autopilot: betweenness centrality using Brandes algo on simplifed graph
This commit adds betweenness centrality to the available node metrics. Betweenness centrality is a per node centrality measure which for an arbitrary node v equals to the sum of shortest paths going trough v divided by the number of all shortest paths for for each vertex pair k, s where k != s != v.
This commit is contained in:
parent
be83d504f8
commit
3fe9c70722
212
autopilot/betweenness_centrality.go
Normal file
212
autopilot/betweenness_centrality.go
Normal file
@ -0,0 +1,212 @@
|
||||
package autopilot
|
||||
|
||||
// stack is a simple int stack to help with readability of Brandes'
|
||||
// betweenness centrality implementation below.
|
||||
type stack struct {
|
||||
stack []int
|
||||
}
|
||||
|
||||
func (s *stack) push(v int) {
|
||||
s.stack = append(s.stack, v)
|
||||
}
|
||||
|
||||
func (s *stack) top() int {
|
||||
return s.stack[len(s.stack)-1]
|
||||
}
|
||||
|
||||
func (s *stack) pop() {
|
||||
s.stack = s.stack[:len(s.stack)-1]
|
||||
}
|
||||
|
||||
func (s *stack) empty() bool {
|
||||
return len(s.stack) == 0
|
||||
}
|
||||
|
||||
// queue is a simple int queue to help with readability of Brandes'
|
||||
// betweenness centrality implementation below.
|
||||
type queue struct {
|
||||
queue []int
|
||||
}
|
||||
|
||||
func (q *queue) push(v int) {
|
||||
q.queue = append(q.queue, v)
|
||||
}
|
||||
|
||||
func (q *queue) front() int {
|
||||
return q.queue[0]
|
||||
}
|
||||
|
||||
func (q *queue) pop() {
|
||||
q.queue = q.queue[1:]
|
||||
}
|
||||
|
||||
func (q *queue) empty() bool {
|
||||
return len(q.queue) == 0
|
||||
}
|
||||
|
||||
// BetweennessCentrality is a NodeMetric that calculates node betweenness
|
||||
// centrality using Brandes' algorithm. Betweenness centrality for each node
|
||||
// is the number of shortest paths passing trough that node, not counting
|
||||
// shortest paths starting or ending at that node. This is a useful metric
|
||||
// to measure control of individual nodes over the whole network.
|
||||
type BetweennessCentrality struct {
|
||||
// centrality stores original (not normalized) centrality values for
|
||||
// each node in the graph.
|
||||
centrality map[NodeID]float64
|
||||
|
||||
// min is the minimum centrality in the graph.
|
||||
min float64
|
||||
|
||||
// max is the maximum centrality in the graph.
|
||||
max float64
|
||||
}
|
||||
|
||||
// NewBetweennessCentralityMetric creates a new BetweennessCentrality instance.
|
||||
func NewBetweennessCentralityMetric() *BetweennessCentrality {
|
||||
return &BetweennessCentrality{}
|
||||
}
|
||||
|
||||
// Name returns the name of the metric.
|
||||
func (bc *BetweennessCentrality) Name() string {
|
||||
return "betweeness_centrality"
|
||||
}
|
||||
|
||||
// betweennessCentrality is the core of Brandes' algorithm.
|
||||
// We first calculate the shortest paths from the start node s to all other
|
||||
// nodes with BFS, then update the betweenness centrality values by using
|
||||
// Brandes' dependency trick.
|
||||
// For detailed explanation please read:
|
||||
// https://www.cl.cam.ac.uk/teaching/1617/MLRD/handbook/brandes.html
|
||||
func betweennessCentrality(g *SimpleGraph, s int, centrality []float64) {
|
||||
// pred[w] is the list of nodes that immediately precede w on a
|
||||
// shortest path from s to t for each node t.
|
||||
pred := make([][]int, len(g.Nodes))
|
||||
|
||||
// sigma[t] is the number of shortest paths between nodes s and t for
|
||||
// each node t.
|
||||
sigma := make([]int, len(g.Nodes))
|
||||
sigma[s] = 1
|
||||
|
||||
// dist[t] holds the distance between s and t for each node t. We initialize
|
||||
// this to -1 (meaning infinity) for each t != s.
