitial second level spend spending from the commit tx.
isSecondLevelSpend := func(commitTxid, secondLevelTxid *chainhash.Hash) bool {
secondLevel, err := net.Miner.Client.GetRawTransaction(
secondLevelTxid)
if err != nil {
t.Fatalf("unable to query for tx: %v", err)
}
// A second level spend should have only one input, and one
// output.
if len(secondLevel.MsgTx().TxIn) != 1 {
return false
}
if len(secondLevel.MsgTx().TxOut) != 1 {
return false
}
// The sole input should be spending from the commit tx.
txIn := secondLevel.MsgTx().TxIn[0]
return bytes.Equal(txIn.PreviousOutPoint.Hash[:], commitTxid[:])
}
// Check that all the inputs of this transaction are spending outputs
// generated by Carol's breach transaction above.
for _, txIn := range justiceTx.MsgTx().TxIn {
if bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
continue
}
// If the justice tx is spending from an output that was not on
// the breach tx, Carol might have had the time to take an
// output to the second level. In that case, check that the
// justice tx is spending this second level output.
if isSecondLevelSpend(breachTXID, &txIn.PreviousOutPoint.Hash) {
continue
}
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
time.Sleep(100 * time.Millisecond)
// We restart Dave here to ensure that he persists he retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Dave has broadcast the justice transaction, but it
// hasn't been confirmed yet; when Dave restarts, he should start
// waiting for the justice transaction to confirm again.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart Dave's node: %v", err)
}
// Now mine a block, this transaction should include Dave's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, justiceTxid)
// Dave should have no open channels.
assertNodeNumChannels(t, dave, 0)
}
// testRevokedCloseRetributionAltruistWatchtower establishes a channel between
// Carol and Dave, where Carol is using a third node Willy as her watchtower.
// After sending some payments, Dave reverts his state and force closes to
// trigger a breach. Carol is kept offline throughout the process and the test
// asserts that Willy responds by broadcasting the justice transaction on
// Carol's behalf sweeping her funds without a reward.
func testRevokedCloseRetributionAltruistWatchtower(net *lntest.NetworkHarness,
t *harnessTest) {
testCases := []struct {
name string
anchors bool
}{{
name: "anchors",
anchors: true,
}, {
name: "legacy",
anchors: false,
}}
for _, tc := range testCases {
tc := tc
success := t.t.Run(tc.name, func(tt *testing.T) {
ht := newHarnessTest(tt, net)
ht.RunTestCase(&testCase{
name: tc.name,
test: func(net1 *lntest.NetworkHarness, t1 *harnessTest) {
testRevokedCloseRetributionAltruistWatchtowerCase(
net1, t1, tc.anchors,
)
},
})
})
if !success {
// Log failure time to help relate the lnd logs to the
// failure.
t.Logf("Failure time: %v", time.Now().Format(
"2006-01-02 15:04:05.000",
))
break
}
}
}
func testRevokedCloseRetributionAltruistWatchtowerCase(
net *lntest.NetworkHarness, t *harnessTest, anchors bool) {
ctxb := context.Background()
const (
chanAmt = funding.MaxBtcFundingAmount
paymentAmt = 10000
numInvoices = 6
externalIP = "1.2.3.4"
)
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carolArgs := []string{"--hodl.exit-settle"}
if anchors {
carolArgs = append(carolArgs, "--protocol.anchors")
}
carol := net.NewNode(t.t, "Carol", carolArgs)
defer shutdownAndAssert(net, t, carol)
// Willy the watchtower will protect Dave from Carol's breach. He will
// remain online in order to punish Carol on Dave's behalf, since the
// breach will happen while Dave is offline.
willy := net.NewNode(t.t, "Willy", []string{
"--watchtower.active",
"--watchtower.externalip=" + externalIP,
})
defer shutdownAndAssert(net, t, willy)
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
willyInfo, err := willy.Watchtower.GetInfo(
ctxt, &watchtowerrpc.GetInfoRequest{},
)
if err != nil {
t.Fatalf("unable to getinfo from willy: %v", err)
}
// Assert that Willy has one listener and it is 0.0.0.0:9911 or
// [::]:9911. Since no listener is explicitly specified, one of these
// should be the default depending on whether the host supports IPv6 or
// not.
if len(willyInfo.Listeners) != 1 {
t.Fatalf("Willy should have 1 listener, has %d",
len(willyInfo.Listeners))
}
listener := willyInfo.Listeners[0]
if listener != "0.0.0.0:9911" && listener != "[::]:9911" {
t.Fatalf("expected listener on 0.0.0.0:9911 or [::]:9911, "+
"got %v", listener)
}
// Assert the Willy's URIs properly display the chosen external IP.
