Merge pull request #1960 from joostjager/sweeper

sweep: create sweeper
This commit is contained in:
Olaoluwa Osuntokun 2018-12-18 18:26:35 -08:00 committed by GitHub
commit 2f17030e8c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
37 changed files with 3404 additions and 1175 deletions

2
.gitignore vendored

@ -28,6 +28,8 @@ _testmain.go
/lnd-debug /lnd-debug
/lncli /lncli
/lncli-debug /lncli-debug
/lnd-itest
/lncli-itest
# Integration test log files # Integration test log files
output*.log output*.log

@ -100,6 +100,11 @@ build:
$(GOBUILD) -tags="$(DEV_TAGS)" -o lnd-debug $(LDFLAGS) $(PKG) $(GOBUILD) -tags="$(DEV_TAGS)" -o lnd-debug $(LDFLAGS) $(PKG)
$(GOBUILD) -tags="$(DEV_TAGS)" -o lncli-debug $(LDFLAGS) $(PKG)/cmd/lncli $(GOBUILD) -tags="$(DEV_TAGS)" -o lncli-debug $(LDFLAGS) $(PKG)/cmd/lncli
build-itest:
@$(call print, "Building itest lnd and lncli.")
$(GOBUILD) -tags="$(ITEST_TAGS)" -o lnd-itest $(LDFLAGS) $(PKG)
$(GOBUILD) -tags="$(ITEST_TAGS)" -o lncli-itest $(LDFLAGS) $(PKG)/cmd/lncli
install: install:
@$(call print, "Installing lnd and lncli.") @$(call print, "Installing lnd and lncli.")
$(GOINSTALL) -tags="${tags}" $(LDFLAGS) $(PKG) $(GOINSTALL) -tags="${tags}" $(LDFLAGS) $(PKG)
@ -118,7 +123,7 @@ itest-only:
@$(call print, "Running integration tests.") @$(call print, "Running integration tests.")
$(ITEST) $(ITEST)
itest: btcd build itest-only itest: btcd build-itest itest-only
unit: btcd unit: btcd
@$(call print, "Running unit tests.") @$(call print, "Running unit tests.")
@ -181,6 +186,7 @@ rpc:
clean: clean:
@$(call print, "Cleaning source.$(NC)") @$(call print, "Cleaning source.$(NC)")
$(RM) ./lnd-debug ./lncli-debug $(RM) ./lnd-debug ./lncli-debug
$(RM) ./lnd-itest ./lncli-itest
$(RM) -r ./vendor .vendor-new $(RM) -r ./vendor .vendor-new

@ -757,6 +757,7 @@ type breachedOutput struct {
outpoint wire.OutPoint outpoint wire.OutPoint
witnessType lnwallet.WitnessType witnessType lnwallet.WitnessType
signDesc lnwallet.SignDescriptor signDesc lnwallet.SignDescriptor
confHeight uint32
secondLevelWitnessScript []byte secondLevelWitnessScript []byte
@ -768,7 +769,8 @@ type breachedOutput struct {
func makeBreachedOutput(outpoint *wire.OutPoint, func makeBreachedOutput(outpoint *wire.OutPoint,
witnessType lnwallet.WitnessType, witnessType lnwallet.WitnessType,
secondLevelScript []byte, secondLevelScript []byte,
signDescriptor *lnwallet.SignDescriptor) breachedOutput { signDescriptor *lnwallet.SignDescriptor,
confHeight uint32) breachedOutput {
amount := signDescriptor.Output.Value amount := signDescriptor.Output.Value
@ -778,6 +780,7 @@ func makeBreachedOutput(outpoint *wire.OutPoint,
secondLevelWitnessScript: secondLevelScript, secondLevelWitnessScript: secondLevelScript,
witnessType: witnessType, witnessType: witnessType,
signDesc: *signDescriptor, signDesc: *signDescriptor,
confHeight: confHeight,
} }
} }
@ -831,6 +834,12 @@ func (bo *breachedOutput) BlocksToMaturity() uint32 {
return 0 return 0
} }
// HeightHint returns the minimum height at which a confirmed spending tx can
// occur.
func (bo *breachedOutput) HeightHint() uint32 {
return bo.confHeight
}
// Add compile-time constraint ensuring breachedOutput implements the Input // Add compile-time constraint ensuring breachedOutput implements the Input
// interface. // interface.
var _ sweep.Input = (*breachedOutput)(nil) var _ sweep.Input = (*breachedOutput)(nil)
@ -878,7 +887,8 @@ func newRetributionInfo(chanPoint *wire.OutPoint,
// No second level script as this is a commitment // No second level script as this is a commitment
// output. // output.
nil, nil,
breachInfo.LocalOutputSignDesc) breachInfo.LocalOutputSignDesc,
breachInfo.BreachHeight)
breachedOutputs = append(breachedOutputs, localOutput) breachedOutputs = append(breachedOutputs, localOutput)
} }
@ -895,7 +905,8 @@ func newRetributionInfo(chanPoint *wire.OutPoint,
// No second level script as this is a commitment // No second level script as this is a commitment
// output. // output.
nil, nil,
breachInfo.RemoteOutputSignDesc) breachInfo.RemoteOutputSignDesc,
breachInfo.BreachHeight)
breachedOutputs = append(breachedOutputs, remoteOutput) breachedOutputs = append(breachedOutputs, remoteOutput)
} }
@ -919,7 +930,8 @@ func newRetributionInfo(chanPoint *wire.OutPoint,
&breachInfo.HtlcRetributions[i].OutPoint, &breachInfo.HtlcRetributions[i].OutPoint,
htlcWitnessType, htlcWitnessType,
breachInfo.HtlcRetributions[i].SecondLevelWitnessScript, breachInfo.HtlcRetributions[i].SecondLevelWitnessScript,
&breachInfo.HtlcRetributions[i].SignDesc) &breachInfo.HtlcRetributions[i].SignDesc,
breachInfo.BreachHeight)
breachedOutputs = append(breachedOutputs, htlcOutput) breachedOutputs = append(breachedOutputs, htlcOutput)
} }

@ -1336,7 +1336,7 @@ func createTestArbiter(t *testing.T, contractBreaches chan *ContractBreachEvent,
ba := newBreachArbiter(&BreachConfig{ ba := newBreachArbiter(&BreachConfig{
CloseLink: func(_ *wire.OutPoint, _ htlcswitch.ChannelCloseType) {}, CloseLink: func(_ *wire.OutPoint, _ htlcswitch.ChannelCloseType) {},
DB: db, DB: db,
Estimator: &lnwallet.StaticFeeEstimator{FeePerKW: 12500}, Estimator: lnwallet.NewStaticFeeEstimator(12500, 0),
GenSweepScript: func() ([]byte, error) { return nil, nil }, GenSweepScript: func() ([]byte, error) { return nil, nil },
ContractBreaches: contractBreaches, ContractBreaches: contractBreaches,
Signer: signer, Signer: signer,
@ -1476,7 +1476,7 @@ func createInitChannels(revocationWindow int) (*lnwallet.LightningChannel, *lnwa
return nil, nil, nil, err return nil, nil, nil, err
} }
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 12500} estimator := lnwallet.NewStaticFeeEstimator(12500, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
return nil, nil, nil, err return nil, nil, nil, err

@ -150,9 +150,9 @@ func newChainControlFromConfig(cfg *config, chanDB *channeldb.DB,
FeeRate: cfg.Bitcoin.FeeRate, FeeRate: cfg.Bitcoin.FeeRate,
TimeLockDelta: cfg.Bitcoin.TimeLockDelta, TimeLockDelta: cfg.Bitcoin.TimeLockDelta,
} }
cc.feeEstimator = lnwallet.StaticFeeEstimator{ cc.feeEstimator = lnwallet.NewStaticFeeEstimator(
FeePerKW: defaultBitcoinStaticFeePerKW, defaultBitcoinStaticFeePerKW, 0,
} )
case litecoinChain: case litecoinChain:
cc.routingPolicy = htlcswitch.ForwardingPolicy{ cc.routingPolicy = htlcswitch.ForwardingPolicy{
MinHTLC: cfg.Litecoin.MinHTLC, MinHTLC: cfg.Litecoin.MinHTLC,
@ -160,9 +160,9 @@ func newChainControlFromConfig(cfg *config, chanDB *channeldb.DB,
FeeRate: cfg.Litecoin.FeeRate, FeeRate: cfg.Litecoin.FeeRate,
TimeLockDelta: cfg.Litecoin.TimeLockDelta, TimeLockDelta: cfg.Litecoin.TimeLockDelta,
} }
cc.feeEstimator = lnwallet.StaticFeeEstimator{ cc.feeEstimator = lnwallet.NewStaticFeeEstimator(
FeePerKW: defaultLitecoinStaticFeePerKW, defaultLitecoinStaticFeePerKW, 0,
} )
default: default:
return nil, nil, fmt.Errorf("Default routing policy for "+ return nil, nil, fmt.Errorf("Default routing policy for "+
"chain %v is unknown", registeredChains.PrimaryChain()) "chain %v is unknown", registeredChains.PrimaryChain())

@ -462,6 +462,7 @@ func (h *htlcSuccessResolver) Resolve() (ContractResolver, error) {
&h.htlcResolution.ClaimOutpoint, &h.htlcResolution.ClaimOutpoint,
&h.htlcResolution.SweepSignDesc, &h.htlcResolution.SweepSignDesc,
h.htlcResolution.Preimage[:], h.htlcResolution.Preimage[:],
h.broadcastHeight,
) )
// With the input created, we can now generate the full // With the input created, we can now generate the full
@ -471,6 +472,8 @@ func (h *htlcSuccessResolver) Resolve() (ContractResolver, error) {
// TODO: Set tx lock time to current block height // TODO: Set tx lock time to current block height
// instead of zero. Will be taken care of once sweeper // instead of zero. Will be taken care of once sweeper
// implementation is complete. // implementation is complete.
//
// TODO: Use time-based sweeper and result chan.
var err error var err error
h.sweepTx, err = h.Sweeper.CreateSweepTx( h.sweepTx, err = h.Sweeper.CreateSweepTx(
[]sweep.Input{&input}, sweepConfTarget, 0, []sweep.Input{&input}, sweepConfTarget, 0,
@ -1254,6 +1257,7 @@ func (c *commitSweepResolver) Resolve() (ContractResolver, error) {
&c.commitResolution.SelfOutPoint, &c.commitResolution.SelfOutPoint,
lnwallet.CommitmentNoDelay, lnwallet.CommitmentNoDelay,
&c.commitResolution.SelfOutputSignDesc, &c.commitResolution.SelfOutputSignDesc,
c.broadcastHeight,
) )
// With out input constructed, we'll now request that the // With out input constructed, we'll now request that the
@ -1263,6 +1267,8 @@ func (c *commitSweepResolver) Resolve() (ContractResolver, error) {
// TODO: Set tx lock time to current block height instead of // TODO: Set tx lock time to current block height instead of
// zero. Will be taken care of once sweeper implementation is // zero. Will be taken care of once sweeper implementation is
// complete. // complete.
//
// TODO: Use time-based sweeper and result chan.
c.sweepTx, err = c.Sweeper.CreateSweepTx( c.sweepTx, err = c.Sweeper.CreateSweepTx(
[]sweep.Input{&input}, sweepConfTarget, 0, []sweep.Input{&input}, sweepConfTarget, 0,
) )

@ -231,7 +231,7 @@ func createTestFundingManager(t *testing.T, privKey *btcec.PrivateKey,
addr *lnwire.NetAddress, tempTestDir string) (*testNode, error) { addr *lnwire.NetAddress, tempTestDir string) (*testNode, error) {
netParams := activeNetParams.Params netParams := activeNetParams.Params
estimator := lnwallet.StaticFeeEstimator{FeePerKW: 62500} estimator := lnwallet.NewStaticFeeEstimator(62500, 0)
chainNotifier := &mockNotifier{ chainNotifier := &mockNotifier{
oneConfChannel: make(chan *chainntnfs.TxConfirmation, 1), oneConfChannel: make(chan *chainntnfs.TxConfirmation, 1),
@ -250,7 +250,9 @@ func createTestFundingManager(t *testing.T, privKey *btcec.PrivateKey,
signer := &mockSigner{ signer := &mockSigner{
key: alicePrivKey, key: alicePrivKey,
} }
bio := &mockChainIO{} bio := &mockChainIO{
bestHeight: fundingBroadcastHeight,
}
dbDir := filepath.Join(tempTestDir, "cdb") dbDir := filepath.Join(tempTestDir, "cdb")
cdb, err := channeldb.Open(dbDir) cdb, err := channeldb.Open(dbDir)

@ -1795,7 +1795,7 @@ func TestChannelLinkBandwidthConsistency(t *testing.T) {
coreLink.cfg.HodlMask = hodl.MaskFromFlags(hodl.ExitSettle) coreLink.cfg.HodlMask = hodl.MaskFromFlags(hodl.ExitSettle)
coreLink.cfg.DebugHTLC = true coreLink.cfg.DebugHTLC = true
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000} estimator := lnwallet.NewStaticFeeEstimator(6000, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
t.Fatalf("unable to query fee estimator: %v", err) t.Fatalf("unable to query fee estimator: %v", err)
@ -2206,7 +2206,7 @@ func TestChannelLinkBandwidthConsistencyOverflow(t *testing.T) {
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
) )
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000} estimator := lnwallet.NewStaticFeeEstimator(6000, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
t.Fatalf("unable to query fee estimator: %v", err) t.Fatalf("unable to query fee estimator: %v", err)
@ -2453,7 +2453,7 @@ func TestChannelLinkTrimCircuitsPending(t *testing.T) {
// Compute the static fees that will be used to determine the // Compute the static fees that will be used to determine the
// correctness of Alice's bandwidth when forwarding HTLCs. // correctness of Alice's bandwidth when forwarding HTLCs.
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000} estimator := lnwallet.NewStaticFeeEstimator(6000, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
t.Fatalf("unable to query fee estimator: %v", err) t.Fatalf("unable to query fee estimator: %v", err)
@ -2731,7 +2731,7 @@ func TestChannelLinkTrimCircuitsNoCommit(t *testing.T) {
// Compute the static fees that will be used to determine the // Compute the static fees that will be used to determine the
// correctness of Alice's bandwidth when forwarding HTLCs. // correctness of Alice's bandwidth when forwarding HTLCs.
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000} estimator := lnwallet.NewStaticFeeEstimator(6000, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
t.Fatalf("unable to query fee estimator: %v", err) t.Fatalf("unable to query fee estimator: %v", err)
@ -2989,7 +2989,7 @@ func TestChannelLinkBandwidthChanReserve(t *testing.T) {
aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs aliceMsgs = coreLink.cfg.Peer.(*mockPeer).sentMsgs
) )
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000} estimator := lnwallet.NewStaticFeeEstimator(6000, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
t.Fatalf("unable to query fee estimator: %v", err) t.Fatalf("unable to query fee estimator: %v", err)