|
||||
dist := make([]int, len(g.Nodes))
|
||||
for i := range dist {
|
||||
dist[i] = -1
|
||||
}
|
||||
|
||||
dist[s] = 0
|
||||
|
||||
var (
|
||||
st stack
|
||||
q queue
|
||||
)
|
||||
q.push(s)
|
||||
|
||||
// BFS to calculate the shortest paths (sigma and pred)
|
||||
// from s to t for each node t.
|
||||
for !q.empty() {
|
||||
v := q.front()
|
||||
q.pop()
|
||||
st.push(v)
|
||||
|
||||
for _, w := range g.Adj[v] {
|
||||
// If distance from s to w is infinity (-1)
|
||||
// then set it and enqueue w.
|
||||
if dist[w] < 0 {
|
||||
dist[w] = dist[v] + 1
|
||||
q.push(w)
|
||||
}
|
||||
|
||||
// If w is on a shortest path the update
|
||||
// sigma and add v to w's predecessor list.
|
||||
if dist[w] == dist[v]+1 {
|
||||
sigma[w] += sigma[v]
|
||||
pred[w] = append(pred[w], v)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// delta[v] is the ratio of the shortest paths between s and t that go
|
||||
// through v and the total number of shortest paths between s and t.
|
||||
// If we have delta then the betweenness centrality is simply the sum
|
||||
// of delta[w] for each w != s.
|
||||
delta := make([]float64, len(g.Nodes))
|
||||
|
||||
for !st.empty() {
|
||||
w := st.top()
|
||||
st.pop()
|
||||
|
||||
// pred[w] is the list of nodes that immediately precede w on a
|
||||
// shortest path from s.
|
||||
for _, v := range pred[w] {
|
||||
// Update delta using Brandes' equation.
|
||||
delta[v] += (float64(sigma[v]) / float64(sigma[w])) * (1.0 + delta[w])
|
||||
}
|
||||
|
||||
if w != s {
|
||||
// As noted above centrality is simply the sum
|
||||
// of delta[w] for each w != s.
|
||||
centrality[w] += delta[w]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Refresh recaculates and stores centrality values.
|
||||
func (bc *BetweennessCentrality) Refresh(graph ChannelGraph) error {
|
||||
cache, err := NewSimpleGraph(graph)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// TODO: parallelize updates to centrality.
|
||||
centrality := make([]float64, len(cache.Nodes))
|
||||
for node := range cache.Nodes {
|
||||
betweennessCentrality(cache, node, centrality)
|
||||
}
|
||||
|
||||
// Get min/max to be able to normalize
|
||||
// centrality values between 0 and 1.
|
||||
bc.min = 0
|
||||
bc.max = 0
|
||||
if len(centrality) > 0 {
|
||||
for i := 1; i < len(centrality); i++ {
|
||||
if centrality[i] < bc.min {
|
||||
bc.min = centrality[i]
|
||||
} else if centrality[i] > bc.max {
|
||||
bc.max = centrality[i]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Divide by two as this is an undirected graph.
|
||||
bc.min /= 2.0
|
||||
bc.max /= 2.0
|
||||
|
||||
bc.centrality = make(map[NodeID]float64)
|
||||
for u, value := range centrality {
|
||||
// Divide by two as this is an undirected graph.
|
||||
bc.centrality[cache.Nodes[u]] = value / 2.0
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// GetMetric returns the current centrality values for each node indexed
|
||||
// by node id.
|
||||
func (bc *BetweennessCentrality) GetMetric(normalize bool) map[NodeID]float64 {
|
||||
// Normalization factor.
|
||||
var z float64
|
||||
if (bc.max - bc.min) > 0 {
|
||||
z = 1.0 / (bc.max - bc.min)
|
||||
}
|
||||
|
||||
centrality := make(map[NodeID]float64)
|
||||
for k, v := range bc.centrality {
|
||||
if normalize {
|
||||
v = (v - bc.min) * z
|
||||
}
|
||||
centrality[k] = v
|
||||
}
|
||||
|
||||
return centrality
|
||||
}
|
156
autopilot/betweenness_centrality_test.go
Normal file
156
autopilot/betweenness_centrality_test.go
Normal file
@ -0,0 +1,156 @@
|
||||
package autopilot
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/btcsuite/btcd/btcec"
|
||||
"github.com/btcsuite/btcutil"
|
||||
)
|
||||
|
||||
// Tests that empty graph results in empty centrality result.
