autopilot: betweenness centrality using Brandes algo on simplifed graph

This commit adds betweenness centrality to the available node metrics.
Betweenness centrality is a per node centrality measure which for an
arbitrary node v equals to the sum of shortest paths going trough v
divided by the number of all shortest paths for for each vertex pair
k, s where k != s != v.
This commit is contained in:
Andras Banki-Horvath 2019-12-20 12:54:59 +01:00
parent be83d504f8
commit 3fe9c70722
3 changed files with 434 additions and 0 deletions

@ -0,0 +1,212 @@
package autopilot
// stack is a simple int stack to help with readability of Brandes'
// betweenness centrality implementation below.
type stack struct {
stack []int
}
func (s *stack) push(v int) {
s.stack = append(s.stack, v)
}
func (s *stack) top() int {
return s.stack[len(s.stack)-1]
}
func (s *stack) pop() {
s.stack = s.stack[:len(s.stack)-1]
}
func (s *stack) empty() bool {
return len(s.stack) == 0
}
// queue is a simple int queue to help with readability of Brandes'
// betweenness centrality implementation below.
type queue struct {
queue []int
}
func (q *queue) push(v int) {
q.queue = append(q.queue, v)
}
func (q *queue) front() int {
return q.queue[0]
}
func (q *queue) pop() {
q.queue = q.queue[1:]
}
func (q *queue) empty() bool {
return len(q.queue) == 0
}
// BetweennessCentrality is a NodeMetric that calculates node betweenness
// centrality using Brandes' algorithm. Betweenness centrality for each node
// is the number of shortest paths passing trough that node, not counting
// shortest paths starting or ending at that node. This is a useful metric
// to measure control of individual nodes over the whole network.
type BetweennessCentrality struct {
// centrality stores original (not normalized) centrality values for
// each node in the graph.
centrality map[NodeID]float64
// min is the minimum centrality in the graph.
min float64
// max is the maximum centrality in the graph.
max float64
}
// NewBetweennessCentralityMetric creates a new BetweennessCentrality instance.
func NewBetweennessCentralityMetric() *BetweennessCentrality {
return &BetweennessCentrality{}
}
// Name returns the name of the metric.
func (bc *BetweennessCentrality) Name() string {
return "betweeness_centrality"
}
// betweennessCentrality is the core of Brandes' algorithm.
// We first calculate the shortest paths from the start node s to all other
// nodes with BFS, then update the betweenness centrality values by using
// Brandes' dependency trick.
// For detailed explanation please read:
// https://www.cl.cam.ac.uk/teaching/1617/MLRD/handbook/brandes.html
func betweennessCentrality(g *SimpleGraph, s int, centrality []float64) {
// pred[w] is the list of nodes that immediately precede w on a
// shortest path from s to t for each node t.
pred := make([][]int, len(g.Nodes))
// sigma[t] is the number of shortest paths between nodes s and t for
// each node t.
sigma := make([]int, len(g.Nodes))
sigma[s] = 1
// dist[t] holds the distance between s and t for each node t. We initialize
// this to -1 (meaning infinity) for each t != s.
dist := make([]int, len(g.Nodes))
for i := range dist {
dist[i] = -1
}
dist[s] = 0
var (
st stack
q queue
)
q.push(s)
// BFS to calculate the shortest paths (sigma and pred)
// from s to t for each node t.
for !q.empty() {
v := q.front()
q.pop()
st.push(v)
for _, w := range g.Adj[v] {
// If distance from s to w is infinity (-1)
// then set it and enqueue w.
if dist[w] < 0 {
dist[w] = dist[v] + 1
q.push(w)
}
// If w is on a shortest path the update
// sigma and add v to w's predecessor list.
if dist[w] == dist[v]+1 {
sigma[w] += sigma[v]
pred[w] = append(pred[w], v)
}
}
}
// delta[v] is the ratio of the shortest paths between s and t that go
// through v and the total number of shortest paths between s and t.
// If we have delta then the betweenness centrality is simply the sum
// of delta[w] for each w != s.
delta := make([]float64, len(g.Nodes))
for !st.empty() {
w := st.top()
st.pop()
// pred[w] is the list of nodes that immediately precede w on a
// shortest path from s.
for _, v := range pred[w] {
// Update delta using Brandes' equation.
delta[v] += (float64(sigma[v]) / float64(sigma[w])) * (1.0 + delta[w])
}
if w != s {
// As noted above centrality is simply the sum
// of delta[w] for each w != s.
centrality[w] += delta[w]
}
}
}
// Refresh recaculates and stores centrality values.
func (bc *BetweennessCentrality) Refresh(graph ChannelGraph) error {
cache, err := NewSimpleGraph(graph)
if err != nil {
return err
}
// TODO: parallelize updates to centrality.
centrality := make([]float64, len(cache.Nodes))
for node := range cache.Nodes {
betweennessCentrality(cache, node, centrality)
}
// Get min/max to be able to normalize
// centrality values between 0 and 1.
bc.min = 0
bc.max = 0
if len(centrality) > 0 {
for i := 1; i < len(centrality); i++ {
if centrality[i] < bc.min {
bc.min = centrality[i]
} else if centrality[i] > bc.max {
bc.max = centrality[i]
}
}
}
// Divide by two as this is an undirected graph.
bc.min /= 2.0
bc.max /= 2.0
bc.centrality = make(map[NodeID]float64)
for u, value := range centrality {
// Divide by two as this is an undirected graph.
bc.centrality[cache.Nodes[u]] = value / 2.0
}
return nil
}
// GetMetric returns the current centrality values for each node indexed
// by node id.
func (bc *BetweennessCentrality) GetMetric(normalize bool) map[NodeID]float64 {
// Normalization factor.
var z float64
if (bc.max - bc.min) > 0 {
z = 1.0 / (bc.max - bc.min)
}
centrality := make(map[NodeID]float64)
for k, v := range bc.centrality {
if normalize {
v = (v - bc.min) * z
}
centrality[k] = v
}
return centrality
}