@ -75,6 +75,10 @@ func (m *mockFeeEstimator) EstimateFeePerKW(
} }
} }
func (m *mockFeeEstimator) RelayFeePerKW() lnwallet.SatPerKWeight {
return 1e3
}
func (m *mockFeeEstimator) Start() error { func (m *mockFeeEstimator) Start() error {
return nil return nil
} }

@ -273,7 +273,7 @@ func createTestChannel(alicePrivKey, bobPrivKey []byte,
return nil, nil, nil, nil, err return nil, nil, nil, nil, err
} }
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 6000} estimator := lnwallet.NewStaticFeeEstimator(6000, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
return nil, nil, nil, nil, err return nil, nil, nil, nil, err

@ -281,7 +281,7 @@ func (hn *HarnessNode) start(lndError chan<- error) error {
args := hn.cfg.genArgs() args := hn.cfg.genArgs()
args = append(args, fmt.Sprintf("--profile=%d", 9000+hn.NodeID)) args = append(args, fmt.Sprintf("--profile=%d", 9000+hn.NodeID))
hn.cmd = exec.Command("./lnd-debug", args...) hn.cmd = exec.Command("./lnd-itest", args...)
// Redirect stderr output to buffer // Redirect stderr output to buffer
var errb bytes.Buffer var errb bytes.Buffer

@ -1131,7 +1131,7 @@ func TestHTLCSigNumber(t *testing.T) {
} }
// Calculate two values that will be below and above Bob's dust limit. // Calculate two values that will be below and above Bob's dust limit.
estimator := &StaticFeeEstimator{FeePerKW: 6000} estimator := NewStaticFeeEstimator(6000, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
t.Fatalf("unable to get fee: %v", err) t.Fatalf("unable to get fee: %v", err)

@ -59,22 +59,50 @@ type FeeEstimator interface {
// Stop stops any spawned goroutines and cleans up the resources used // Stop stops any spawned goroutines and cleans up the resources used
// by the fee estimator. // by the fee estimator.
Stop() error Stop() error
// RelayFeePerKW returns the minimum fee rate required for transactions
// to be relayed. This is also the basis for calculation of the dust
// limit.
RelayFeePerKW() SatPerKWeight
} }
// StaticFeeEstimator will return a static value for all fee calculation // StaticFeeEstimator will return a static value for all fee calculation
// requests. It is designed to be replaced by a proper fee calculation // requests. It is designed to be replaced by a proper fee calculation
// implementation. // implementation. The fees are not accessible directly, because changing them
// would not be thread safe.
type StaticFeeEstimator struct { type StaticFeeEstimator struct {
// FeePerKW is the static fee rate in satoshis-per-vbyte that will be // feePerKW is the static fee rate in satoshis-per-vbyte that will be
// returned by this fee estimator. // returned by this fee estimator.
FeePerKW SatPerKWeight feePerKW SatPerKWeight
// relayFee is the minimum fee rate required for transactions to be
// relayed.
relayFee SatPerKWeight
}
// NewStaticFeeEstimator returns a new static fee estimator instance.
func NewStaticFeeEstimator(feePerKW,
relayFee SatPerKWeight) *StaticFeeEstimator {
return &StaticFeeEstimator{
feePerKW: feePerKW,
relayFee: relayFee,
}
} }
// EstimateFeePerKW will return a static value for fee calculations. // EstimateFeePerKW will return a static value for fee calculations.
// //
// NOTE: This method is part of the FeeEstimator interface. // NOTE: This method is part of the FeeEstimator interface.
func (e StaticFeeEstimator) EstimateFeePerKW(numBlocks uint32) (SatPerKWeight, error) { func (e StaticFeeEstimator) EstimateFeePerKW(numBlocks uint32) (SatPerKWeight, error) {
return e.FeePerKW, nil return e.feePerKW, nil
}
// RelayFeePerKW returns the minimum fee rate required for transactions to be
// relayed.
//
// NOTE: This method is part of the FeeEstimator interface.
func (e StaticFeeEstimator) RelayFeePerKW() SatPerKWeight {
return e.relayFee
} }
// Start signals the FeeEstimator to start any processes or goroutines // Start signals the FeeEstimator to start any processes or goroutines
@ -206,6 +234,14 @@ func (b *BtcdFeeEstimator) EstimateFeePerKW(numBlocks uint32) (SatPerKWeight, er
return feeEstimate, nil return feeEstimate, nil
} }
// RelayFeePerKW returns the minimum fee rate required for transactions to be
// relayed.
//
// NOTE: This method is part of the FeeEstimator interface.
func (b *BtcdFeeEstimator) RelayFeePerKW() SatPerKWeight {
return b.minFeePerKW
}
// fetchEstimate returns a fee estimate for a transaction to be confirmed in // fetchEstimate returns a fee estimate for a transaction to be confirmed in
// confTarget blocks. The estimate is returned in sat/kw. // confTarget blocks. The estimate is returned in sat/kw.
func (b *BtcdFeeEstimator) fetchEstimate(confTarget uint32) (SatPerKWeight, error) { func (b *BtcdFeeEstimator) fetchEstimate(confTarget uint32) (SatPerKWeight, error) {
@ -359,6 +395,14 @@ func (b *BitcoindFeeEstimator) EstimateFeePerKW(numBlocks uint32) (SatPerKWeight
return feeEstimate, nil return feeEstimate, nil
} }
// RelayFeePerKW returns the minimum fee rate required for transactions to be
// relayed.
//
// NOTE: This method is part of the FeeEstimator interface.
func (b *BitcoindFeeEstimator) RelayFeePerKW() SatPerKWeight {
return b.minFeePerKW
}
// fetchEstimate returns a fee estimate for a transaction to be confirmed in // fetchEstimate returns a fee estimate for a transaction to be confirmed in
// confTarget blocks. The estimate is returned in sat/kw. // confTarget blocks. The estimate is returned in sat/kw.
func (b *BitcoindFeeEstimator) fetchEstimate(confTarget uint32) (SatPerKWeight, error) { func (b *BitcoindFeeEstimator) fetchEstimate(confTarget uint32) (SatPerKWeight, error) {

@ -74,9 +74,7 @@ func TestStaticFeeEstimator(t *testing.T) {
const feePerKw = lnwallet.FeePerKwFloor const feePerKw = lnwallet.FeePerKwFloor
feeEstimator := &lnwallet.StaticFeeEstimator{ feeEstimator := lnwallet.NewStaticFeeEstimator(feePerKw, 0)
FeePerKW: feePerKw,
}
if err := feeEstimator.Start(); err != nil { if err := feeEstimator.Start(); err != nil {
t.Fatalf("unable to start fee estimator: %v", err) t.Fatalf("unable to start fee estimator: %v", err)
} }

@ -368,7 +368,7 @@ func createTestWallet(tempTestDir string, miningNode *rpctest.Harness,
WalletController: wc, WalletController: wc,
Signer: signer, Signer: signer,
ChainIO: bio, ChainIO: bio,
FeeEstimator: lnwallet.StaticFeeEstimator{FeePerKW: 2500}, FeeEstimator: lnwallet.NewStaticFeeEstimator(2500, 0),
DefaultConstraints: channeldb.ChannelConstraints{ DefaultConstraints: channeldb.ChannelConstraints{
DustLimit: 500, DustLimit: 500,
MaxPendingAmount: lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin) * 100, MaxPendingAmount: lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin) * 100,
@ -2440,7 +2440,7 @@ func runTests(t *testing.T, walletDriver *lnwallet.WalletDriver,
} }
case "neutrino": case "neutrino":
feeEstimator = lnwallet.StaticFeeEstimator{FeePerKW: 62500} feeEstimator = lnwallet.NewStaticFeeEstimator(62500, 0)
// Set some package-level variable to speed up // Set some package-level variable to speed up
// operation for tests. // operation for tests.

@ -229,7 +229,7 @@ func CreateTestChannels() (*LightningChannel, *LightningChannel, func(), error)
return nil, nil, nil, err return nil, nil, nil, err
} }
estimator := &StaticFeeEstimator{FeePerKW: 6000} estimator := NewStaticFeeEstimator(6000, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
return nil, nil, nil, err return nil, nil, nil, err

@ -71,6 +71,44 @@ const (
HtlcSecondLevelRevoke WitnessType = 9 HtlcSecondLevelRevoke WitnessType = 9
) )
// Stirng returns a human readable version of the target WitnessType.
func (wt WitnessType) String() string {
switch wt {
case CommitmentTimeLock:
return "CommitmentTimeLock"
case CommitmentNoDelay:
return "CommitmentNoDelay"
case CommitmentRevoke:
return "CommitmentRevoke"
case HtlcOfferedRevoke:
return "HtlcOfferedRevoke"
case HtlcAcceptedRevoke:
return "HtlcAcceptedRevoke"
case HtlcOfferedTimeoutSecondLevel:
return "HtlcOfferedTimeoutSecondLevel"
case HtlcAcceptedSuccessSecondLevel:
return "HtlcAcceptedSuccessSecondLevel"
case HtlcOfferedRemoteTimeout:
return "HtlcOfferedRemoteTimeout"
case HtlcAcceptedRemoteSuccess:
return "HtlcAcceptedRemoteSuccess"
case HtlcSecondLevelRevoke:
return "HtlcSecondLevelRevoke"
default:
return fmt.Sprintf("Unknown WitnessType: %v", uint32(wt))
}
}
// WitnessGenerator represents a function which is able to generate the final // WitnessGenerator represents a function which is able to generate the final
// witness for a particular public key script. This function acts as an // witness for a particular public key script. This function acts as an
// abstraction layer, hiding the details of the underlying script. // abstraction layer, hiding the details of the underlying script.

@ -168,10 +168,12 @@ func (m *mockSpendNotifier) Spend(outpoint *wire.OutPoint, height int32,
} }
} }
type mockChainIO struct{} type mockChainIO struct {
bestHeight int32
}
func (*mockChainIO) GetBestBlock() (*chainhash.Hash, int32, error) { func (m *mockChainIO) GetBestBlock() (*chainhash.Hash, int32, error) {
return activeNetParams.GenesisHash, fundingBroadcastHeight, nil return activeNetParams.GenesisHash, m.bestHeight, nil
} }
func (*mockChainIO) GetUtxo(op *wire.OutPoint, _ []byte, func (*mockChainIO) GetUtxo(op *wire.OutPoint, _ []byte,