|
||||
func TestBetweennessCentralityEmptyGraph(t *testing.T) {
|
||||
centralityMetric := NewBetweennessCentralityMetric()
|
||||
|
||||
for _, chanGraph := range chanGraphs {
|
||||
graph, cleanup, err := chanGraph.genFunc()
|
||||
success := t.Run(chanGraph.name, func(t1 *testing.T) {
|
||||
if err != nil {
|
||||
t1.Fatalf("unable to create graph: %v", err)
|
||||
}
|
||||
if cleanup != nil {
|
||||
defer cleanup()
|
||||
}
|
||||
|
||||
if err := centralityMetric.Refresh(graph); err != nil {
|
||||
t.Fatalf("unexpected failure during metric refresh: %v", err)
|
||||
}
|
||||
|
||||
centrality := centralityMetric.GetMetric(false)
|
||||
if len(centrality) > 0 {
|
||||
t.Fatalf("expected empty metric, got: %v", len(centrality))
|
||||
}
|
||||
|
||||
centrality = centralityMetric.GetMetric(true)
|
||||
if len(centrality) > 0 {
|
||||
t.Fatalf("expected empty metric, got: %v", len(centrality))
|
||||
}
|
||||
|
||||
})
|
||||
if !success {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// testGraphDesc is a helper type to describe a test graph.
|
||||
type testGraphDesc struct {
|
||||
nodes int
|
||||
edges map[int][]int
|
||||
}
|
||||
|
||||
// buildTestGraph builds a test graph from a passed graph desriptor.
|
||||
func buildTestGraph(t *testing.T,
|
||||
graph testGraph, desc testGraphDesc) map[int]*btcec.PublicKey {
|
||||
|
||||
nodes := make(map[int]*btcec.PublicKey)
|
||||
|
||||
for i := 0; i < desc.nodes; i++ {
|
||||
key, err := graph.addRandNode()
|
||||
if err != nil {
|
||||
t.Fatalf("cannot create random node")
|
||||
}
|
||||
|
||||
nodes[i] = key
|
||||
}
|
||||
|
||||
const chanCapacity = btcutil.SatoshiPerBitcoin
|
||||
for u, neighbors := range desc.edges {
|
||||
for _, v := range neighbors {
|
||||
_, _, err := graph.addRandChannel(nodes[u], nodes[v], chanCapacity)
|
||||
if err != nil {
|
||||
t.Fatalf("unexpected error while adding random channel: %v", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return nodes
|
||||
}
|
||||
|
||||
// Test betweenness centrality calculating using an example graph.
|
||||
func TestBetweennessCentralityWithNonEmptyGraph(t *testing.T) {
|
||||
graphDesc := testGraphDesc{
|
||||
nodes: 9,
|
||||
edges: map[int][]int{
|
||||
0: {1, 2, 3},
|
||||
1: {2},
|
||||
2: {3},
|
||||
3: {4, 5},
|
||||
4: {5, 6, 7},
|
||||
5: {6, 7},
|
||||
6: {7, 8},
|
||||
},
|
||||
}
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
normalize bool
|
||||
centrality []float64
|
||||
}{
|
||||
{
|
||||
normalize: true,
|
||||
centrality: []float64{
|
||||
0.2, 0.0, 0.2, 1.0, 0.4, 0.4, 7.0 / 15.0, 0.0, 0.0,
|
||||
},
|
||||
},
|
||||
{
|
||||
normalize: false,
|
||||
centrality: []float64{
|
||||
3.0, 0.0, 3.0, 15.0, 6.0, 6.0, 7.0, 0.0, 0.0,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, chanGraph := range chanGraphs {
|
||||
graph, cleanup, err := chanGraph.genFunc()
|
||||
if err != nil {
|
||||
t.Fatalf("unable to create graph: %v", err)
|
||||
}
|
||||
if cleanup != nil {
|
||||
defer cleanup()
|
||||
}
|
||||
|
||||
success := t.Run(chanGraph.name, func(t1 *testing.T) {
|
||||
centralityMetric := NewBetweennessCentralityMetric()
|
||||
graphNodes := buildTestGraph(t1, graph, graphDesc)
|
||||
|
||||