@ -0,0 +1,156 @@
package autopilot
import (
"testing"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcutil"
)
// Tests that empty graph results in empty centrality result.
func TestBetweennessCentralityEmptyGraph(t *testing.T) {
centralityMetric := NewBetweennessCentralityMetric()
for _, chanGraph := range chanGraphs {
graph, cleanup, err := chanGraph.genFunc()
success := t.Run(chanGraph.name, func(t1 *testing.T) {
if err != nil {
t1.Fatalf("unable to create graph: %v", err)
}
if cleanup != nil {
defer cleanup()
}
if err := centralityMetric.Refresh(graph); err != nil {
t.Fatalf("unexpected failure during metric refresh: %v", err)
}
centrality := centralityMetric.GetMetric(false)
if len(centrality) > 0 {
t.Fatalf("expected empty metric, got: %v", len(centrality))
}
centrality = centralityMetric.GetMetric(true)
if len(centrality) > 0 {
t.Fatalf("expected empty metric, got: %v", len(centrality))
}
})
if !success {
break
}
}
}
// testGraphDesc is a helper type to describe a test graph.
type testGraphDesc struct {
nodes int
edges map[int][]int
}
// buildTestGraph builds a test graph from a passed graph desriptor.
func buildTestGraph(t *testing.T,
graph testGraph, desc testGraphDesc) map[int]*btcec.PublicKey {
nodes := make(map[int]*btcec.PublicKey)
for i := 0; i < desc.nodes; i++ {
key, err := graph.addRandNode()
if err != nil {
t.Fatalf("cannot create random node")
}
nodes[i] = key
}
const chanCapacity = btcutil.SatoshiPerBitcoin
for u, neighbors := range desc.edges {
for _, v := range neighbors {
_, _, err := graph.addRandChannel(nodes[u], nodes[v], chanCapacity)
if err != nil {
t.Fatalf("unexpected error while adding random channel: %v", err)
}
}
}
return nodes
}
// Test betweenness centrality calculating using an example graph.
func TestBetweennessCentralityWithNonEmptyGraph(t *testing.T) {
graphDesc := testGraphDesc{
nodes: 9,
edges: map[int][]int{
0: {1, 2, 3},
1: {2},
2: {3},
3: {4, 5},
4: {5, 6, 7},
5: {6, 7},
6: {7, 8},
},
}
tests := []struct {
name string
normalize bool
centrality []float64
}{
{
normalize: true,
centrality: []float64{
0.2, 0.0, 0.2, 1.0, 0.4, 0.4, 7.0 / 15.0, 0.0, 0.0,
},
},
{
normalize: false,
centrality: []float64{
3.0, 0.0, 3.0, 15.0, 6.0, 6.0, 7.0, 0.0, 0.0,
},
},
}
for _, chanGraph := range chanGraphs {
graph, cleanup, err := chanGraph.genFunc()
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
if cleanup != nil {
defer cleanup()
}
success := t.Run(chanGraph.name, func(t1 *testing.T) {
centralityMetric := NewBetweennessCentralityMetric()
graphNodes := buildTestGraph(t1, graph, graphDesc)
if err := centralityMetric.Refresh(graph); err != nil {
t1.Fatalf("error while calculating betweeness centrality")
}
for _, test := range tests {
test := test
centrality := centralityMetric.GetMetric(test.normalize)
if len(centrality) != graphDesc.nodes {
t.Fatalf("expected %v values, got: %v",
graphDesc.nodes, len(centrality))
}
for node, nodeCentrality := range test.centrality {
nodeID := NewNodeID(graphNodes[node])
calculatedCentrality, ok := centrality[nodeID]
if !ok {
t1.Fatalf("no result for node: %x (%v)", nodeID, node)
}
if nodeCentrality != calculatedCentrality {
t1.Errorf("centrality for node: %v should be %v, got: %v",
node, test.centrality[node], calculatedCentrality)
}
}
}
})
if !success {
break
}
}
}