if len(willyInfo.Uris) != 1 {
t.Fatalf("Willy should have 1 uri, has %d",
len(willyInfo.Uris))
}
if !strings.Contains(willyInfo.Uris[0], externalIP) {
t.Fatalf("expected uri with %v, got %v",
externalIP, willyInfo.Uris[0])
}
// Dave will be the breached party. We set --nolisten to ensure Carol
// won't be able to connect to him and trigger the channel data
// protection logic automatically.
daveArgs := []string{
"--nolisten",
"--wtclient.active",
}
if anchors {
daveArgs = append(daveArgs, "--protocol.anchors")
}
dave := net.NewNode(t.t, "Dave", daveArgs)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
addTowerReq := &wtclientrpc.AddTowerRequest{
Pubkey: willyInfo.Pubkey,
Address: listener,
}
if _, err := dave.WatchtowerClient.AddTower(ctxt, addTowerReq); err != nil {
t.Fatalf("unable to add willy's watchtower: %v", err)
}
// We must let Dave have an open channel before she can send a node
// announcement, so we open a channel with Carol,
net.ConnectNodes(ctxb, t.t, dave, carol)
// Before we make a channel, we'll load up Dave with some coins sent
// directly from the miner.
net.SendCoins(ctxb, t.t, btcutil.SatoshiPerBitcoin, dave)
// In order to test Dave's response to an uncooperative channel
// closure by Carol, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, dave, carol,
lntest.OpenChannelParams{
Amt: 3 * (chanAmt / 4),
PushAmt: chanAmt / 4,
},
)
// With the channel open, we'll create a few invoices for Carol that
// Dave will pay to in order to advance the state of the channel.
carolPayReqs, _, _, err := createPayReqs(
carol, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Dave to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("dave didn't see the dave->carol channel before "+
"timeout: %v", err)
}
// Next query for Carol's channel state, as we sent 0 payments, Carol
// should still see her balance as the push amount, which is 1/4 of the
// capacity.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != int64(chanAmt/4) {
t.Fatalf("carol's balance is incorrect, got %v, expected %v",
carolChan.LocalBalance, chanAmt/4)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force him to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := net.BackupDb(carol); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Dave to Carol, consuming Carol's remaining
// payment hashes.
err = completePaymentRequests(
ctxb, dave, dave.RouterClient, carolPayReqs, false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
daveBalReq := &lnrpc.WalletBalanceRequest{}
daveBalResp, err := dave.WalletBalance(ctxt, daveBalReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
davePreSweepBalance := daveBalResp.ConfirmedBalance
// Wait until the backup has been accepted by the watchtower before
// shutting down Dave.
err = wait.NoError(func() error {
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
bkpStats, err := dave.WatchtowerClient.Stats(ctxt,
&wtclientrpc.StatsRequest{},
)
if err != nil {
return err
}
if bkpStats == nil {
return errors.New("no active backup sessions")
}
if bkpStats.NumBackups == 0 {
return errors.New("no backups accepted")
}
return nil
}, defaultTimeout)
if err != nil {
t.Fatalf("unable to verify backup task completed: %v", err)
}
// Shutdown Dave to simulate going offline for an extended period of
// time. Once he's not watching, Carol will try to breach the channel.
restart, err := net.SuspendNode(dave)
if err != nil {
t.Fatalf("unable to suspend Dave: %v", err)
}
// Now we shutdown Carol, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return net.RestoreDb(carol)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Carol's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Dave's retribution.
closeUpdates, closeTxID, err := net.CloseChannel(
ctxb, carol, chanPoint, true,
)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Query the mempool for the breaching closing transaction, this should
// be broadcast by Carol when she force closes the channel above.
txid, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxID {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxID, txid)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Dave's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Dave's justice tx in mempool: %v",
err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Carol's breach transaction above.
justiceTx, err := net.Miner.Client.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
willyBalReq := &lnrpc.WalletBalanceRequest{}
willyBalResp, err := willy.WalletBalance(ctxt, willyBalReq)
if err != nil {
t.Fatalf("unable to get willy's balance: %v", err)
}
if willyBalResp.ConfirmedBalance != 0 {
t.Fatalf("willy should have 0 balance before mining "+
"justice transaction, instead has %d",
willyBalResp.ConfirmedBalance)
}
// Now mine a block, this transaction should include Dave's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
// Ensure that Willy doesn't get any funds, as he is acting as an
// altruist watchtower.
var predErr error
err = wait.Invariant(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
willyBalReq := &lnrpc.WalletBalanceRequest{}
willyBalResp, err := willy.WalletBalance(ctxt, willyBalReq)
if err != nil {
t.Fatalf("unable to get willy's balance: %v", err)
}
if willyBalResp.ConfirmedBalance != 0 {
predErr = fmt.Errorf("Expected Willy to have no funds "+
"after justice transaction was mined, found %v",
willyBalResp)
return false
}
return true
}, time.Second*5)
if err != nil {
t.Fatalf("%v", predErr)
}
// Restart Dave, who will still think his channel with Carol is open.