if err := centralityMetric.Refresh(graph); err != nil {
|
||||
t1.Fatalf("error while calculating betweeness centrality")
|
||||
}
|
||||
for _, test := range tests {
|
||||
test := test
|
||||
centrality := centralityMetric.GetMetric(test.normalize)
|
||||
|
||||
if len(centrality) != graphDesc.nodes {
|
||||
t.Fatalf("expected %v values, got: %v",
|
||||
graphDesc.nodes, len(centrality))
|
||||
}
|
||||
|
||||
for node, nodeCentrality := range test.centrality {
|
||||
nodeID := NewNodeID(graphNodes[node])
|
||||
calculatedCentrality, ok := centrality[nodeID]
|
||||
if !ok {
|
||||
t1.Fatalf("no result for node: %x (%v)", nodeID, node)
|
||||
}
|
||||
|
||||
if nodeCentrality != calculatedCentrality {
|
||||
t1.Errorf("centrality for node: %v should be %v, got: %v",
|
||||
node, test.centrality[node], calculatedCentrality)
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
if !success {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
66
autopilot/simple_graph.go
Normal file
66
autopilot/simple_graph.go
Normal file
@ -0,0 +1,66 @@
|
||||
package autopilot
|
||||
|
||||
// SimpleGraph stores a simplifed adj graph of a channel graph to speed
|
||||
// up graph processing by eliminating all unnecessary hashing and map access.
|
||||
type SimpleGraph struct {
|
||||
// Nodes is a map from node index to NodeID.
|
||||
Nodes []NodeID
|
||||
|
||||
// Adj stores nodes and neighbors in an adjacency list.
|
||||
Adj [][]int
|
||||
}
|
||||
|
||||
// NewSimpleGraph creates a simplified graph from the current channel graph.
|
||||
// Returns an error if the channel graph iteration fails due to underlying
|
||||
// failure.
|
||||
func NewSimpleGraph(g ChannelGraph) (*SimpleGraph, error) {
|
||||
nodes := make(map[NodeID]int)
|
||||
adj := make(map[int][]int)
|
||||
nextIndex := 0
|
||||
|
||||
// getNodeIndex returns the integer index of the passed node.
|
||||
// The returned index is then used to create a simplifed adjacency list
|
||||
// where each node is identified by its index instead of its pubkey, and
|
||||
// also to create a mapping from node index to node pubkey.
|
||||
getNodeIndex := func(node Node) int {
|
||||
key := NodeID(node.PubKey())
|
||||
nodeIndex, ok := nodes[key]
|
||||
|
||||
if !ok {
|
||||
nodes[key] = nextIndex
|
||||
nodeIndex = nextIndex
|
||||
nextIndex++
|
||||
}
|
||||
|
||||
return nodeIndex
|
||||
}
|
||||
|
||||
// Iterate over each node and each channel and update the adj and the node
|
||||
// index.
|
||||
err := g.ForEachNode(func(node Node) error {
|
||||
u := getNodeIndex(node)
|
||||
|
||||
return node.ForEachChannel(func(edge ChannelEdge) error {
|
||||
v := getNodeIndex(edge.Peer)
|
||||
|
||||
adj[u] = append(adj[u], v)
|
||||
return nil
|
||||
})
|
||||
})
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
graph := &SimpleGraph{
|
||||
Nodes: make([]NodeID, len(nodes)),
|
||||
Adj: make([][]int, len(nodes)),
|
||||
}
|
||||
|
||||
// Fill the adj and the node index to node pubkey mapping.
|
||||
for nodeID, nodeIndex := range nodes {
|
||||
graph.Adj[nodeIndex] = adj[nodeIndex]
|
||||
graph.Nodes[nodeIndex] = nodeID
|
||||
}
|
||||
|
||||
return graph, nil
|
||||
}
|
Loading…
Reference in New Issue
Block a user