@ -23,21 +23,6 @@ import (
// //
// utxn<chain-hash>/ // utxn<chain-hash>/
// | // |
// | LAST PURGED + FINALIZED HEIGHTS
// |
// | Each nursery store tracks a "last graduated height", which records the
// | most recent block height for which the nursery store has successfully
// | graduated all outputs. It also tracks a "last finalized height", which
// | records the last block height that the nursery attempted to graduate
// | If a finalized height has kindergarten outputs, the sweep txn for these
// | outputs will be stored in the height bucket. This ensure that the same
// | txid will be used after restarts. Otherwise, the nursery will be unable
// | to recover the txid of kindergarten sweep transaction it has already
// | broadcast.
// |
// ├── last-finalized-height-key: <last-finalized-height>
// ├── last-graduated-height-key: <last-graduated-height>
// |
// | CHANNEL INDEX // | CHANNEL INDEX
// | // |
// | The channel index contains a directory for each channel that has a // | The channel index contains a directory for each channel that has a
@ -72,10 +57,7 @@ import (
// | relative file path: // | relative file path:
// | e.g. <chan-point-3>/<prefix><outpoint-2>/ // | e.g. <chan-point-3>/<prefix><outpoint-2>/
// | that can be queried in the channel index to retrieve the serialized // | that can be queried in the channel index to retrieve the serialized
// | output. If a height bucket is less than or equal to the current last // | output.
// | finalized height and has a non-zero number of kindergarten outputs, a
// | height bucket will also contain the finalized kindergarten sweep txn
// | under the "finalized-kndr-txn" key.
// | // |
// └── height-index-key/ // └── height-index-key/
//    ├── <height-1>/ <- HEIGHT BUCKET //    ├── <height-1>/ <- HEIGHT BUCKET
@ -84,12 +66,15 @@ import (
// | |    └── <state-prefix><outpoint-5>: "" // | |    └── <state-prefix><outpoint-5>: ""
// |   ├── <chan-point-2>/ // |   ├── <chan-point-2>/
// | |    └── <state-prefix><outpoint-3>: "" // | |    └── <state-prefix><outpoint-3>: ""
//    | └── finalized-kndr-txn: "" | <kndr-sweep-tnx>
//    └── <height-2>/ //    └── <height-2>/
//    └── <chan-point-1>/ //    └── <chan-point-1>/
//    └── <state-prefix><outpoint-1>: "" //    └── <state-prefix><outpoint-1>: ""
//    └── <state-prefix><outpoint-2>: "" //    └── <state-prefix><outpoint-2>: ""
// TODO(joostjager): Add database migration to clean up now unused last
// graduated height and finalized txes. This also prevents people downgrading
// and surprising the downgraded nursery with missing data.
// NurseryStore abstracts the persistent storage layer for the utxo nursery. // NurseryStore abstracts the persistent storage layer for the utxo nursery.
// Concretely, it stores commitment and htlc outputs until any time-bounded // Concretely, it stores commitment and htlc outputs until any time-bounded
// constraints have fully matured. The store exposes methods for enumerating its // constraints have fully matured. The store exposes methods for enumerating its
@ -110,47 +95,30 @@ type NurseryStore interface {
CribToKinder(*babyOutput) error CribToKinder(*babyOutput) error
// PreschoolToKinder atomically moves a kidOutput from the preschool // PreschoolToKinder atomically moves a kidOutput from the preschool
// bucket to the kindergarten bucket. This transition should be // bucket to the kindergarten bucket. This transition should be executed
// executed after receiving confirmation of the preschool output. // after receiving confirmation of the preschool output. Incoming HTLC's
// Incoming HTLC's we need to go to the second-layer to claim, and also // we need to go to the second-layer to claim, and also our commitment
// our commitment outputs fall into this class. // outputs fall into this class.
PreschoolToKinder(*kidOutput) error //
// An additional parameter specifies the last graduated height. This is
// used in case of late registration. It schedules the output for sweep
// at the next epoch even though it has already expired earlier.
PreschoolToKinder(kid *kidOutput, lastGradHeight uint32) error
// GraduateKinder atomically moves the kindergarten class at the // GraduateKinder atomically moves an output at the provided height into
// provided height into the graduated status. This involves removing the // the graduated status. This involves removing the kindergarten entries
// kindergarten entries from both the height and channel indexes, and // from both the height and channel indexes. The height bucket will be
// cleaning up the finalized kindergarten sweep txn. The height bucket // opportunistically pruned from the height index as outputs are
// will be opportunistically pruned from the height index as outputs are
// removed. // removed.
GraduateKinder(height uint32) error GraduateKinder(height uint32, output *kidOutput) error
// FetchPreschools returns a list of all outputs currently stored in // FetchPreschools returns a list of all outputs currently stored in
// the preschool bucket. // the preschool bucket.
FetchPreschools() ([]kidOutput, error) FetchPreschools() ([]kidOutput, error)
// FetchClass returns a list of kindergarten and crib outputs whose // FetchClass returns a list of kindergarten and crib outputs whose
// timelocks expire at the given height. If the kindergarten class at // timelocks expire at the given height.
// this height hash been finalized previously, via FinalizeKinder, it FetchClass(height uint32) ([]kidOutput, []babyOutput, error)
// will also returns the finalized kindergarten sweep txn.
FetchClass(height uint32) (*wire.MsgTx, []kidOutput, []babyOutput, error)
// FinalizeKinder accepts a block height and the kindergarten sweep txn
// computed for this height. Upon startup, we will rebroadcast any
// finalized kindergarten txns instead of signing a new txn, as this
// result in a different txid from a preceding broadcast.
FinalizeKinder(height uint32, tx *wire.MsgTx) error
// LastFinalizedHeight returns the last block height for which the
// nursery store finalized a kindergarten class.
LastFinalizedHeight() (uint32, error)
// GraduateHeight records the provided height as the last height for
// which the nursery store successfully graduated all outputs.
GraduateHeight(height uint32) error
// LastGraduatedHeight returns the last block height for which the
// nursery store successfully graduated all outputs.
LastGraduatedHeight() (uint32, error)
// HeightsBelowOrEqual returns the lowest non-empty heights in the // HeightsBelowOrEqual returns the lowest non-empty heights in the
// height index, that exist at or below the provided upper bound. // height index, that exist at or below the provided upper bound.
@ -181,14 +149,6 @@ var (
// the root-level, chain-segmented bucket for each nursery store. // the root-level, chain-segmented bucket for each nursery store.
utxnChainPrefix = []byte("utxn") utxnChainPrefix = []byte("utxn")
// lastFinalizedHeightKey is a static key used to locate nursery store's
// last finalized height.
lastFinalizedHeightKey = []byte("last-finalized-height")
// lastGraduatedHeightKey is a static key used to retrieve the height of
// the last bucket that successfully graduated all outputs.
lastGraduatedHeightKey = []byte("last-graduated-height")
// channelIndexKey is a static key used to lookup the bucket containing // channelIndexKey is a static key used to lookup the bucket containing
// all of the nursery's active channels. // all of the nursery's active channels.
channelIndexKey = []byte("channel-index") channelIndexKey = []byte("channel-index")
@ -197,10 +157,6 @@ var (
// containing all heights for which the nursery will need to take // containing all heights for which the nursery will need to take
// action. // action.
heightIndexKey = []byte("height-index") heightIndexKey = []byte("height-index")
// finalizedKndrTxnKey is a static key that can be used to locate a
// finalized kindergarten sweep txn.
finalizedKndrTxnKey = []byte("finalized-kndr-txn")
) )
// Defines the state prefixes that will be used to persistently track an // Defines the state prefixes that will be used to persistently track an
@ -415,7 +371,9 @@ func (ns *nurseryStore) CribToKinder(bby *babyOutput) error {
// PreschoolToKinder atomically moves a kidOutput from the preschool bucket to // PreschoolToKinder atomically moves a kidOutput from the preschool bucket to
// the kindergarten bucket. This transition should be executed after receiving // the kindergarten bucket. This transition should be executed after receiving
// confirmation of the preschool output's commitment transaction. // confirmation of the preschool output's commitment transaction.
func (ns *nurseryStore) PreschoolToKinder(kid *kidOutput) error { func (ns *nurseryStore) PreschoolToKinder(kid *kidOutput,
lastGradHeight uint32) error {
return ns.db.Update(func(tx *bbolt.Tx) error { return ns.db.Update(func(tx *bbolt.Tx) error {
// Create or retrieve the channel bucket corresponding to the // Create or retrieve the channel bucket corresponding to the
// kid output's origin channel point. // kid output's origin channel point.
@ -478,13 +436,6 @@ func (ns *nurseryStore) PreschoolToKinder(kid *kidOutput) error {
maturityHeight = kid.ConfHeight() + kid.BlocksToMaturity() maturityHeight = kid.ConfHeight() + kid.BlocksToMaturity()
} }
// In the case of a Late Registration, we've already graduated
// the class that this kid is destined for. So we'll bump its
// height by one to ensure we don't forget to graduate it.
lastGradHeight, err := ns.getLastGraduatedHeight(tx)
if err != nil {
return err
}
if maturityHeight <= lastGradHeight { if maturityHeight <= lastGradHeight {
utxnLog.Debugf("Late Registration for kid output=%v "+ utxnLog.Debugf("Late Registration for kid output=%v "+
"detected: class_height=%v, "+ "detected: class_height=%v, "+
@ -515,41 +466,22 @@ func (ns *nurseryStore) PreschoolToKinder(kid *kidOutput) error {
}) })
} }
// GraduateKinder atomically moves the kindergarten class at the provided height // GraduateKinder atomically moves an output at the provided height into the
// into the graduated status. This involves removing the kindergarten entries // graduated status. This involves removing the kindergarten entries from both
// from both the height and channel indexes, and cleaning up the finalized // the height and channel indexes. The height bucket will be opportunistically
// kindergarten sweep txn. The height bucket will be opportunistically pruned // pruned from the height index as outputs are removed.
// from the height index as outputs are removed. func (ns *nurseryStore) GraduateKinder(height uint32, kid *kidOutput) error {
func (ns *nurseryStore) GraduateKinder(height uint32) error {
return ns.db.Update(func(tx *bbolt.Tx) error { return ns.db.Update(func(tx *bbolt.Tx) error {
// Since all kindergarten outputs at a particular height are
// swept in a single txn, we can now safely delete the finalized
// txn, since it has already been broadcast and confirmed.
hghtBucket := ns.getHeightBucket(tx, height) hghtBucket := ns.getHeightBucket(tx, height)
if hghtBucket == nil { if hghtBucket == nil {
// Nothing to delete, bucket has already been removed. // Nothing to delete, bucket has already been removed.
return nil return nil
} }
// Remove the finalized kindergarten txn, we do this before // For the kindergarten output, delete its entry from the
// removing the outputs so that the extra entry doesn't prevent
// the height bucket from being opportunistically pruned below.
if err := hghtBucket.Delete(finalizedKndrTxnKey); err != nil {
return err
}
// For each kindergarten found output, delete its entry from the
// height and channel index, and create a new grad output in the // height and channel index, and create a new grad output in the
// channel index. // channel index.
return ns.forEachHeightPrefix(tx, kndrPrefix, height,
func(v []byte) error {
var kid kidOutput
err := kid.Decode(bytes.NewReader(v))
if err != nil {
return err
}
outpoint := kid.OutPoint() outpoint := kid.OutPoint()
chanPoint := kid.OriginChanPoint() chanPoint := kid.OriginChanPoint()
@ -594,29 +526,6 @@ func (ns *nurseryStore) GraduateKinder(height uint32) error {
// using graduate-prefixed key. // using graduate-prefixed key.
return chanBucket.Put(pfxOutputKey, return chanBucket.Put(pfxOutputKey,
gradBuffer.Bytes()) gradBuffer.Bytes())
},
)
})
}
// FinalizeKinder accepts a block height and a finalized kindergarten sweep
// transaction, persisting the transaction at the appropriate height bucket. The
// nursery store's last finalized height is also updated with the provided
// height.
func (ns *nurseryStore) FinalizeKinder(height uint32,
finalTx *wire.MsgTx) error {
return ns.db.Update(func(tx *bbolt.Tx) error {
return ns.finalizeKinder(tx, height, finalTx)
})
}
// GraduateHeight persists the provided height as the nursery store's last
// graduated height.
func (ns *nurseryStore) GraduateHeight(height uint32) error {
return ns.db.Update(func(tx *bbolt.Tx) error {
return ns.putLastGraduatedHeight(tx, height)
}) })
} }
@ -625,23 +534,15 @@ func (ns *nurseryStore) GraduateHeight(height uint32) error {
// FetchClass returns a list of the kindergarten and crib outputs whose timeouts // FetchClass returns a list of the kindergarten and crib outputs whose timeouts
// are expiring // are expiring
func (ns *nurseryStore) FetchClass( func (ns *nurseryStore) FetchClass(
height uint32) (*wire.MsgTx, []kidOutput, []babyOutput, error) { height uint32) ([]kidOutput, []babyOutput, error) {
// Construct list of all crib and kindergarten outputs that need to be // Construct list of all crib and kindergarten outputs that need to be
// processed at the provided block height. // processed at the provided block height.
var finalTx *wire.MsgTx
var kids []kidOutput var kids []kidOutput
var babies []babyOutput var babies []babyOutput
if err := ns.db.View(func(tx *bbolt.Tx) error { if err := ns.db.View(func(tx *bbolt.Tx) error {
var err error
finalTx, err = ns.getFinalizedTxn(tx, height)
if err != nil {
return err
}
// Append each crib output to our list of babyOutputs. // Append each crib output to our list of babyOutputs.
if err = ns.forEachHeightPrefix(tx, cribPrefix, height, if err := ns.forEachHeightPrefix(tx, cribPrefix, height,
func(buf []byte) error { func(buf []byte) error {
// We will attempt to deserialize all outputs // We will attempt to deserialize all outputs
@ -683,10 +584,10 @@ func (ns *nurseryStore) FetchClass(
}) })
}); err != nil { }); err != nil {
return nil, nil, nil, err return nil, nil, err
} }
return finalTx, kids, babies, nil return kids, babies, nil
} }
// FetchPreschools returns a list of all outputs currently stored in the // FetchPreschools returns a list of all outputs currently stored in the
@ -938,32 +839,6 @@ func (ns *nurseryStore) RemoveChannel(chanPoint *wire.OutPoint) error {
}) })
} }
// LastFinalizedHeight returns the last block height for which the nursery
// store has finalized a kindergarten class.
func (ns *nurseryStore) LastFinalizedHeight() (uint32, error) {
var lastFinalizedHeight uint32
err := ns.db.View(func(tx *bbolt.Tx) error {
var err error
lastFinalizedHeight, err = ns.getLastFinalizedHeight(tx)
return err
})
return lastFinalizedHeight, err
}
// LastGraduatedHeight returns the last block height for which the nursery
// store has successfully graduated all outputs.
func (ns *nurseryStore) LastGraduatedHeight() (uint32, error) {
var lastGraduatedHeight uint32
err := ns.db.View(func(tx *bbolt.Tx) error {
var err error
lastGraduatedHeight, err = ns.getLastGraduatedHeight(tx)
return err
})
return lastGraduatedHeight, err
}
// Helper Methods // Helper Methods
// enterCrib accepts a new htlc output that the nursery will incubate through // enterCrib accepts a new htlc output that the nursery will incubate through
@ -994,6 +869,8 @@ func (ns *nurseryStore) enterCrib(tx *bbolt.Tx, baby *babyOutput) error {
// Next, retrieve or create the height-channel bucket located in the // Next, retrieve or create the height-channel bucket located in the
// height bucket corresponding to the baby output's CLTV expiry height. // height bucket corresponding to the baby output's CLTV expiry height.
// TODO: Handle late registration.
hghtChanBucket, err := ns.createHeightChanBucket(tx, hghtChanBucket, err := ns.createHeightChanBucket(tx,
baby.expiry, chanPoint) baby.expiry, chanPoint)
if err != nil { if err != nil {
@ -1332,145 +1209,6 @@ func (ns *nurseryStore) forChanOutputs(tx *bbolt.Tx, chanPoint *wire.OutPoint,
return chanBucket.ForEach(callback) return chanBucket.ForEach(callback)
} }
// getLastFinalizedHeight is a helper method that retrieves the last height for
// which the database finalized its persistent state.
func (ns *nurseryStore) getLastFinalizedHeight(tx *bbolt.Tx) (uint32, error) {
// Retrieve the chain bucket associated with the given nursery store.
chainBucket := tx.Bucket(ns.pfxChainKey)
if chainBucket == nil {
return 0, nil
}
// Lookup the last finalized height in the top-level chain bucket.
heightBytes := chainBucket.Get(lastFinalizedHeightKey)
if heightBytes == nil {
// We have never finalized, return height 0.
return 0, nil
}
// If the resulting bytes are not sized like a uint32, then we have
// never finalized, so we return 0.
// Otherwise, parse the bytes and return the last finalized height.
return byteOrder.Uint32(heightBytes), nil
}
// finalizeKinder records a finalized kindergarten sweep txn to the given height
// bucket. It also updates the nursery store's last finalized height, so that we
// do not finalize the same height twice. If the finalized txn is nil, i.e. if
// the height has no kindergarten outputs, the height will be marked as
// finalized, and we skip the process of writing the txn. When the class is
// loaded, a nil value will be returned if no txn has been written to a
// finalized height bucket.
func (ns *nurseryStore) finalizeKinder(tx *bbolt.Tx, height uint32,
finalTx *wire.MsgTx) error {
// TODO(conner) ensure height is greater that current finalized height.
// 1. Write the last finalized height to the chain bucket.
// Ensure that the chain bucket for this nursery store exists.
chainBucket, err := tx.CreateBucketIfNotExists(ns.pfxChainKey)
if err != nil {
return err
}
// Serialize the provided last-finalized height, and store it in the
// top-level chain bucket for this nursery store.
var lastHeightBytes [4]byte
byteOrder.PutUint32(lastHeightBytes[:], height)
err = chainBucket.Put(lastFinalizedHeightKey, lastHeightBytes[:])
if err != nil {
return err
}
// 2. Write the finalized txn in the appropriate height bucket.
// If there is no finalized txn, we have nothing to do.
if finalTx == nil {
return nil
}
// Otherwise serialize the finalized txn and write it to the height
// bucket.
hghtBucket := ns.getHeightBucket(tx, height)
if hghtBucket == nil {
return nil
}
var finalTxnBuf bytes.Buffer
if err := finalTx.Serialize(&finalTxnBuf); err != nil {
return err
}
return hghtBucket.Put(finalizedKndrTxnKey, finalTxnBuf.Bytes())
}
// getFinalizedTxn retrieves the finalized kindergarten sweep txn at the given
// height, returning nil if one was not found.
func (ns *nurseryStore) getFinalizedTxn(tx *bbolt.Tx,
height uint32) (*wire.MsgTx, error) {
hghtBucket := ns.getHeightBucket(tx, height)
if hghtBucket == nil {
// No class to finalize.
return nil, nil
}
finalTxBytes := hghtBucket.Get(finalizedKndrTxnKey)
if finalTxBytes == nil {
// No finalized txn for this height.
return nil, nil
}
// Otherwise, deserialize and return the finalized transaction.
txn := &wire.MsgTx{}
if err := txn.Deserialize(bytes.NewReader(finalTxBytes)); err != nil {
return nil, err
}
return txn, nil
}
// getLastGraduatedHeight is a helper method that retrieves the last height for
// which the database graduated all outputs successfully.
func (ns *nurseryStore) getLastGraduatedHeight(tx *bbolt.Tx) (uint32, error) {
// Retrieve the chain bucket associated with the given nursery store.
chainBucket := tx.Bucket(ns.pfxChainKey)
if chainBucket == nil {
return 0, nil
}
// Lookup the last graduated height in the top-level chain bucket.
heightBytes := chainBucket.Get(lastGraduatedHeightKey)
if heightBytes == nil {
// We have never graduated before, return height 0.
return 0, nil
}
// Otherwise, parse the bytes and return the last graduated height.
return byteOrder.Uint32(heightBytes), nil
}
// pubLastGraduatedHeight is a helper method that writes the provided height under
// the last graduated height key.
func (ns *nurseryStore) putLastGraduatedHeight(tx *bbolt.Tx, height uint32) error {
// Ensure that the chain bucket for this nursery store exists.
chainBucket, err := tx.CreateBucketIfNotExists(ns.pfxChainKey)
if err != nil {
return err
}
// Serialize the provided last-graduated height, and store it in the
// top-level chain bucket for this nursery store.
var lastHeightBytes [4]byte
byteOrder.PutUint32(lastHeightBytes[:], height)
return chainBucket.Put(lastGraduatedHeightKey, lastHeightBytes[:])
}
// errBucketNotEmpty signals that an attempt to prune a particular // errBucketNotEmpty signals that an attempt to prune a particular
// bucket failed because it still has active outputs. // bucket failed because it still has active outputs.
var errBucketNotEmpty = errors.New("bucket is not empty, cannot be pruned") var errBucketNotEmpty = errors.New("bucket is not empty, cannot be pruned")
@ -1541,7 +1279,8 @@ func (ns *nurseryStore) pruneHeight(tx *bbolt.Tx, height uint32) (bool, error) {
// attempt to remove each one if they are empty, keeping track of the // attempt to remove each one if they are empty, keeping track of the
// number of height-channel buckets that still have active outputs. // number of height-channel buckets that still have active outputs.
if err := hghtBucket.ForEach(func(chanBytes, v []byte) error { if err := hghtBucket.ForEach(func(chanBytes, v []byte) error {
// Skip the finalized txn key. // Skip the finalized txn key if it still exists from a previous
// db version.
if v != nil { if v != nil {
return nil return nil
} }