// We should him to detect the breach, but realize that the funds have
// then been swept to his wallet by Willy.
err = restart()
if err != nil {
t.Fatalf("unable to restart dave: %v", err)
}
err = wait.Predicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
daveBalReq := &lnrpc.ChannelBalanceRequest{}
daveBalResp, err := dave.ChannelBalance(ctxt, daveBalReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
if daveBalResp.LocalBalance.Sat != 0 {
predErr = fmt.Errorf("Dave should end up with zero "+
"channel balance, instead has %d",
daveBalResp.LocalBalance.Sat)
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("%v", predErr)
}
assertNumPendingChannels(t, dave, 0, 0)
err = wait.Predicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
daveBalReq := &lnrpc.WalletBalanceRequest{}
daveBalResp, err := dave.WalletBalance(ctxt, daveBalReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
if daveBalResp.ConfirmedBalance <= davePreSweepBalance {
predErr = fmt.Errorf("Dave should have more than %d "+
"after sweep, instead has %d",
davePreSweepBalance,
daveBalResp.ConfirmedBalance)
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("%v", predErr)
}
// Dave should have no open channels.
assertNodeNumChannels(t, dave, 0)
}

@ -34,8 +34,6 @@ import (
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lnrpc/signrpc"
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
"github.com/lightningnetwork/lnd/lnrpc/watchtowerrpc"
"github.com/lightningnetwork/lnd/lnrpc/wtclientrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lnwallet"
@ -4863,1317 +4861,6 @@ func testGarbageCollectLinkNodes(net *lntest.NetworkHarness, t *harnessTest) {
closeChannelAndAssert(ctxt, t, net, net.Alice, persistentChanPoint, false)
}
// testRevokedCloseRetribution tests that Carol is able carry out
// retribution in the event that she fails immediately after detecting Bob's
// breach txn in the mempool.
func testRevokedCloseRetribution(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = funding.MaxBtcFundingAmount
paymentAmt = 10000
numInvoices = 6
)
// Carol will be the breached party. We set --nolisten to ensure Bob
// won't be able to connect to her and trigger the channel data
// protection logic automatically. We also can't have Carol
// automatically re-connect too early, otherwise DLP would be initiated
// instead of the breach we want to provoke.
carol := net.NewNode(
t.t, "Carol",
[]string{"--hodl.exit-settle", "--nolisten", "--minbackoff=1h"},
)
defer shutdownAndAssert(net, t, carol)
// We must let Bob communicate with Carol before they are able to open
// channel, so we connect Bob and Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
net.ConnectNodes(ctxt, t.t, carol, net.Bob)
// Before we make a channel, we'll load up Carol with some coins sent
// directly from the miner.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
// In order to test Carol's response to an uncooperative channel
// closure by Bob, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, carol, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// With the channel open, we'll create a few invoices for Bob that
// Carol will pay to in order to advance the state of the channel.
bobPayReqs, _, _, err := createPayReqs(
net.Bob, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Carol to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("carol didn't see the carol->bob channel before "+
"timeout: %v", err)
}
// Send payments from Carol to Bob using 3 of Bob's payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, carol.RouterClient, bobPayReqs[:numInvoices/2],
true,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Next query for Bob's channel state, as we sent 3 payments of 10k
// satoshis each, Bob should now see his balance as being 30k satoshis.
var bobChan *lnrpc.Channel
var predErr error
err = wait.Predicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bChan, err := getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if bChan.LocalBalance != 30000 {
predErr = fmt.Errorf("bob's balance is incorrect, "+
"got %v, expected %v", bChan.LocalBalance,
30000)
return false
}
bobChan = bChan
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("%v", predErr)
}
// Grab Bob's current commitment height (update number), we'll later
// revert him to this state after additional updates to force him to
// broadcast this soon to be revoked state.
bobStateNumPreCopy := bobChan.NumUpdates
// With the temporary file created, copy Bob's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := net.BackupDb(net.Bob); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Carol to Bob, consuming Bob's remaining
// payment hashes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, carol.RouterClient, bobPayReqs[numInvoices/2:],
true,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobChan, err = getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
// Now we shutdown Bob, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Bob to travel back in time
// within the channel's history.
if err = net.RestartNode(net.Bob, func() error {
return net.RestoreDb(net.Bob)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Bob's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
bobChan, err = getChanInfo(ctxt, net.Bob)
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
if bobChan.NumUpdates != bobStateNumPreCopy {
t.Fatalf("db copy failed: %v", bobChan.NumUpdates)
}
// Now force Bob to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Carol's retribution.
var closeUpdates lnrpc.Lightning_CloseChannelClient
force := true
err = wait.Predicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, _, err = net.CloseChannel(ctxt, net.Bob, chanPoint, force)
if err != nil {
predErr = err
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("unable to close channel: %v", predErr)
}
// Wait for Bob's breach transaction to show up in the mempool to ensure
// that Carol's node has started waiting for confirmations.