66
autopilot/simple_graph.go Normal file

@ -0,0 +1,66 @@
package autopilot
// SimpleGraph stores a simplifed adj graph of a channel graph to speed
// up graph processing by eliminating all unnecessary hashing and map access.
type SimpleGraph struct {
// Nodes is a map from node index to NodeID.
Nodes []NodeID
// Adj stores nodes and neighbors in an adjacency list.
Adj [][]int
}
// NewSimpleGraph creates a simplified graph from the current channel graph.
// Returns an error if the channel graph iteration fails due to underlying
// failure.
func NewSimpleGraph(g ChannelGraph) (*SimpleGraph, error) {
nodes := make(map[NodeID]int)
adj := make(map[int][]int)
nextIndex := 0
// getNodeIndex returns the integer index of the passed node.
// The returned index is then used to create a simplifed adjacency list
// where each node is identified by its index instead of its pubkey, and
// also to create a mapping from node index to node pubkey.
getNodeIndex := func(node Node) int {
key := NodeID(node.PubKey())
nodeIndex, ok := nodes[key]
if !ok {
nodes[key] = nextIndex
nodeIndex = nextIndex
nextIndex++
}
return nodeIndex
}
// Iterate over each node and each channel and update the adj and the node
// index.
err := g.ForEachNode(func(node Node) error {
u := getNodeIndex(node)
return node.ForEachChannel(func(edge ChannelEdge) error {
v := getNodeIndex(edge.Peer)
adj[u] = append(adj[u], v)
return nil
})
})
if err != nil {
return nil, err
}
graph := &SimpleGraph{
Nodes: make([]NodeID, len(nodes)),
Adj: make([][]int, len(nodes)),
}
// Fill the adj and the node index to node pubkey mapping.
for nodeID, nodeIndex := range nodes {
graph.Adj[nodeIndex] = adj[nodeIndex]
graph.Nodes[nodeIndex] = nodeID
}
return graph, nil
}