@ -88,8 +88,6 @@ func TestNurseryStoreInit(t *testing.T) {
assertNumChannels(t, ns, 0) assertNumChannels(t, ns, 0)
assertNumPreschools(t, ns, 0) assertNumPreschools(t, ns, 0)
assertLastFinalizedHeight(t, ns, 0)
assertLastGraduatedHeight(t, ns, 0)
} }
// TestNurseryStoreIncubate tests the primary state transitions taken by outputs // TestNurseryStoreIncubate tests the primary state transitions taken by outputs
@ -172,7 +170,7 @@ func TestNurseryStoreIncubate(t *testing.T) {
// Now, move the commitment output to the kindergarten // Now, move the commitment output to the kindergarten
// bucket. // bucket.
err = ns.PreschoolToKinder(test.commOutput) err = ns.PreschoolToKinder(test.commOutput, 0)
if err != test.err { if err != test.err {
t.Fatalf("unable to move commitment output from "+ t.Fatalf("unable to move commitment output from "+
"pscl to kndr: %v", err) "pscl to kndr: %v", err)
@ -212,7 +210,7 @@ func TestNurseryStoreIncubate(t *testing.T) {
maturityHeight := test.commOutput.ConfHeight() + maturityHeight := test.commOutput.ConfHeight() +
test.commOutput.BlocksToMaturity() test.commOutput.BlocksToMaturity()
err = ns.GraduateKinder(maturityHeight) err = ns.GraduateKinder(maturityHeight, test.commOutput)
if err != nil { if err != nil {
t.Fatalf("unable to graduate kindergarten class at "+ t.Fatalf("unable to graduate kindergarten class at "+
"height %d: %v", maturityHeight, err) "height %d: %v", maturityHeight, err)
@ -286,7 +284,8 @@ func TestNurseryStoreIncubate(t *testing.T) {
maturityHeight := htlcOutput.ConfHeight() + maturityHeight := htlcOutput.ConfHeight() +
htlcOutput.BlocksToMaturity() htlcOutput.BlocksToMaturity()
err = ns.GraduateKinder(maturityHeight) err = ns.GraduateKinder(maturityHeight,
&htlcOutput.kidOutput)
if err != nil { if err != nil {
t.Fatalf("unable to graduate htlc output "+ t.Fatalf("unable to graduate htlc output "+
"from kndr to grad: %v", err) "from kndr to grad: %v", err)
@ -333,93 +332,6 @@ func TestNurseryStoreIncubate(t *testing.T) {
} }
} }
// TestNurseryStoreFinalize tests that kindergarten sweep transactions are
// properly persisted, and that the last finalized height is being set
// accordingly.
func TestNurseryStoreFinalize(t *testing.T) {
cdb, cleanUp, err := makeTestDB()
if err != nil {
t.Fatalf("unable to open channel db: %v", err)
}
defer cleanUp()
ns, err := newNurseryStore(&bitcoinTestnetGenesis, cdb)
if err != nil {
t.Fatalf("unable to open nursery store: %v", err)
}
kid := &kidOutputs[3]
// Compute the maturity height at which to enter the commitment output.
maturityHeight := kid.ConfHeight() + kid.BlocksToMaturity()
// Since we haven't finalized before, we should see a last finalized
// height of 0.
assertLastFinalizedHeight(t, ns, 0)
// Begin incubating the commitment output, which will be placed in the
// preschool bucket.
err = ns.Incubate([]kidOutput{*kid}, nil)
if err != nil {
t.Fatalf("unable to incubate commitment output: %v", err)
}
// Then move the commitment output to the kindergarten bucket, so that
// the output is registered in the height index.
err = ns.PreschoolToKinder(kid)
if err != nil {
t.Fatalf("unable to move pscl output to kndr: %v", err)
}
// We should still see a last finalized height of 0, since no classes
// have been graduated.
assertLastFinalizedHeight(t, ns, 0)
// Now, iteratively finalize all heights below the maturity height,
// ensuring that the last finalized height is properly persisted, and
// that the finalized transactions are all nil.
for i := 0; i < int(maturityHeight); i++ {
err = ns.FinalizeKinder(uint32(i), nil)
if err != nil {
t.Fatalf("unable to finalize kndr at height=%d: %v",
i, err)
}
assertLastFinalizedHeight(t, ns, uint32(i))
assertFinalizedTxn(t, ns, uint32(i), nil)
}
// As we have now finalized all heights below the maturity height, we
// should still see the commitment output in the kindergarten bucket at
// its maturity height.
assertKndrAtMaturityHeight(t, ns, kid)
// Now, finalize the kindergarten sweep transaction at the maturity
// height.
err = ns.FinalizeKinder(maturityHeight, timeoutTx)
if err != nil {
t.Fatalf("unable to finalize kndr at height=%d: %v",
maturityHeight, err)
}
// The nursery store should now see the maturity height finalized, and
// the finalized kindergarten sweep txn should be returned at this
// height.
assertLastFinalizedHeight(t, ns, maturityHeight)
assertFinalizedTxn(t, ns, maturityHeight, timeoutTx)
// Lastly, continue to finalize heights above the maturity height. Each
// should report having a nil finalized kindergarten sweep txn.
for i := maturityHeight + 1; i < maturityHeight+10; i++ {
err = ns.FinalizeKinder(uint32(i), nil)
if err != nil {
t.Fatalf("unable to finalize kndr at height=%d: %v",
i, err)
}
assertLastFinalizedHeight(t, ns, uint32(i))
assertFinalizedTxn(t, ns, uint32(i), nil)
}
}
// TestNurseryStoreGraduate verifies that the nursery store properly removes // TestNurseryStoreGraduate verifies that the nursery store properly removes
// populated entries from the height index as it is purged, and that the last // populated entries from the height index as it is purged, and that the last
// purged height is set appropriately. // purged height is set appropriately.
@ -441,9 +353,6 @@ func TestNurseryStoreGraduate(t *testing.T) {
// height index. // height index.
maturityHeight := kid.ConfHeight() + kid.BlocksToMaturity() maturityHeight := kid.ConfHeight() + kid.BlocksToMaturity()
// Since we have never purged, the last purged height should be 0.
assertLastGraduatedHeight(t, ns, 0)
// First, add a commitment output to the nursery store, which is // First, add a commitment output to the nursery store, which is
// initially inserted in the preschool bucket. // initially inserted in the preschool bucket.
err = ns.Incubate([]kidOutput{*kid}, nil) err = ns.Incubate([]kidOutput{*kid}, nil)
@ -453,7 +362,7 @@ func TestNurseryStoreGraduate(t *testing.T) {
// Then, move the commitment output to the kindergarten bucket, such // Then, move the commitment output to the kindergarten bucket, such
// that it resides in the height index at its maturity height. // that it resides in the height index at its maturity height.
err = ns.PreschoolToKinder(kid) err = ns.PreschoolToKinder(kid, 0)
if err != nil { if err != nil {
t.Fatalf("unable to move pscl output to kndr: %v", err) t.Fatalf("unable to move pscl output to kndr: %v", err)
} }
@ -462,12 +371,6 @@ func TestNurseryStoreGraduate(t *testing.T) {
// checking that each class is now empty, and that the last purged // checking that each class is now empty, and that the last purged
// height is set correctly. // height is set correctly.
for i := 0; i < int(maturityHeight); i++ { for i := 0; i < int(maturityHeight); i++ {
err = ns.GraduateHeight(uint32(i))
if err != nil {
t.Fatalf("unable to purge height=%d: %v", i, err)
}
assertLastGraduatedHeight(t, ns, uint32(i))
assertHeightIsPurged(t, ns, uint32(i)) assertHeightIsPurged(t, ns, uint32(i))
} }
@ -475,27 +378,7 @@ func TestNurseryStoreGraduate(t *testing.T) {
// height. // height.
assertKndrAtMaturityHeight(t, ns, kid) assertKndrAtMaturityHeight(t, ns, kid)
// Finalize the kindergarten transaction, ensuring that it is a non-nil err = ns.GraduateKinder(maturityHeight, kid)
// value.
err = ns.FinalizeKinder(maturityHeight, timeoutTx)
if err != nil {
t.Fatalf("unable to finalize kndr at height=%d: %v",
maturityHeight, err)
}
// Verify that the maturity height has now been finalized.
assertLastFinalizedHeight(t, ns, maturityHeight)
assertFinalizedTxn(t, ns, maturityHeight, timeoutTx)
// Finally, purge the non-empty maturity height, and check that returned
// class is empty.
err = ns.GraduateHeight(maturityHeight)
if err != nil {
t.Fatalf("unable to set graduated height=%d: %v", maturityHeight,
err)
}
err = ns.GraduateKinder(maturityHeight)
if err != nil { if err != nil {
t.Fatalf("unable to graduate kindergarten outputs at height=%d: "+ t.Fatalf("unable to graduate kindergarten outputs at height=%d: "+
"%v", maturityHeight, err) "%v", maturityHeight, err)
@ -528,36 +411,6 @@ func assertNumChanOutputs(t *testing.T, ns NurseryStore,
} }
} }
// assertLastFinalizedHeight checks that the nursery stores last finalized
// height matches the expected height.
func assertLastFinalizedHeight(t *testing.T, ns NurseryStore,
expected uint32) {
lfh, err := ns.LastFinalizedHeight()
if err != nil {
t.Fatalf("unable to get last finalized height: %v", err)
}
if lfh != expected {
t.Fatalf("expected last finalized height to be %d, got %d",
expected, lfh)
}
}
// assertLastGraduatedHeight checks that the nursery stores last purged height
// matches the expected height.
func assertLastGraduatedHeight(t *testing.T, ns NurseryStore, expected uint32) {
lgh, err := ns.LastGraduatedHeight()
if err != nil {
t.Fatalf("unable to get last graduated height: %v", err)
}
if lgh != expected {
t.Fatalf("expected last graduated height to be %d, got %d",
expected, lgh)
}
}
// assertNumPreschools loads all preschool outputs and verifies their count // assertNumPreschools loads all preschool outputs and verifies their count
// matches the expected number. // matches the expected number.
func assertNumPreschools(t *testing.T, ns NurseryStore, expected int) { func assertNumPreschools(t *testing.T, ns NurseryStore, expected int) {
@ -592,16 +445,12 @@ func assertNumChannels(t *testing.T, ns NurseryStore, expected int) {
func assertHeightIsPurged(t *testing.T, ns NurseryStore, func assertHeightIsPurged(t *testing.T, ns NurseryStore,
height uint32) { height uint32) {
finalTx, kndrOutputs, cribOutputs, err := ns.FetchClass(height) kndrOutputs, cribOutputs, err := ns.FetchClass(height)
if err != nil { if err != nil {
t.Fatalf("unable to retrieve class at height=%d: %v", t.Fatalf("unable to retrieve class at height=%d: %v",
height, err) height, err)
} }
if finalTx != nil {
t.Fatalf("height=%d not purged, final txn should be nil", height)
}
if kndrOutputs != nil { if kndrOutputs != nil {
t.Fatalf("height=%d not purged, kndr outputs should be nil", height) t.Fatalf("height=%d not purged, kndr outputs should be nil", height)
} }
@ -617,7 +466,7 @@ func assertCribAtExpiryHeight(t *testing.T, ns NurseryStore,
htlcOutput *babyOutput) { htlcOutput *babyOutput) {
expiryHeight := htlcOutput.expiry expiryHeight := htlcOutput.expiry
_, _, cribOutputs, err := ns.FetchClass(expiryHeight) _, cribOutputs, err := ns.FetchClass(expiryHeight)
if err != nil { if err != nil {
t.Fatalf("unable to retrieve class at height=%d: %v", t.Fatalf("unable to retrieve class at height=%d: %v",
expiryHeight, err) expiryHeight, err)
@ -639,7 +488,7 @@ func assertCribNotAtExpiryHeight(t *testing.T, ns NurseryStore,
htlcOutput *babyOutput) { htlcOutput *babyOutput) {
expiryHeight := htlcOutput.expiry expiryHeight := htlcOutput.expiry
_, _, cribOutputs, err := ns.FetchClass(expiryHeight) _, cribOutputs, err := ns.FetchClass(expiryHeight)
if err != nil { if err != nil {
t.Fatalf("unable to retrieve class at height %d: %v", t.Fatalf("unable to retrieve class at height %d: %v",
expiryHeight, err) expiryHeight, err)
@ -653,25 +502,6 @@ func assertCribNotAtExpiryHeight(t *testing.T, ns NurseryStore,
} }
} }
// assertFinalizedTxn loads the class at the given height and compares the
// returned finalized txn to that in the class. It is safe to presented a nil
// expected transaction.
func assertFinalizedTxn(t *testing.T, ns NurseryStore, height uint32,
exFinalTx *wire.MsgTx) {
finalTx, _, _, err := ns.FetchClass(height)
if err != nil {
t.Fatalf("unable to fetch class at height=%d: %v", height,
err)
}
if !reflect.DeepEqual(finalTx, exFinalTx) {
t.Fatalf("expected finalized txn at height=%d "+
"to be %v, got %v", height, finalTx.TxHash(),
exFinalTx.TxHash())
}
}
// assertKndrAtMaturityHeight loads the class at the provided height and // assertKndrAtMaturityHeight loads the class at the provided height and
// verifies that the provided kid output is one of the kindergarten outputs // verifies that the provided kid output is one of the kindergarten outputs
// returned. // returned.
@ -680,7 +510,7 @@ func assertKndrAtMaturityHeight(t *testing.T, ns NurseryStore,
maturityHeight := kndrOutput.ConfHeight() + maturityHeight := kndrOutput.ConfHeight() +
kndrOutput.BlocksToMaturity() kndrOutput.BlocksToMaturity()
_, kndrOutputs, _, err := ns.FetchClass(maturityHeight) kndrOutputs, _, err := ns.FetchClass(maturityHeight)
if err != nil { if err != nil {
t.Fatalf("unable to retrieve class at height %d: %v", t.Fatalf("unable to retrieve class at height %d: %v",
maturityHeight, err) maturityHeight, err)
@ -705,7 +535,7 @@ func assertKndrNotAtMaturityHeight(t *testing.T, ns NurseryStore,
maturityHeight := kndrOutput.ConfHeight() + maturityHeight := kndrOutput.ConfHeight() +
kndrOutput.BlocksToMaturity() kndrOutput.BlocksToMaturity()
_, kndrOutputs, _, err := ns.FetchClass(maturityHeight) kndrOutputs, _, err := ns.FetchClass(maturityHeight)
if err != nil { if err != nil {
t.Fatalf("unable to retrieve class at height %d: %v", t.Fatalf("unable to retrieve class at height %d: %v",
maturityHeight, err) maturityHeight, err)