_, err = waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Bob's breach tx in mempool: %v", err)
}
// Here, Carol sees Bob's breach transaction in the mempool, but is waiting
// for it to confirm before continuing her retribution. We restart Carol to
// ensure that she is persisting her retribution state and continues
// watching for the breach transaction to confirm even after her node
// restarts.
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("unable to restart Carol's node: %v", err)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Carol's justice transaction, this should be
// broadcast as Bob's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's justice tx in mempool: %v", err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Bob's breach transaction above.
justiceTx, err := net.Miner.Client.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// We restart Carol here to ensure that she persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Carol has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Carol restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("unable to restart Carol's node: %v", err)
}
// Now mine a block, this transaction should include Carol's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
assertNodeNumChannels(t, carol, 0)
// Mine enough blocks for Bob's channel arbitrator to wrap up the
// references to the breached channel. The chanarb waits for commitment
// tx's confHeight+CSV-1 blocks and since we've already mined one that
// included the justice tx we only need to mine extra DefaultCSV-2
// blocks to unlock it.
mineBlocks(t, net, lntest.DefaultCSV-2, 0)
assertNumPendingChannels(t, net.Bob, 0, 0)
}
// testRevokedCloseRetributionZeroValueRemoteOutput tests that Dave is able
// carry out retribution in the event that she fails in state where the remote
// commitment output has zero-value.
func testRevokedCloseRetributionZeroValueRemoteOutput(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = funding.MaxBtcFundingAmount
paymentAmt = 10000
numInvoices = 6
)
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carol := net.NewNode(t.t, "Carol", []string{"--hodl.exit-settle"})
defer shutdownAndAssert(net, t, carol)
// Dave will be the breached party. We set --nolisten to ensure Carol
// won't be able to connect to him and trigger the channel data
// protection logic automatically. We also can't have Dave automatically
// re-connect too early, otherwise DLP would be initiated instead of the
// breach we want to provoke.
dave := net.NewNode(
t.t, "Dave",
[]string{"--hodl.exit-settle", "--nolisten", "--minbackoff=1h"},
)
defer shutdownAndAssert(net, t, dave)
// We must let Dave have an open channel before she can send a node
// announcement, so we open a channel with Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
net.ConnectNodes(ctxt, t.t, dave, carol)
// Before we make a channel, we'll load up Dave with some coins sent
// directly from the miner.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, dave)
// In order to test Dave's response to an uncooperative channel
// closure by Carol, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, dave, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// With the channel open, we'll create a few invoices for Carol that
// Dave will pay to in order to advance the state of the channel.
carolPayReqs, _, _, err := createPayReqs(
carol, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Dave to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("dave didn't see the dave->carol channel before "+
"timeout: %v", err)
}
// Next query for Carol's channel state, as we sent 0 payments, Carol
// should now see her balance as being 0 satoshis.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != 0 {
t.Fatalf("carol's balance is incorrect, got %v, expected %v",
carolChan.LocalBalance, 0)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force him to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := net.BackupDb(carol); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Dave to Carol, consuming Carol's remaining
// payment hashes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, dave, dave.RouterClient, carolPayReqs, false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
// Now we shutdown Carol, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return net.RestoreDb(carol)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Carol's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Dave's retribution.
var (
closeUpdates lnrpc.Lightning_CloseChannelClient
closeTxID *chainhash.Hash
closeErr error
)
force := true
err = wait.Predicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, closeTxID, closeErr = net.CloseChannel(
ctxt, carol, chanPoint, force,
)
return closeErr == nil
}, defaultTimeout)
if err != nil {
t.Fatalf("unable to close channel: %v", closeErr)
}
// Query the mempool for the breaching closing transaction, this should
// be broadcast by Carol when she force closes the channel above.
txid, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxID {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxID, txid)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
// Here, Dave receives a confirmation of Carol's breach transaction.