@ -157,7 +157,7 @@ func TestPeerChannelClosureAcceptFeeInitiator(t *testing.T) {
dummyDeliveryScript), dummyDeliveryScript),
} }
estimator := lnwallet.StaticFeeEstimator{FeePerKW: 12500} estimator := lnwallet.NewStaticFeeEstimator(12500, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
t.Fatalf("unable to query fee estimator: %v", err) t.Fatalf("unable to query fee estimator: %v", err)
@ -447,7 +447,7 @@ func TestPeerChannelClosureFeeNegotiationsInitiator(t *testing.T) {
msg: respShutdown, msg: respShutdown,
} }
estimator := lnwallet.StaticFeeEstimator{FeePerKW: 12500} estimator := lnwallet.NewStaticFeeEstimator(12500, 0)
initiatorIdealFeeRate, err := estimator.EstimateFeePerKW(1) initiatorIdealFeeRate, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
t.Fatalf("unable to query fee estimator: %v", err) t.Fatalf("unable to query fee estimator: %v", err)

@ -17,8 +17,6 @@ import (
"sync/atomic" "sync/atomic"
"time" "time"
"github.com/lightningnetwork/lnd/sweep"
"github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/connmgr" "github.com/btcsuite/btcd/connmgr"
@ -40,6 +38,7 @@ import (
"github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/nat" "github.com/lightningnetwork/lnd/nat"
"github.com/lightningnetwork/lnd/routing" "github.com/lightningnetwork/lnd/routing"
"github.com/lightningnetwork/lnd/sweep"
"github.com/lightningnetwork/lnd/ticker" "github.com/lightningnetwork/lnd/ticker"
"github.com/lightningnetwork/lnd/tor" "github.com/lightningnetwork/lnd/tor"
) )
@ -156,6 +155,8 @@ type server struct {
utxoNursery *utxoNursery utxoNursery *utxoNursery
sweeper *sweep.UtxoSweeper
chainArb *contractcourt.ChainArbitrator chainArb *contractcourt.ChainArbitrator
sphinx *htlcswitch.OnionProcessor sphinx *htlcswitch.OnionProcessor
@ -597,24 +598,45 @@ func newServer(listenAddrs []net.Addr, chanDB *channeldb.DB, cc *chainControl,
return nil, err return nil, err
} }
sweeper := sweep.New(&sweep.UtxoSweeperConfig{ srvrLog.Tracef("Sweeper batch window duration: %v",
sweep.DefaultBatchWindowDuration)
sweeperStore, err := sweep.NewSweeperStore(
chanDB, activeNetParams.GenesisHash,
)
if err != nil {
srvrLog.Errorf("unable to create sweeper store: %v", err)
return nil, err
}
s.sweeper = sweep.New(&sweep.UtxoSweeperConfig{
Estimator: cc.feeEstimator, Estimator: cc.feeEstimator,
GenSweepScript: func() ([]byte, error) { GenSweepScript: func() ([]byte, error) {
return newSweepPkScript(cc.wallet) return newSweepPkScript(cc.wallet)
}, },
Signer: cc.wallet.Cfg.Signer, Signer: cc.wallet.Cfg.Signer,
PublishTransaction: cc.wallet.PublishTransaction,
NewBatchTimer: func() <-chan time.Time {
return time.NewTimer(sweep.DefaultBatchWindowDuration).C
},
SweepTxConfTarget: 6,
Notifier: cc.chainNotifier,
ChainIO: cc.chainIO,
Store: sweeperStore,
MaxInputsPerTx: sweep.DefaultMaxInputsPerTx,
MaxSweepAttempts: sweep.DefaultMaxSweepAttempts,
NextAttemptDeltaFunc: sweep.DefaultNextAttemptDeltaFunc,
}) })
s.utxoNursery = newUtxoNursery(&NurseryConfig{ s.utxoNursery = newUtxoNursery(&NurseryConfig{
ChainIO: cc.chainIO, ChainIO: cc.chainIO,
ConfDepth: 1, ConfDepth: 1,
SweepTxConfTarget: 6,
FetchClosedChannels: chanDB.FetchClosedChannels, FetchClosedChannels: chanDB.FetchClosedChannels,
FetchClosedChannel: chanDB.FetchClosedChannel, FetchClosedChannel: chanDB.FetchClosedChannel,
Notifier: cc.chainNotifier, Notifier: cc.chainNotifier,
PublishTransaction: cc.wallet.PublishTransaction, PublishTransaction: cc.wallet.PublishTransaction,
Store: utxnStore, Store: utxnStore,
Sweeper: sweeper, Sweeper: s.sweeper,
}) })
// Construct a closure that wraps the htlcswitch's CloseLink method. // Construct a closure that wraps the htlcswitch's CloseLink method.
@ -706,7 +728,7 @@ func newServer(listenAddrs []net.Addr, chanDB *channeldb.DB, cc *chainControl,
DisableChannel: func(op wire.OutPoint) error { DisableChannel: func(op wire.OutPoint) error {
return s.announceChanStatus(op, true) return s.announceChanStatus(op, true)
}, },
Sweeper: sweeper, Sweeper: s.sweeper,
}, chanDB) }, chanDB)
s.breachArbiter = newBreachArbiter(&BreachConfig{ s.breachArbiter = newBreachArbiter(&BreachConfig{
@ -963,6 +985,9 @@ func (s *server) Start() error {
if err := s.htlcSwitch.Start(); err != nil { if err := s.htlcSwitch.Start(); err != nil {
return err return err
} }
if err := s.sweeper.Start(); err != nil {
return err
}
if err := s.utxoNursery.Start(); err != nil { if err := s.utxoNursery.Start(); err != nil {
return err return err
} }
@ -1050,6 +1075,7 @@ func (s *server) Stop() error {
s.breachArbiter.Stop() s.breachArbiter.Stop()
s.authGossiper.Stop() s.authGossiper.Stop()
s.chainArb.Stop() s.chainArb.Stop()
s.sweeper.Stop()
s.cc.wallet.Shutdown() s.cc.wallet.Shutdown()
s.cc.chainView.Stop() s.cc.chainView.Stop()
s.connMgr.Stop() s.connMgr.Stop()

110
sweep/backend_mock_test.go Normal file

@ -0,0 +1,110 @@
package sweep
import (
"sync"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/lnwallet"
)
// mockBackend simulates a chain backend for realistic behaviour in unit tests
// around double spends.
type mockBackend struct {
lock sync.Mutex
notifier *MockNotifier
confirmedSpendInputs map[wire.OutPoint]struct{}
unconfirmedTxes map[chainhash.Hash]*wire.MsgTx
unconfirmedSpendInputs map[wire.OutPoint]struct{}
}
func newMockBackend(notifier *MockNotifier) *mockBackend {
return &mockBackend{
notifier: notifier,
unconfirmedTxes: make(map[chainhash.Hash]*wire.MsgTx),
confirmedSpendInputs: make(map[wire.OutPoint]struct{}),
unconfirmedSpendInputs: make(map[wire.OutPoint]struct{}),
}
}
func (b *mockBackend) publishTransaction(tx *wire.MsgTx) error {
b.lock.Lock()
defer b.lock.Unlock()
txHash := tx.TxHash()
if _, ok := b.unconfirmedTxes[txHash]; ok {
// Tx already exists
testLog.Tracef("mockBackend duplicate tx %v", tx.TxHash())
return lnwallet.ErrDoubleSpend
}
for _, in := range tx.TxIn {
if _, ok := b.unconfirmedSpendInputs[in.PreviousOutPoint]; ok {
// Double spend
testLog.Tracef("mockBackend double spend tx %v", tx.TxHash())
return lnwallet.ErrDoubleSpend
}
if _, ok := b.confirmedSpendInputs[in.PreviousOutPoint]; ok {
// Already included in block
testLog.Tracef("mockBackend already in block tx %v", tx.TxHash())
return lnwallet.ErrDoubleSpend
}
}
b.unconfirmedTxes[txHash] = tx
for _, in := range tx.TxIn {
b.unconfirmedSpendInputs[in.PreviousOutPoint] = struct{}{}
}
testLog.Tracef("mockBackend publish tx %v", tx.TxHash())
return nil
}
func (b *mockBackend) deleteUnconfirmed(txHash chainhash.Hash) {
b.lock.Lock()
defer b.lock.Unlock()
tx, ok := b.unconfirmedTxes[txHash]
if !ok {
// Tx already exists
testLog.Errorf("mockBackend delete tx not existing %v", txHash)
return
}
testLog.Tracef("mockBackend delete tx %v", tx.TxHash())
delete(b.unconfirmedTxes, txHash)
for _, in := range tx.TxIn {
delete(b.unconfirmedSpendInputs, in.PreviousOutPoint)
}
}
func (b *mockBackend) mine() {
b.lock.Lock()
defer b.lock.Unlock()
notifications := make(map[wire.OutPoint]*wire.MsgTx)
for _, tx := range b.unconfirmedTxes {
testLog.Tracef("mockBackend mining tx %v", tx.TxHash())
for _, in := range tx.TxIn {
b.confirmedSpendInputs[in.PreviousOutPoint] = struct{}{}
notifications[in.PreviousOutPoint] = tx
}
}
b.unconfirmedSpendInputs = make(map[wire.OutPoint]struct{})
b.unconfirmedTxes = make(map[chainhash.Hash]*wire.MsgTx)
for outpoint, tx := range notifications {
testLog.Tracef("mockBackend delivering spend ntfn for %v",
outpoint)
b.notifier.SpendOutpoint(outpoint, *tx)
}
}
func (b *mockBackend) isDone() bool {
return len(b.unconfirmedTxes) == 0
}

14
sweep/defaults.go Normal file

@ -0,0 +1,14 @@
// +build !rpctest
package sweep
import (
"time"
)
var (
// DefaultBatchWindowDuration specifies duration of the sweep batch
// window. The sweep is held back during the batch window to allow more
// inputs to be added and thereby lower the fee per input.
DefaultBatchWindowDuration = 30 * time.Second
)

17
sweep/defaults_rpctest.go Normal file

@ -0,0 +1,17 @@
// +build rpctest
package sweep
import (
"time"
)
var (
// DefaultBatchWindowDuration specifies duration of the sweep batch
// window. The sweep is held back during the batch window to allow more
// inputs to be added and thereby lower the fee per input.
//
// To speed up integration tests waiting for a sweep to happen, the
// batch window is shortened.
DefaultBatchWindowDuration = 2 * time.Second
)

@ -0,0 +1,62 @@
package sweep
import (
"github.com/lightningnetwork/lnd/lnwallet"
"sync"
)
// mockFeeEstimator implements a mock fee estimator. It closely resembles
// lnwallet.StaticFeeEstimator with the addition that fees can be changed for
// testing purposes in a thread safe manner.
type mockFeeEstimator struct {
feePerKW lnwallet.SatPerKWeight
relayFee lnwallet.SatPerKWeight
lock sync.Mutex
}
func newMockFeeEstimator(feePerKW,
relayFee lnwallet.SatPerKWeight) *mockFeeEstimator {
return &mockFeeEstimator{
feePerKW: feePerKW,
relayFee: relayFee,
}
}
func (e *mockFeeEstimator) updateFees(feePerKW,
relayFee lnwallet.SatPerKWeight) {
e.lock.Lock()
defer e.lock.Unlock()
e.feePerKW = feePerKW
e.relayFee = relayFee
}
func (e *mockFeeEstimator) EstimateFeePerKW(numBlocks uint32) (
lnwallet.SatPerKWeight, error) {
e.lock.Lock()
defer e.lock.Unlock()
return e.feePerKW, nil
}
func (e *mockFeeEstimator) RelayFeePerKW() lnwallet.SatPerKWeight {
e.lock.Lock()
defer e.lock.Unlock()
return e.relayFee
}
func (e *mockFeeEstimator) Start() error {
return nil
}
func (e *mockFeeEstimator) Stop() error {
return nil
}
var _ lnwallet.FeeEstimator = (*mockFeeEstimator)(nil)

@ -33,12 +33,17 @@ type Input interface {
// the output can be spent. For non-CSV locked inputs this is always // the output can be spent. For non-CSV locked inputs this is always
// zero. // zero.
BlocksToMaturity() uint32 BlocksToMaturity() uint32
// HeightHint returns the minimum height at which a confirmed spending
// tx can occur.
HeightHint() uint32
} }
type inputKit struct { type inputKit struct {
outpoint wire.OutPoint outpoint wire.OutPoint
witnessType lnwallet.WitnessType witnessType lnwallet.WitnessType
signDesc lnwallet.SignDescriptor signDesc lnwallet.SignDescriptor
heightHint uint32
} }
// OutPoint returns the breached output's identifier that is to be included as // OutPoint returns the breached output's identifier that is to be included as
@ -59,6 +64,12 @@ func (i *inputKit) SignDesc() *lnwallet.SignDescriptor {
return &i.signDesc return &i.signDesc
} }
// HeightHint returns the minimum height at which a confirmed spending
// tx can occur.
func (i *inputKit) HeightHint() uint32 {
return i.heightHint
}
// BaseInput contains all the information needed to sweep a basic output // BaseInput contains all the information needed to sweep a basic output
// (CSV/CLTV/no time lock) // (CSV/CLTV/no time lock)
type BaseInput struct { type BaseInput struct {
@ -68,13 +79,14 @@ type BaseInput struct {
// MakeBaseInput assembles a new BaseInput that can be used to construct a // MakeBaseInput assembles a new BaseInput that can be used to construct a
// sweep transaction. // sweep transaction.
func MakeBaseInput(outpoint *wire.OutPoint, witnessType lnwallet.WitnessType, func MakeBaseInput(outpoint *wire.OutPoint, witnessType lnwallet.WitnessType,
signDescriptor *lnwallet.SignDescriptor) BaseInput { signDescriptor *lnwallet.SignDescriptor, heightHint uint32) BaseInput {
return BaseInput{ return BaseInput{
inputKit{ inputKit{
outpoint: *outpoint, outpoint: *outpoint,
witnessType: witnessType, witnessType: witnessType,
signDesc: *signDescriptor, signDesc: *signDescriptor,
heightHint: heightHint,
}, },
} }
} }
@ -113,13 +125,14 @@ type HtlcSucceedInput struct {
// construct a sweep transaction. // construct a sweep transaction.
func MakeHtlcSucceedInput(outpoint *wire.OutPoint, func MakeHtlcSucceedInput(outpoint *wire.OutPoint,
signDescriptor *lnwallet.SignDescriptor, signDescriptor *lnwallet.SignDescriptor,
preimage []byte) HtlcSucceedInput { preimage []byte, heightHint uint32) HtlcSucceedInput {
return HtlcSucceedInput{ return HtlcSucceedInput{
inputKit: inputKit{ inputKit: inputKit{
outpoint: *outpoint, outpoint: *outpoint,
witnessType: lnwallet.HtlcAcceptedRemoteSuccess, witnessType: lnwallet.HtlcAcceptedRemoteSuccess,
signDesc: *signDescriptor, signDesc: *signDescriptor,
heightHint: heightHint,
}, },
preimage: preimage, preimage: preimage,
} }

247
sweep/store.go Normal file

@ -0,0 +1,247 @@
package sweep
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/coreos/bbolt"
"github.com/lightningnetwork/lnd/channeldb"
)
var (
// lastTxBucketKey is the key that points to a bucket containing a
// single item storing the last published tx.
//
// maps: lastTxKey -> serialized_tx
lastTxBucketKey = []byte("sweeper-last-tx")
// lastTxKey is the fixed key under which the serialized tx is stored.
lastTxKey = []byte("last-tx")
// txHashesBucketKey is the key that points to a bucket containing the
// hashes of all sweep txes that were published successfully.
//
// maps: txHash -> empty slice
txHashesBucketKey = []byte("sweeper-tx-hashes")
// utxnChainPrefix is the bucket prefix for nursery buckets.
utxnChainPrefix = []byte("utxn")
// utxnHeightIndexKey is the sub bucket where the nursery stores the
// height index.
utxnHeightIndexKey = []byte("height-index")
// utxnFinalizedKndrTxnKey is a static key that can be used to locate
// the nursery finalized kindergarten sweep txn.
utxnFinalizedKndrTxnKey = []byte("finalized-kndr-txn")
byteOrder = binary.BigEndian
)
// SweeperStore stores published txes.
type SweeperStore interface {
// IsOurTx determines whether a tx is published by us, based on its
// hash.
IsOurTx(hash chainhash.Hash) (bool, error)
// NotifyPublishTx signals that we are about to publish a tx.
NotifyPublishTx(*wire.MsgTx) error
// GetLastPublishedTx returns the last tx that we called NotifyPublishTx
// for.
GetLastPublishedTx() (*wire.MsgTx, error)
}
type sweeperStore struct {
db *channeldb.DB
}
// NewSweeperStore returns a new store instance.
func NewSweeperStore(db *channeldb.DB, chainHash *chainhash.Hash) (
SweeperStore, error) {
err := db.Update(func(tx *bbolt.Tx) error {
_, err := tx.CreateBucketIfNotExists(
lastTxBucketKey,
)
if err != nil {
return err
}
if tx.Bucket(txHashesBucketKey) != nil {
return nil
}
txHashesBucket, err := tx.CreateBucket(txHashesBucketKey)
if err != nil {
return err
}
// Use non-existence of tx hashes bucket as a signal to migrate
// nursery finalized txes.
err = migrateTxHashes(tx, txHashesBucket, chainHash)
return err
})
if err != nil {
return nil, err
}
return &sweeperStore{
db: db,
}, nil
}
// migrateTxHashes migrates nursery finalized txes to the tx hashes bucket. This
// is not implemented as a database migration, to keep the downgrade path open.
func migrateTxHashes(tx *bbolt.Tx, txHashesBucket *bbolt.Bucket,
chainHash *chainhash.Hash) error {
log.Infof("Migrating UTXO nursery finalized TXIDs")
// Compose chain bucket key.
var b bytes.Buffer
if _, err := b.Write(utxnChainPrefix); err != nil {
return err
}
if _, err := b.Write(chainHash[:]); err != nil {
return err
}
// Get chain bucket if exists.
chainBucket := tx.Bucket(b.Bytes())
if chainBucket == nil {
return nil
}
// Retrieve the existing height index.
hghtIndex := chainBucket.Bucket(utxnHeightIndexKey)
if hghtIndex == nil {
return nil
}
// Retrieve all heights.
err := hghtIndex.ForEach(func(k, v []byte) error {
heightBucket := hghtIndex.Bucket(k)
if heightBucket == nil {
return nil
}
// Get finalized tx for height.
txBytes := heightBucket.Get(utxnFinalizedKndrTxnKey)
if txBytes == nil {
return nil
}
// Deserialize and skip tx if it cannot be deserialized.
tx := &wire.MsgTx{}
err := tx.Deserialize(bytes.NewReader(txBytes))
if err != nil {
log.Warnf("Cannot deserialize utxn tx")
return nil
}
// Calculate hash.
hash := tx.TxHash()
// Insert utxn tx hash in hashes bucket.
log.Debugf("Inserting nursery tx %v in hash list "+
"(height=%v)", hash, byteOrder.Uint32(k))
return txHashesBucket.Put(hash[:], []byte{})
})
if err != nil {
return err
}
return nil
}
// NotifyPublishTx signals that we are about to publish a tx.
func (s *sweeperStore) NotifyPublishTx(sweepTx *wire.MsgTx) error {
return s.db.Update(func(tx *bbolt.Tx) error {
lastTxBucket := tx.Bucket(lastTxBucketKey)
if lastTxBucket == nil {
return errors.New("last tx bucket does not exist")
}
txHashesBucket := tx.Bucket(txHashesBucketKey)
if txHashesBucket == nil {
return errors.New("tx hashes bucket does not exist")
}
var b bytes.Buffer
if err := sweepTx.Serialize(&b); err != nil {
return err
}
if err := lastTxBucket.Put(lastTxKey, b.Bytes()); err != nil {
return err
}
hash := sweepTx.TxHash()
return txHashesBucket.Put(hash[:], []byte{})
})
}
// GetLastPublishedTx returns the last tx that we called NotifyPublishTx
// for.
func (s *sweeperStore) GetLastPublishedTx() (*wire.MsgTx, error) {
var sweepTx *wire.MsgTx
err := s.db.View(func(tx *bbolt.Tx) error {
lastTxBucket := tx.Bucket(lastTxBucketKey)
if lastTxBucket == nil {
return errors.New("last tx bucket does not exist")
}
sweepTxRaw := lastTxBucket.Get(lastTxKey)
if sweepTxRaw == nil {
return nil
}
sweepTx = &wire.MsgTx{}
txReader := bytes.NewReader(sweepTxRaw)
if err := sweepTx.Deserialize(txReader); err != nil {
return fmt.Errorf("tx deserialize: %v", err)
}
return nil
})
if err != nil {
return nil, err
}
return sweepTx, nil
}
// IsOurTx determines whether a tx is published by us, based on its
// hash.
func (s *sweeperStore) IsOurTx(hash chainhash.Hash) (bool, error) {
var ours bool
err := s.db.View(func(tx *bbolt.Tx) error {
txHashesBucket := tx.Bucket(txHashesBucketKey)
if txHashesBucket == nil {
return errors.New("tx hashes bucket does not exist")
}
ours = txHashesBucket.Get(hash[:]) != nil
return nil
})
if err != nil {
return false, err
}
return ours, nil
}
// Compile-time constraint to ensure sweeperStore implements SweeperStore.
var _ SweeperStore = (*sweeperStore)(nil)

45
sweep/store_mock.go Normal file

@ -0,0 +1,45 @@
package sweep
import (
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
)
// MockSweeperStore is a mock implementation of sweeper store. This type is
// exported, because it is currently used in nursery tests too.
type MockSweeperStore struct {
lastTx *wire.MsgTx
ourTxes map[chainhash.Hash]struct{}
}
// NewMockSweeperStore returns a new instance.
func NewMockSweeperStore() *MockSweeperStore {
return &MockSweeperStore{
ourTxes: make(map[chainhash.Hash]struct{}),
}
}
// IsOurTx determines whether a tx is published by us, based on its
// hash.
func (s *MockSweeperStore) IsOurTx(hash chainhash.Hash) (bool, error) {
_, ok := s.ourTxes[hash]
return ok, nil
}
// NotifyPublishTx signals that we are about to publish a tx.
func (s *MockSweeperStore) NotifyPublishTx(tx *wire.MsgTx) error {
txHash := tx.TxHash()
s.ourTxes[txHash] = struct{}{}
s.lastTx = tx
return nil
}
// GetLastPublishedTx returns the last tx that we called NotifyPublishTx
// for.
func (s *MockSweeperStore) GetLastPublishedTx() (*wire.MsgTx, error) {
return s.lastTx, nil
}
// Compile-time constraint to ensure MockSweeperStore implements SweeperStore.
var _ SweeperStore = (*MockSweeperStore)(nil)

153
sweep/store_test.go Normal file

@ -0,0 +1,153 @@
package sweep
import (
"io/ioutil"
"os"
"testing"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/channeldb"
)
// makeTestDB creates a new instance of the ChannelDB for testing purposes. A
// callback which cleans up the created temporary directories is also returned
// and intended to be executed after the test completes.
func makeTestDB() (*channeldb.DB, func(), error) {
// First, create a temporary directory to be used for the duration of
// this test.
tempDirName, err := ioutil.TempDir("", "channeldb")
if err != nil {
return nil, nil, err
}
// Next, create channeldb for the first time.
cdb, err := channeldb.Open(tempDirName)
if err != nil {
return nil, nil, err
}
cleanUp := func() {
cdb.Close()
os.RemoveAll(tempDirName)
}
return cdb, cleanUp, nil
}
// TestStore asserts that the store persists the presented data to disk and is
// able to retrieve it again.
func TestStore(t *testing.T) {
t.Run("bolt", func(t *testing.T) {
// Create new store.
cdb, cleanUp, err := makeTestDB()
if err != nil {
t.Fatalf("unable to open channel db: %v", err)
}
defer cleanUp()
if err != nil {
t.Fatal(err)
}
testStore(t, func() (SweeperStore, error) {
var chain chainhash.Hash
return NewSweeperStore(cdb, &chain)
})
})
t.Run("mock", func(t *testing.T) {
store := NewMockSweeperStore()
testStore(t, func() (SweeperStore, error) {
// Return same store, because the mock has no real
// persistence.
return store, nil
})
})
}
func testStore(t *testing.T, createStore func() (SweeperStore, error)) {
store, err := createStore()
if err != nil {
t.Fatal(err)
}
// Initially we expect the store not to have a last published tx.
retrievedTx, err := store.GetLastPublishedTx()
if err != nil {
t.Fatal(err)
}
if retrievedTx != nil {
t.Fatal("expected no last published tx")
}
// Notify publication of tx1
tx1 := wire.MsgTx{}
tx1.AddTxIn(&wire.TxIn{
PreviousOutPoint: wire.OutPoint{
Index: 1,
},
})
err = store.NotifyPublishTx(&tx1)
if err != nil {
t.Fatal(err)
}
// Notify publication of tx2
tx2 := wire.MsgTx{}
tx2.AddTxIn(&wire.TxIn{
PreviousOutPoint: wire.OutPoint{
Index: 2,
},
})
err = store.NotifyPublishTx(&tx2)
if err != nil {
t.Fatal(err)
}
// Recreate the sweeper store
store, err = createStore()
if err != nil {
t.Fatal(err)
}
// Assert that last published tx2 is present.
retrievedTx, err = store.GetLastPublishedTx()
if err != nil {
t.Fatal(err)
}
if tx2.TxHash() != retrievedTx.TxHash() {
t.Fatal("txes do not match")
}
// Assert that both txes are recognized as our own.
ours, err := store.IsOurTx(tx1.TxHash())
if err != nil {
t.Fatal(err)
}
if !ours {
t.Fatal("expected tx to be ours")
}
ours, err = store.IsOurTx(tx2.TxHash())
if err != nil {
t.Fatal(err)
}
if !ours {
t.Fatal("expected tx to be ours")
}
// An different hash should be reported on as not being ours.
var unknownHash chainhash.Hash
ours, err = store.IsOurTx(unknownHash)
if err != nil {
t.Fatal(err)
}
if ours {
t.Fatal("expected tx to be not ours")
}
}