// We restart Dave to ensure that she is persisting her retribution
// state and continues exacting justice after her node restarts.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to stop Dave's node: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Dave's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Dave's justice tx in mempool: %v",
err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Carol's breach transaction above.
justiceTx, err := net.Miner.Client.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// We restart Dave here to ensure that he persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Dave has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Dave restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart Dave's node: %v", err)
}
// Now mine a block, this transaction should include Dave's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
assertNodeNumChannels(t, dave, 0)
}
// testRevokedCloseRetributionRemoteHodl tests that Dave properly responds to a
// channel breach made by the remote party, specifically in the case that the
// remote party breaches before settling extended HTLCs.
func testRevokedCloseRetributionRemoteHodl(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
const (
chanAmt = funding.MaxBtcFundingAmount
pushAmt = 200000
paymentAmt = 10000
numInvoices = 6
)
// Since this test will result in the counterparty being left in a
// weird state, we will introduce another node into our test network:
// Carol.
carol := net.NewNode(t.t, "Carol", []string{"--hodl.exit-settle"})
defer shutdownAndAssert(net, t, carol)
// We'll also create a new node Dave, who will have a channel with
// Carol, and also use similar settings so we can broadcast a commit
// with active HTLCs. Dave will be the breached party. We set
// --nolisten to ensure Carol won't be able to connect to him and
// trigger the channel data protection logic automatically.
dave := net.NewNode(
t.t, "Dave",
[]string{"--hodl.exit-settle", "--nolisten"},
)
defer shutdownAndAssert(net, t, dave)
// We must let Dave communicate with Carol before they are able to open
// channel, so we connect Dave and Carol,
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
net.ConnectNodes(ctxt, t.t, dave, carol)
// Before we make a channel, we'll load up Dave with some coins sent
// directly from the miner.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, dave)
// In order to test Dave's response to an uncooperative channel closure
// by Carol, we'll first open up a channel between them with a
// funding.MaxBtcFundingAmount (2^24) satoshis value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, dave, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
// With the channel open, we'll create a few invoices for Carol that
// Dave will pay to in order to advance the state of the channel.
carolPayReqs, _, _, err := createPayReqs(
carol, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll introduce a closure to validate that Carol's current balance
// matches the given expected amount.
checkCarolBalance := func(expectedAmt int64) {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != expectedAmt {
t.Fatalf("carol's balance is incorrect, "+
"got %v, expected %v", carolChan.LocalBalance,
expectedAmt)
}
}
// We'll introduce another closure to validate that Carol's current
// number of updates is at least as large as the provided minimum
// number.
checkCarolNumUpdatesAtLeast := func(minimum uint64) {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.NumUpdates < minimum {
t.Fatalf("carol's numupdates is incorrect, want %v "+
"to be at least %v", carolChan.NumUpdates,
minimum)
}
}
// Wait for Dave to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("dave didn't see the dave->carol channel before "+
"timeout: %v", err)
}
// Ensure that carol's balance starts with the amount we pushed to her.
checkCarolBalance(pushAmt)
// Send payments from Dave to Carol using 3 of Carol's payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, dave, dave.RouterClient, carolPayReqs[:numInvoices/2],
false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// At this point, we'll also send over a set of HTLC's from Carol to
// Dave. This ensures that the final revoked transaction has HTLC's in
// both directions.
davePayReqs, _, _, err := createPayReqs(
dave, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Send payments from Carol to Dave using 3 of Dave's payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, carol.RouterClient, davePayReqs[:numInvoices/2],
false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Next query for Carol's channel state, as we sent 3 payments of 10k
// satoshis each, however Carol should now see her balance as being
// equal to the push amount in satoshis since she has not settled.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force her to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// Ensure that carol's balance still reflects the original amount we
// pushed to her, minus the HTLCs she just sent to Dave.
checkCarolBalance(pushAmt - 3*paymentAmt)
// Since Carol has not settled, she should only see at least one update
// to her channel.
checkCarolNumUpdatesAtLeast(1)
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := net.BackupDb(carol); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Dave to Carol, consuming Carol's
// remaining payment hashes.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, dave, dave.RouterClient, carolPayReqs[numInvoices/2:],
false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Ensure that carol's balance still shows the amount we originally
// pushed to her (minus the HTLCs she sent to Bob), and that at least
// one more update has occurred.
time.Sleep(500 * time.Millisecond)
checkCarolBalance(pushAmt - 3*paymentAmt)
checkCarolNumUpdatesAtLeast(carolStateNumPreCopy + 1)
// Suspend Dave, such that Carol won't reconnect at startup, triggering
// the data loss protection.
restartDave, err := net.SuspendNode(dave)
if err != nil {
t.Fatalf("unable to suspend Dave: %v", err)
}
// Now we shutdown Carol, copying over the her temporary database state
// which has the *prior* channel state over her current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return net.RestoreDb(carol)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Ensure that Carol's view of the channel is consistent with the state
// of the channel just before it was snapshotted.
checkCarolBalance(pushAmt - 3*paymentAmt)
checkCarolNumUpdatesAtLeast(1)
// Now query for Carol's channel state, it should show that she's at a
// state number in the past, *not* the latest state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting her current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so she'll soon
// feel the wrath of Dave's retribution.