@ -1,24 +1,88 @@
package sweep package sweep
import ( import (
"github.com/btcsuite/btcd/blockchain" "errors"
"github.com/btcsuite/btcd/txscript" "fmt"
"math/rand"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil" "github.com/btcsuite/btcutil"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/lnwallet"
) )
// UtxoSweeper provides the functionality to generate sweep txes. The plan is var (
// to extend UtxoSweeper in the future to also manage the actual sweeping // ErrRemoteSpend is returned in case an output that we try to sweep is
// process by itself. // confirmed in a tx of the remote party.
ErrRemoteSpend = errors.New("remote party swept utxo")
// ErrTooManyAttempts is returned in case sweeping an output has failed
// for the configured max number of attempts.
ErrTooManyAttempts = errors.New("sweep failed after max attempts")
// DefaultMaxSweepAttempts specifies the default maximum number of times
// an input is included in a publish attempt before giving up and
// returning an error to the caller.
DefaultMaxSweepAttempts = 10
)
// pendingInput is created when an input reaches the main loop for the first
// time. It tracks all relevant state that is needed for sweeping.
type pendingInput struct {
// listeners is a list of channels over which the final outcome of the
// sweep needs to be broadcasted.
listeners []chan Result
// input is the original struct that contains the input and sign
// descriptor.
input Input
// ntfnRegCancel is populated with a function that cancels the chain
// notifier spend registration.
ntfnRegCancel func()
// minPublishHeight indicates the minimum block height at which this
// input may be (re)published.
minPublishHeight int32
// publishAttempts records the number of attempts that have already been
// made to sweep this tx.
publishAttempts int
}
// UtxoSweeper is responsible for sweeping outputs back into the wallet
type UtxoSweeper struct { type UtxoSweeper struct {
started uint32 // To be used atomically.
stopped uint32 // To be used atomically.
cfg *UtxoSweeperConfig cfg *UtxoSweeperConfig
newInputs chan *sweepInputMessage
spendChan chan *chainntnfs.SpendDetail
pendingInputs map[wire.OutPoint]*pendingInput
// timer is the channel that signals expiry of the sweep batch timer.
timer <-chan time.Time
testSpendChan chan wire.OutPoint
currentOutputScript []byte
relayFeePerKW lnwallet.SatPerKWeight
quit chan struct{}
wg sync.WaitGroup
} }
// UtxoSweeperConfig contains dependencies of UtxoSweeper. // UtxoSweeperConfig contains dependencies of UtxoSweeper.
type UtxoSweeperConfig struct { type UtxoSweeperConfig struct {
// GenSweepScript generates a P2WKH script belonging to the wallet // GenSweepScript generates a P2WKH script belonging to the wallet where
// where funds can be swept. // funds can be swept.
GenSweepScript func() ([]byte, error) GenSweepScript func() ([]byte, error)
// Estimator is used when crafting sweep transactions to estimate the // Estimator is used when crafting sweep transactions to estimate the
@ -26,18 +90,651 @@ type UtxoSweeperConfig struct {
// transaction. // transaction.
Estimator lnwallet.FeeEstimator Estimator lnwallet.FeeEstimator
// PublishTransaction facilitates the process of broadcasting a signed
// transaction to the appropriate network.
PublishTransaction func(*wire.MsgTx) error
// NewBatchTimer creates a channel that will be sent on when a certain
// time window has passed. During this time window, new inputs can still
// be added to the sweep tx that is about to be generated.
NewBatchTimer func() <-chan time.Time
// Notifier is an instance of a chain notifier we'll use to watch for
// certain on-chain events.
Notifier chainntnfs.ChainNotifier
// ChainIO is used to determine the current block height.
ChainIO lnwallet.BlockChainIO
// Store stores the published sweeper txes.
Store SweeperStore
// Signer is used by the sweeper to generate valid witnesses at the // Signer is used by the sweeper to generate valid witnesses at the
// time the incubated outputs need to be spent. // time the incubated outputs need to be spent.
Signer lnwallet.Signer Signer lnwallet.Signer
// SweepTxConfTarget assigns a confirmation target for sweep txes on
// which the fee calculation will be based.
SweepTxConfTarget uint32
// MaxInputsPerTx specifies the default maximum number of inputs allowed
// in a single sweep tx. If more need to be swept, multiple txes are
// created and published.
MaxInputsPerTx int
// MaxSweepAttempts specifies the maximum number of times an input is
// included in a publish attempt before giving up and returning an error
// to the caller.
MaxSweepAttempts int
// NextAttemptDeltaFunc returns given the number of already attempted
// sweeps, how many blocks to wait before retrying to sweep.
NextAttemptDeltaFunc func(int) int32
} }
// New returns a new UtxoSweeper instance. // Result is the struct that is pushed through the result channel. Callers can
// use this to be informed of the final sweep result. In case of a remote
// spend, Err will be ErrRemoteSpend.
type Result struct {
// Err is the final result of the sweep. It is nil when the input is
// swept successfully by us. ErrRemoteSpend is returned when another
// party took the input.
Err error
// Tx is the transaction that spent the input.
Tx *wire.MsgTx
}
// sweepInputMessage structs are used in the internal channel between the
// SweepInput call and the sweeper main loop.
type sweepInputMessage struct {
input Input
resultChan chan Result
}
// New returns a new Sweeper instance.
func New(cfg *UtxoSweeperConfig) *UtxoSweeper { func New(cfg *UtxoSweeperConfig) *UtxoSweeper {
return &UtxoSweeper{ return &UtxoSweeper{
cfg: cfg, cfg: cfg,
newInputs: make(chan *sweepInputMessage),
spendChan: make(chan *chainntnfs.SpendDetail),
quit: make(chan struct{}),
pendingInputs: make(map[wire.OutPoint]*pendingInput),
} }
} }
// Start starts the process of constructing and publish sweep txes.
func (s *UtxoSweeper) Start() error {
if !atomic.CompareAndSwapUint32(&s.started, 0, 1) {
return nil
}
log.Tracef("Sweeper starting")
// Retrieve last published tx from database.
lastTx, err := s.cfg.Store.GetLastPublishedTx()
if err != nil {
return fmt.Errorf("get last published tx: %v", err)
}
// Republish in case the previous call crashed lnd. We don't care about
// the return value, because inputs will be re-offered and retried
// anyway. The only reason we republish here is to prevent the corner
// case where lnd goes into a restart loop because of a crashing publish
// tx where we keep deriving new output script. By publishing and
// possibly crashing already now, we haven't derived a new output script
// yet.
if lastTx != nil {
log.Debugf("Publishing last tx %v", lastTx.TxHash())
// Error can be ignored. Because we are starting up, there are
// no pending inputs to update based on the publish result.
err := s.cfg.PublishTransaction(lastTx)
if err != nil && err != lnwallet.ErrDoubleSpend {
log.Errorf("last tx publish: %v", err)
}
}
// Retrieve relay fee for dust limit calculation. Assume that this will
// not change from here on.
s.relayFeePerKW = s.cfg.Estimator.RelayFeePerKW()
// Register for block epochs to retry sweeping every block.
bestHash, bestHeight, err := s.cfg.ChainIO.GetBestBlock()
if err != nil {
return fmt.Errorf("get best block: %v", err)
}
log.Debugf("Best height: %v", bestHeight)
blockEpochs, err := s.cfg.Notifier.RegisterBlockEpochNtfn(
&chainntnfs.BlockEpoch{
Height: bestHeight,
Hash: bestHash,
},
)
if err != nil {
return fmt.Errorf("register block epoch ntfn: %v", err)
}
// Start sweeper main loop.
s.wg.Add(1)
go func() {
defer blockEpochs.Cancel()
defer s.wg.Done()
err := s.collector(blockEpochs.Epochs, bestHeight)
if err != nil {
log.Errorf("sweeper stopped: %v", err)
}
}()
return nil
}
// Stop stops sweeper from listening to block epochs and constructing sweep
// txes.
func (s *UtxoSweeper) Stop() error {
if !atomic.CompareAndSwapUint32(&s.stopped, 0, 1) {
return nil
}
log.Debugf("Sweeper shutting down")
close(s.quit)
s.wg.Wait()
log.Debugf("Sweeper shut down")
return nil
}
// SweepInput sweeps inputs back into the wallet. The inputs will be batched and
// swept after the batch time window ends.
//
// NOTE: Extreme care needs to be taken that input isn't changed externally.
// Because it is an interface and we don't know what is exactly behind it, we
// cannot make a local copy in sweeper.
func (s *UtxoSweeper) SweepInput(input Input) (chan Result, error) {
if input == nil || input.OutPoint() == nil || input.SignDesc() == nil {
return nil, errors.New("nil input received")
}
log.Infof("Sweep request received: out_point=%v, witness_type=%v, "+
"time_lock=%v, size=%v", input.OutPoint(), input.WitnessType(),
input.BlocksToMaturity(),
btcutil.Amount(input.SignDesc().Output.Value))
sweeperInput := &sweepInputMessage{
input: input,
resultChan: make(chan Result, 1),
}
// Deliver input to main event loop.
select {
case s.newInputs <- sweeperInput:
case <-s.quit:
return nil, fmt.Errorf("sweeper shutting down")
}
return sweeperInput.resultChan, nil
}
// collector is the sweeper main loop. It processes new inputs, spend
// notifications and counts down to publication of the sweep tx.
func (s *UtxoSweeper) collector(blockEpochs <-chan *chainntnfs.BlockEpoch,
bestHeight int32) error {
for {
select {
// A new inputs is offered to the sweeper. We check to see if we
// are already trying to sweep this input and if not, set up a
// listener for spend and schedule a sweep.
case input := <-s.newInputs:
outpoint := *input.input.OutPoint()
pendInput, pending := s.pendingInputs[outpoint]
if pending {
log.Debugf("Already pending input %v received",
outpoint)
// Add additional result channel to signal
// spend of this input.
pendInput.listeners = append(
pendInput.listeners, input.resultChan,
)
continue
}
// Create a new pendingInput and initialize the
// listeners slice with the passed in result channel. If
// this input is offered for sweep again, the result
// channel will be appended to this slice.
pendInput = &pendingInput{
listeners: []chan Result{input.resultChan},
input: input.input,
minPublishHeight: bestHeight,
}
s.pendingInputs[outpoint] = pendInput
// Start watching for spend of this input, either by us
// or the remote party.
cancel, err := s.waitForSpend(
outpoint,
input.input.SignDesc().Output.PkScript,
input.input.HeightHint(),
)
if err != nil {
err := fmt.Errorf("wait for spend: %v", err)
s.signalAndRemove(&outpoint, Result{Err: err})
continue
}
pendInput.ntfnRegCancel = cancel
// Check to see if with this new input a sweep tx can be
// formed.
if err := s.scheduleSweep(bestHeight); err != nil {
log.Errorf("schedule sweep: %v", err)
}
// A spend of one of our inputs is detected. Signal sweep
// results to the caller(s).
case spend := <-s.spendChan:
// For testing purposes.
if s.testSpendChan != nil {
s.testSpendChan <- *spend.SpentOutPoint
}
// Query store to find out if we every published this
// tx.
spendHash := *spend.SpenderTxHash
isOurTx, err := s.cfg.Store.IsOurTx(spendHash)
if err != nil {
log.Errorf("cannot determine if tx %v "+
"is ours: %v", spendHash, err,
)
continue
}
log.Debugf("Detected spend related to in flight inputs "+
"(is_ours=%v): %v",
newLogClosure(func() string {
return spew.Sdump(spend.SpendingTx)
}), isOurTx,
)
// Signal sweep results for inputs in this confirmed
// tx.
for _, txIn := range spend.SpendingTx.TxIn {
outpoint := txIn.PreviousOutPoint
// Check if this input is known to us. It could
// probably be unknown if we canceled the
// registration, deleted from pendingInputs but
// the ntfn was in-flight already. Or this could
// be not one of our inputs.
_, ok := s.pendingInputs[outpoint]
if !ok {
continue
}
// Return either a nil or a remote spend result.
var err error
if !isOurTx {
err = ErrRemoteSpend
}
// Signal result channels.
s.signalAndRemove(&outpoint, Result{
Tx: spend.SpendingTx,
Err: err,
})
}
// Now that an input of ours is spent, we can try to
// resweep the remaining inputs.
if err := s.scheduleSweep(bestHeight); err != nil {
log.Errorf("schedule sweep: %v", err)
}
// The timer expires and we are going to (re)sweep.
case <-s.timer:
log.Debugf("Sweep timer expired")
// Set timer to nil so we know that a new timer needs to
// be started when new inputs arrive.
s.timer = nil
// Retrieve fee estimate for input filtering and final
// tx fee calculation.
satPerKW, err := s.cfg.Estimator.EstimateFeePerKW(
s.cfg.SweepTxConfTarget,
)
if err != nil {
log.Errorf("estimate fee: %v", err)
continue
}
// Examine pending inputs and try to construct lists of
// inputs.
inputLists, err := s.getInputLists(bestHeight, satPerKW)
if err != nil {
log.Errorf("get input lists: %v", err)
continue
}
// Sweep selected inputs.
for _, inputs := range inputLists {
err := s.sweep(inputs, satPerKW, bestHeight)
if err != nil {
log.Errorf("sweep: %v", err)
}
}
// A new block comes in. Things may have changed, so we retry a
// sweep.
case epoch, ok := <-blockEpochs:
if !ok {
return nil
}
bestHeight = epoch.Height
log.Debugf("New blocks: height=%v, sha=%v",
epoch.Height, epoch.Hash)
if err := s.scheduleSweep(bestHeight); err != nil {
log.Errorf("schedule sweep: %v", err)
}
case <-s.quit:
return nil
}
}
}
// scheduleSweep starts the sweep timer to create an opportunity for more inputs
// to be added.
func (s *UtxoSweeper) scheduleSweep(currentHeight int32) error {
// The timer is already ticking, no action needed for the sweep to
// happen.
if s.timer != nil {
log.Debugf("Timer still ticking")
return nil
}
// Retrieve fee estimate for input filtering and final tx fee
// calculation.
satPerKW, err := s.cfg.Estimator.EstimateFeePerKW(
s.cfg.SweepTxConfTarget,
)
if err != nil {
return fmt.Errorf("estimate fee: %v", err)
}
// Examine pending inputs and try to construct lists of inputs.
inputLists, err := s.getInputLists(currentHeight, satPerKW)
if err != nil {
return fmt.Errorf("get input lists: %v", err)
}
log.Infof("Sweep candidates at height=%v, yield %v distinct txns",
currentHeight, len(inputLists))
// If there are no input sets, there is nothing sweepable and we can
// return without starting the timer.
if len(inputLists) == 0 {
return nil
}
// Start sweep timer to create opportunity for more inputs to be added
// before a tx is constructed.
s.timer = s.cfg.NewBatchTimer()
log.Debugf("Sweep timer started")
return nil
}
// signalAndRemove notifies the listeners of the final result of the input
// sweep. It cancels any pending spend notification and removes the input from
// the list of pending inputs. When this function returns, the sweeper has
// completely forgotten about the input.
func (s *UtxoSweeper) signalAndRemove(outpoint *wire.OutPoint, result Result) {
pendInput := s.pendingInputs[*outpoint]
listeners := pendInput.listeners
if result.Err == nil {
log.Debugf("Dispatching sweep success for %v to %v listeners",
outpoint, len(listeners),
)
} else {
log.Debugf("Dispatching sweep error for %v to %v listeners: %v",
outpoint, len(listeners), result.Err,
)
}
// Signal all listeners. Channel is buffered. Because we only send once
// on every channel, it should never block.
for _, resultChan := range listeners {
resultChan <- result
}
// Cancel spend notification with chain notifier. This is not necessary
// in case of a success, except for that a reorg could still happen.
if pendInput.ntfnRegCancel != nil {
log.Debugf("Canceling spend ntfn for %v", outpoint)
pendInput.ntfnRegCancel()
}
// Inputs are no longer pending after result has been sent.
delete(s.pendingInputs, *outpoint)
}
// getInputLists goes through all pending inputs and constructs sweep lists,
// each up to the configured maximum number of inputs. Negative yield inputs are
// skipped. Transactions with an output below the dust limit are not published.
// Those inputs remain pending and will be bundled with future inputs if
// possible.
func (s *UtxoSweeper) getInputLists(currentHeight int32,
satPerKW lnwallet.SatPerKWeight) ([]inputSet, error) {
// Filter for inputs that need to be swept. Create two lists: all
// sweepable inputs and a list containing only the new, never tried
// inputs.
//
// We want to create as large a tx as possible, so we return a final set
// list that starts with sets created from all inputs. However, there is
// a chance that those txes will not publish, because they already
// contain inputs that failed before. Therefore we also add sets
// consisting of only new inputs to the list, to make sure that new
// inputs are given a good, isolated chance of being published.
var newInputs, retryInputs []Input
for _, input := range s.pendingInputs {
// Skip inputs that have a minimum publish height that is not
// yet reached.
if input.minPublishHeight > currentHeight {
continue
}
// Add input to the either one of the lists.
if input.publishAttempts == 0 {
newInputs = append(newInputs, input.input)
} else {
retryInputs = append(retryInputs, input.input)
}
}
// If there is anything to retry, combine it with the new inputs and
// form input sets.
var allSets []inputSet
if len(retryInputs) > 0 {
var err error
allSets, err = generateInputPartitionings(
append(retryInputs, newInputs...),
s.relayFeePerKW, satPerKW,
s.cfg.MaxInputsPerTx,
)
if err != nil {
return nil, fmt.Errorf("input partitionings: %v", err)
}
}
// Create sets for just the new inputs.
newSets, err := generateInputPartitionings(
newInputs,
s.relayFeePerKW, satPerKW,
s.cfg.MaxInputsPerTx,
)
if err != nil {
return nil, fmt.Errorf("input partitionings: %v", err)
}
log.Debugf("Sweep candidates at height=%v: total_num_pending=%v, "+
"total_num_new=%v", currentHeight, len(allSets), len(newSets))
// Append the new sets at the end of the list, because those tx likely
// have a higher fee per input.
return append(allSets, newSets...), nil
}
// sweep takes a set of preselected inputs, creates a sweep tx and publishes the
// tx. The output address is only marked as used if the publish succeeds.
func (s *UtxoSweeper) sweep(inputs inputSet,
satPerKW lnwallet.SatPerKWeight, currentHeight int32) error {
var err error
// Generate output script if no unused script available.
if s.currentOutputScript == nil {
s.currentOutputScript, err = s.cfg.GenSweepScript()
if err != nil {
return fmt.Errorf("gen sweep script: %v", err)
}
}
// Create sweep tx.
tx, err := createSweepTx(
inputs, s.currentOutputScript,
uint32(currentHeight), satPerKW, s.cfg.Signer,
)
if err != nil {
return fmt.Errorf("create sweep tx: %v", err)
}
// Add tx before publication, so that we will always know that a spend
// by this tx is ours. Otherwise if the publish doesn't return, but did
// publish, we loose track of this tx. Even republication on startup
// doesn't prevent this, because that call returns a double spend error
// then and would also not add the hash to the store.
err = s.cfg.Store.NotifyPublishTx(tx)
if err != nil {
return fmt.Errorf("notify publish tx: %v", err)
}
// Publish sweep tx.
log.Debugf("Publishing sweep tx %v, num_inputs=%v, height=%v",
tx.TxHash(), len(tx.TxIn), currentHeight)
log.Tracef("Sweep tx at height=%v: %v", currentHeight,
newLogClosure(func() string {
return spew.Sdump(tx)
}),
)
err = s.cfg.PublishTransaction(tx)
// In case of an unexpected error, don't try to recover.
if err != nil && err != lnwallet.ErrDoubleSpend {
return fmt.Errorf("publish tx: %v", err)
}
// Keep outputScript in case of an error, so that it can be reused for
// the next tx and causes no address inflation.
if err == nil {
s.currentOutputScript = nil
}
// Reschedule sweep.
for _, input := range tx.TxIn {
pi, ok := s.pendingInputs[input.PreviousOutPoint]
if !ok {
// It can be that the input has been removed because it
// exceed the maximum number of attempts in a previous
// input set.
continue
}
// Record another publish attempt.
pi.publishAttempts++
// We don't care what the result of the publish call was. Even
// if it is published successfully, it can still be that it
// needs to be retried. Call NextAttemptDeltaFunc to calculate
// when to resweep this input.
nextAttemptDelta := s.cfg.NextAttemptDeltaFunc(
pi.publishAttempts,
)
pi.minPublishHeight = currentHeight + nextAttemptDelta
log.Debugf("Rescheduling input %v after %v attempts at "+
"height %v (delta %v)", input.PreviousOutPoint,
pi.publishAttempts, pi.minPublishHeight,
nextAttemptDelta)
if pi.publishAttempts >= s.cfg.MaxSweepAttempts {
// Signal result channels sweep result.
s.signalAndRemove(&input.PreviousOutPoint, Result{
Err: ErrTooManyAttempts,
})
}
}
return nil
}
// waitForSpend registers a spend notification with the chain notifier. It
// returns a cancel function that can be used to cancel the registration.
func (s *UtxoSweeper) waitForSpend(outpoint wire.OutPoint,
script []byte, heightHint uint32) (func(), error) {
log.Debugf("Wait for spend of %v", outpoint)
spendEvent, err := s.cfg.Notifier.RegisterSpendNtfn(
&outpoint, script, heightHint,
)
if err != nil {
return nil, fmt.Errorf("register spend ntfn: %v", err)
}
s.wg.Add(1)
go func() {
defer s.wg.Done()
select {
case spend, ok := <-spendEvent.Spend:
if !ok {
log.Debugf("Spend ntfn for %v canceled",
outpoint)
return
}
log.Debugf("Delivering spend ntfn for %v",
outpoint)
select {
case s.spendChan <- spend:
log.Debugf("Delivered spend ntfn for %v",
outpoint)
case <-s.quit:
}
case <-s.quit:
}
}()
return spendEvent.Cancel, nil
}
// CreateSweepTx accepts a list of inputs and signs and generates a txn that // CreateSweepTx accepts a list of inputs and signs and generates a txn that
// spends from them. This method also makes an accurate fee estimate before // spends from them. This method also makes an accurate fee estimate before
// generating the required witnesses. // generating the required witnesses.
@ -56,179 +753,31 @@ func New(cfg *UtxoSweeperConfig) *UtxoSweeper {
func (s *UtxoSweeper) CreateSweepTx(inputs []Input, confTarget uint32, func (s *UtxoSweeper) CreateSweepTx(inputs []Input, confTarget uint32,
currentBlockHeight uint32) (*wire.MsgTx, error) { currentBlockHeight uint32) (*wire.MsgTx, error) {
feePerKw, err := s.cfg.Estimator.EstimateFeePerKW(confTarget)
if err != nil {
return nil, err
}
// Generate the receiving script to which the funds will be swept. // Generate the receiving script to which the funds will be swept.
pkScript, err := s.cfg.GenSweepScript() pkScript, err := s.cfg.GenSweepScript()
if err != nil { if err != nil {
return nil, err return nil, err
} }
// Using the txn weight estimate, compute the required txn fee. return createSweepTx(
feePerKw, err := s.cfg.Estimator.EstimateFeePerKW(confTarget) inputs, pkScript, currentBlockHeight, feePerKw, s.cfg.Signer,
if err != nil {
return nil, err
}
inputs, txWeight, csvCount, cltvCount := s.getWeightEstimate(inputs)
log.Infof("Creating sweep transaction for %v inputs (%v CSV, %v CLTV) "+
"using %v sat/kw", len(inputs), csvCount, cltvCount,
int64(feePerKw))
txFee := feePerKw.FeeForWeight(txWeight)
// Sum up the total value contained in the inputs.
var totalSum btcutil.Amount
for _, o := range inputs {
totalSum += btcutil.Amount(o.SignDesc().Output.Value)
}
// Sweep as much possible, after subtracting txn fees.
sweepAmt := int64(totalSum - txFee)
// Create the sweep transaction that we will be building. We use
// version 2 as it is required for CSV. The txn will sweep the amount
// after fees to the pkscript generated above.
sweepTx := wire.NewMsgTx(2)
sweepTx.AddTxOut(&wire.TxOut{
PkScript: pkScript,
Value: sweepAmt,
})
sweepTx.LockTime = currentBlockHeight
// Add all inputs to the sweep transaction. Ensure that for each
// csvInput, we set the sequence number properly.
for _, input := range inputs {
sweepTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *input.OutPoint(),
Sequence: input.BlocksToMaturity(),
})
}
// Before signing the transaction, check to ensure that it meets some
// basic validity requirements.
//
// TODO(conner): add more control to sanity checks, allowing us to
// delay spending "problem" outputs, e.g. possibly batching with other
// classes if fees are too low.
btx := btcutil.NewTx(sweepTx)
if err := blockchain.CheckTransactionSanity(btx); err != nil {
return nil, err
}
hashCache := txscript.NewTxSigHashes(sweepTx)
// With all the inputs in place, use each output's unique witness
// function to generate the final witness required for spending.
addWitness := func(idx int, tso Input) error {
witness, err := tso.BuildWitness(
s.cfg.Signer, sweepTx, hashCache, idx,
) )
if err != nil {
return err
}
sweepTx.TxIn[idx].Witness = witness
return nil
}
// Finally we'll attach a valid witness to each csv and cltv input
// within the sweeping transaction.
for i, input := range inputs {
if err := addWitness(i, input); err != nil {
return nil, err
}
}
return sweepTx, nil
} }
// getWeightEstimate returns a weight estimate for the given inputs. // DefaultNextAttemptDeltaFunc is the default calculation for next sweep attempt
// Additionally, it returns counts for the number of csv and cltv inputs. // scheduling. It implements exponential back-off with some randomness. This is
func (s *UtxoSweeper) getWeightEstimate(inputs []Input) ([]Input, int64, int, int) { // to prevent a stuck tx (for example because fee is too low and can't be bumped
// We initialize a weight estimator so we can accurately asses the // in btcd) from blocking all other retried inputs in the same tx.
// amount of fees we need to pay for this sweep transaction. func DefaultNextAttemptDeltaFunc(attempts int) int32 {
// return 1 + rand.Int31n(1<<uint(attempts-1))
// TODO(roasbeef): can be more intelligent about buffering outputs to }
// be more efficient on-chain.
var weightEstimate lnwallet.TxWeightEstimator // init initializes the random generator for random input rescheduling.
func init() {
// Our sweep transaction will pay to a single segwit p2wkh address, rand.Seed(time.Now().Unix())
// ensure it contributes to our weight estimate.
weightEstimate.AddP2WKHOutput()
// For each output, use its witness type to determine the estimate
// weight of its witness, and add it to the proper set of spendable
// outputs.
var (
sweepInputs []Input
csvCount, cltvCount int
)
for i := range inputs {
input := inputs[i]
switch input.WitnessType() {
// Outputs on a remote commitment transaction that pay directly
// to us.
case lnwallet.CommitmentNoDelay:
weightEstimate.AddP2WKHInput()
sweepInputs = append(sweepInputs, input)
// Outputs on a past commitment transaction that pay directly
// to us.
case lnwallet.CommitmentTimeLock:
weightEstimate.AddWitnessInput(
lnwallet.ToLocalTimeoutWitnessSize,
)
sweepInputs = append(sweepInputs, input)
csvCount++
// Outgoing second layer HTLC's that have confirmed within the
// chain, and the output they produced is now mature enough to
// sweep.
case lnwallet.HtlcOfferedTimeoutSecondLevel:
weightEstimate.AddWitnessInput(
lnwallet.ToLocalTimeoutWitnessSize,
)
sweepInputs = append(sweepInputs, input)
csvCount++
// Incoming second layer HTLC's that have confirmed within the
// chain, and the output they produced is now mature enough to
// sweep.
case lnwallet.HtlcAcceptedSuccessSecondLevel:
weightEstimate.AddWitnessInput(
lnwallet.ToLocalTimeoutWitnessSize,
)
sweepInputs = append(sweepInputs, input)
csvCount++
// An HTLC on the commitment transaction of the remote party,
// that has had its absolute timelock expire.
case lnwallet.HtlcOfferedRemoteTimeout:
weightEstimate.AddWitnessInput(
lnwallet.AcceptedHtlcTimeoutWitnessSize,
)
sweepInputs = append(sweepInputs, input)
cltvCount++
// An HTLC on the commitment transaction of the remote party,
// that can be swept with the preimage.
case lnwallet.HtlcAcceptedRemoteSuccess:
weightEstimate.AddWitnessInput(
lnwallet.OfferedHtlcSuccessWitnessSize,
)
sweepInputs = append(sweepInputs, input)
default:
log.Warnf("kindergarten output in nursery store "+
"contains unexpected witness type: %v",
input.WitnessType())
}
}
txWeight := int64(weightEstimate.Weight())
return sweepInputs, txWeight, csvCount, cltvCount
} }