force := true
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, closeTxID, err := net.CloseChannel(ctxt, carol,
chanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Query the mempool for the breaching closing transaction, this should
// be broadcast by Carol when she force closes the channel above.
txid, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxID {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxID, txid)
}
// Generate a single block to mine the breach transaction.
block := mineBlocks(t, net, 1, 1)[0]
// We resurrect Dave to ensure he will be exacting justice after his
// node restarts.
if err := restartDave(); err != nil {
t.Fatalf("unable to stop Dave's node: %v", err)
}
// Finally, wait for the final close status update, then ensure that
// the closing transaction was included in the block.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
if *breachTXID != *closeTxID {
t.Fatalf("expected breach ID(%v) to be equal to close ID (%v)",
breachTXID, closeTxID)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Dave's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above. Since Carol might have had the time to take some of the HTLC
// outputs to the second level before Dave broadcasts his justice tx,
// we'll search through the mempool for a tx that matches the number of
// expected inputs in the justice tx.
var predErr error
var justiceTxid *chainhash.Hash
errNotFound := errors.New("justice tx not found")
findJusticeTx := func() (*chainhash.Hash, error) {
mempool, err := net.Miner.Client.GetRawMempool()
if err != nil {
return nil, fmt.Errorf("unable to get mempool from "+
"miner: %v", err)
}
for _, txid := range mempool {
// Check that the justice tx has the appropriate number
// of inputs.
tx, err := net.Miner.Client.GetRawTransaction(txid)
if err != nil {
return nil, fmt.Errorf("unable to query for "+
"txs: %v", err)
}
exNumInputs := 2 + numInvoices
if len(tx.MsgTx().TxIn) == exNumInputs {
return txid, nil
}
}
return nil, errNotFound
}
err = wait.Predicate(func() bool {
txid, err := findJusticeTx()
if err != nil {
predErr = err
return false
}
justiceTxid = txid
return true
}, defaultTimeout)
if err != nil && predErr == errNotFound {
// If Dave is unable to broadcast his justice tx on first
// attempt because of the second layer transactions, he will
// wait until the next block epoch before trying again. Because
// of this, we'll mine a block if we cannot find the justice tx
// immediately. Since we cannot tell for sure how many
// transactions will be in the mempool at this point, we pass 0
// as the last argument, indicating we don't care what's in the
// mempool.
mineBlocks(t, net, 1, 0)
err = wait.Predicate(func() bool {
txid, err := findJusticeTx()
if err != nil {
predErr = err
return false
}
justiceTxid = txid
return true
}, defaultTimeout)
}
if err != nil {
t.Fatalf(predErr.Error())
}
justiceTx, err := net.Miner.Client.GetRawTransaction(justiceTxid)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
// isSecondLevelSpend checks that the passed secondLevelTxid is a
// potentitial second level spend spending from the commit tx.
isSecondLevelSpend := func(commitTxid, secondLevelTxid *chainhash.Hash) bool {
secondLevel, err := net.Miner.Client.GetRawTransaction(
secondLevelTxid)
if err != nil {
t.Fatalf("unable to query for tx: %v", err)
}
// A second level spend should have only one input, and one
// output.
if len(secondLevel.MsgTx().TxIn) != 1 {
return false
}
if len(secondLevel.MsgTx().TxOut) != 1 {
return false
}
// The sole input should be spending from the commit tx.
txIn := secondLevel.MsgTx().TxIn[0]
return bytes.Equal(txIn.PreviousOutPoint.Hash[:], commitTxid[:])
}
// Check that all the inputs of this transaction are spending outputs
// generated by Carol's breach transaction above.
for _, txIn := range justiceTx.MsgTx().TxIn {
if bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
continue
}
// If the justice tx is spending from an output that was not on
// the breach tx, Carol might have had the time to take an
// output to the second level. In that case, check that the
// justice tx is spending this second level output.
if isSecondLevelSpend(breachTXID, &txIn.PreviousOutPoint.Hash) {
continue
}
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
time.Sleep(100 * time.Millisecond)
// We restart Dave here to ensure that he persists he retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Dave has broadcast the justice transaction, but it
// hasn't been confirmed yet; when Dave restarts, he should start
// waiting for the justice transaction to confirm again.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart Dave's node: %v", err)
}
// Now mine a block, this transaction should include Dave's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
assertTxInBlock(t, block, justiceTxid)
// Dave should have no open channels.
assertNodeNumChannels(t, dave, 0)
}
// testRevokedCloseRetributionAltruistWatchtower establishes a channel between
// Carol and Dave, where Carol is using a third node Willy as her watchtower.
// After sending some payments, Dave reverts his state and force closes to
// trigger a breach. Carol is kept offline throughout the process and the test
// asserts that Willy responds by broadcasting the justice transaction on
// Carol's behalf sweeping her funds without a reward.
func testRevokedCloseRetributionAltruistWatchtower(net *lntest.NetworkHarness,
t *harnessTest) {
testCases := []struct {
name string
anchors bool
}{{
name: "anchors",
anchors: true,
}, {
name: "legacy",
anchors: false,
}}
for _, tc := range testCases {
tc := tc
success := t.t.Run(tc.name, func(tt *testing.T) {
ht := newHarnessTest(tt, net)
ht.RunTestCase(&testCase{
name: tc.name,
test: func(net1 *lntest.NetworkHarness, t1 *harnessTest) {
testRevokedCloseRetributionAltruistWatchtowerCase(
net1, t1, tc.anchors,
)
},
})
})
if !success {
// Log failure time to help relate the lnd logs to the
// failure.
t.Logf("Failure time: %v", time.Now().Format(
"2006-01-02 15:04:05.000",
))
break
}
}
}
func testRevokedCloseRetributionAltruistWatchtowerCase(
net *lntest.NetworkHarness, t *harnessTest, anchors bool) {
ctxb := context.Background()
const (
chanAmt = funding.MaxBtcFundingAmount
paymentAmt = 10000
numInvoices = 6
externalIP = "1.2.3.4"
)
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carolArgs := []string{"--hodl.exit-settle"}
if anchors {
carolArgs = append(carolArgs, "--protocol.anchors")
}
carol := net.NewNode(t.t, "Carol", carolArgs)
defer shutdownAndAssert(net, t, carol)
// Willy the watchtower will protect Dave from Carol's breach. He will
// remain online in order to punish Carol on Dave's behalf, since the
// breach will happen while Dave is offline.
willy := net.NewNode(t.t, "Willy", []string{
"--watchtower.active",
"--watchtower.externalip=" + externalIP,
})
defer shutdownAndAssert(net, t, willy)
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
willyInfo, err := willy.Watchtower.GetInfo(
ctxt, &watchtowerrpc.GetInfoRequest{},
)
if err != nil {
t.Fatalf("unable to getinfo from willy: %v", err)
}
// Assert that Willy has one listener and it is 0.0.0.0:9911 or
// [::]:9911. Since no listener is explicitly specified, one of these
// should be the default depending on whether the host supports IPv6 or
// not.
if len(willyInfo.Listeners) != 1 {
t.Fatalf("Willy should have 1 listener, has %d",
len(willyInfo.Listeners))
}
listener := willyInfo.Listeners[0]
if listener != "0.0.0.0:9911" && listener != "[::]:9911" {
t.Fatalf("expected listener on 0.0.0.0:9911 or [::]:9911, "+
"got %v", listener)
}
// Assert the Willy's URIs properly display the chosen external IP.
if len(willyInfo.Uris) != 1 {
t.Fatalf("Willy should have 1 uri, has %d",
len(willyInfo.Uris))
}
if !strings.Contains(willyInfo.Uris[0], externalIP) {
t.Fatalf("expected uri with %v, got %v",
externalIP, willyInfo.Uris[0])
}
// Dave will be the breached party. We set --nolisten to ensure Carol
// won't be able to connect to him and trigger the channel data
// protection logic automatically.
daveArgs := []string{
"--nolisten",
"--wtclient.active",
}
if anchors {
daveArgs = append(daveArgs, "--protocol.anchors")
}
dave := net.NewNode(t.t, "Dave", daveArgs)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
addTowerReq := &wtclientrpc.AddTowerRequest{
Pubkey: willyInfo.Pubkey,
Address: listener,
}
if _, err := dave.WatchtowerClient.AddTower(ctxt, addTowerReq); err != nil {
t.Fatalf("unable to add willy's watchtower: %v", err)
}
// We must let Dave have an open channel before she can send a node
// announcement, so we open a channel with Carol,
net.ConnectNodes(ctxb, t.t, dave, carol)
// Before we make a channel, we'll load up Dave with some coins sent
// directly from the miner.
net.SendCoins(ctxb, t.t, btcutil.SatoshiPerBitcoin, dave)
// In order to test Dave's response to an uncooperative channel
// closure by Carol, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPoint := openChannelAndAssert(
ctxt, t, net, dave, carol,
lntest.OpenChannelParams{
Amt: 3 * (chanAmt / 4),
PushAmt: chanAmt / 4,
},
)
// With the channel open, we'll create a few invoices for Carol that
// Dave will pay to in order to advance the state of the channel.
carolPayReqs, _, _, err := createPayReqs(
carol, paymentAmt, numInvoices,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Wait for Dave to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("dave didn't see the dave->carol channel before "+
"timeout: %v", err)
}
// Next query for Carol's channel state, as we sent 0 payments, Carol
// should still see her balance as the push amount, which is 1/4 of the
// capacity.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err := getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != int64(chanAmt/4) {
t.Fatalf("carol's balance is incorrect, got %v, expected %v",
carolChan.LocalBalance, chanAmt/4)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force him to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := net.BackupDb(carol); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Dave to Carol, consuming Carol's remaining
// payment hashes.
err = completePaymentRequests(
ctxb, dave, dave.RouterClient, carolPayReqs, false,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
daveBalReq := &lnrpc.WalletBalanceRequest{}
daveBalResp, err := dave.WalletBalance(ctxt, daveBalReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
davePreSweepBalance := daveBalResp.ConfirmedBalance
// Wait until the backup has been accepted by the watchtower before
// shutting down Dave.
err = wait.NoError(func() error {
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
bkpStats, err := dave.WatchtowerClient.Stats(ctxt,
&wtclientrpc.StatsRequest{},
)
if err != nil {
return err
}
if bkpStats == nil {
return errors.New("no active backup sessions")
}
if bkpStats.NumBackups == 0 {
return errors.New("no backups accepted")
}
return nil
}, defaultTimeout)
if err != nil {
t.Fatalf("unable to verify backup task completed: %v", err)
}
// Shutdown Dave to simulate going offline for an extended period of
// time. Once he's not watching, Carol will try to breach the channel.
restart, err := net.SuspendNode(dave)
if err != nil {
t.Fatalf("unable to suspend Dave: %v", err)
}
// Now we shutdown Carol, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return net.RestoreDb(carol)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Carol's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Dave's retribution.
closeUpdates, closeTxID, err := net.CloseChannel(
ctxb, carol, chanPoint, true,
)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Query the mempool for the breaching closing transaction, this should
// be broadcast by Carol when she force closes the channel above.
txid, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxID {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxID, txid)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Dave's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find Dave's justice tx in mempool: %v",
err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Carol's breach transaction above.
justiceTx, err := net.Miner.Client.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
willyBalReq := &lnrpc.WalletBalanceRequest{}
willyBalResp, err := willy.WalletBalance(ctxt, willyBalReq)
if err != nil {
t.Fatalf("unable to get willy's balance: %v", err)
}
if willyBalResp.ConfirmedBalance != 0 {
t.Fatalf("willy should have 0 balance before mining "+
"justice transaction, instead has %d",
willyBalResp.ConfirmedBalance)
}
// Now mine a block, this transaction should include Dave's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
// Ensure that Willy doesn't get any funds, as he is acting as an
// altruist watchtower.
var predErr error
err = wait.Invariant(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
willyBalReq := &lnrpc.WalletBalanceRequest{}
willyBalResp, err := willy.WalletBalance(ctxt, willyBalReq)
if err != nil {
t.Fatalf("unable to get willy's balance: %v", err)
}
if willyBalResp.ConfirmedBalance != 0 {
predErr = fmt.Errorf("Expected Willy to have no funds "+
"after justice transaction was mined, found %v",
willyBalResp)
return false
}
return true
}, time.Second*5)
if err != nil {
t.Fatalf("%v", predErr)
}
// Restart Dave, who will still think his channel with Carol is open.
// We should him to detect the breach, but realize that the funds have
// then been swept to his wallet by Willy.
err = restart()
if err != nil {
t.Fatalf("unable to restart dave: %v", err)
}
err = wait.Predicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
daveBalReq := &lnrpc.ChannelBalanceRequest{}
daveBalResp, err := dave.ChannelBalance(ctxt, daveBalReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
if daveBalResp.LocalBalance.Sat != 0 {
predErr = fmt.Errorf("Dave should end up with zero "+
"channel balance, instead has %d",
daveBalResp.LocalBalance.Sat)
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("%v", predErr)
}
assertNumPendingChannels(t, dave, 0, 0)
err = wait.Predicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
daveBalReq := &lnrpc.WalletBalanceRequest{}
daveBalResp, err := dave.WalletBalance(ctxt, daveBalReq)
if err != nil {
t.Fatalf("unable to get dave's balance: %v", err)
}
if daveBalResp.ConfirmedBalance <= davePreSweepBalance {
predErr = fmt.Errorf("Dave should have more than %d "+
"after sweep, instead has %d",
davePreSweepBalance,
daveBalResp.ConfirmedBalance)
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("%v", predErr)
}
// Dave should have no open channels.
assertNodeNumChannels(t, dave, 0)
}
// testDataLossProtection tests that if one of the nodes in a channel
// relationship lost state, they will detect this during channel sync, and the
// up-to-date party will force close the channel, giving the outdated party the