902
sweep/sweeper_test.go Normal file

@ -0,0 +1,902 @@
package sweep
import (
"os"
"runtime/debug"
"runtime/pprof"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/build"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnwallet"
)
var (
testLog = build.NewSubLogger("SWPR_TEST", nil)
testMaxSweepAttempts = 3
testMaxInputsPerTx = 3
)
type sweeperTestContext struct {
t *testing.T
sweeper *UtxoSweeper
notifier *MockNotifier
estimator *mockFeeEstimator
backend *mockBackend
store *MockSweeperStore
timeoutChan chan chan time.Time
publishChan chan wire.MsgTx
}
var (
spendableInputs []*BaseInput
testInputCount int
testPubKey, _ = btcec.ParsePubKey([]byte{
0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
}, btcec.S256())
)
func createTestInput(value int64, witnessType lnwallet.WitnessType) BaseInput {
hash := chainhash.Hash{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
byte(testInputCount)}
input := MakeBaseInput(
&wire.OutPoint{
Hash: hash,
},
witnessType,
&lnwallet.SignDescriptor{
Output: &wire.TxOut{
Value: value,
},
KeyDesc: keychain.KeyDescriptor{
PubKey: testPubKey,
},
},
0,
)
testInputCount++
return input
}
func init() {
// Create a set of test spendable inputs.
for i := 0; i < 5; i++ {
input := createTestInput(int64(10000+i*500),
lnwallet.CommitmentTimeLock)
spendableInputs = append(spendableInputs, &input)
}
}
func createSweeperTestContext(t *testing.T) *sweeperTestContext {
notifier := NewMockNotifier(t)
store := NewMockSweeperStore()
backend := newMockBackend(notifier)
estimator := newMockFeeEstimator(10000, 1000)
publishChan := make(chan wire.MsgTx, 2)
ctx := &sweeperTestContext{
notifier: notifier,
publishChan: publishChan,
t: t,
estimator: estimator,
backend: backend,
store: store,
timeoutChan: make(chan chan time.Time, 1),
}
var outputScriptCount byte
ctx.sweeper = New(&UtxoSweeperConfig{
Notifier: notifier,
PublishTransaction: func(tx *wire.MsgTx) error {
log.Tracef("Publishing tx %v", tx.TxHash())
err := backend.publishTransaction(tx)
select {
case publishChan <- *tx:
case <-time.After(defaultTestTimeout):
t.Fatalf("unexpected tx published")
}
return err
},
NewBatchTimer: func() <-chan time.Time {
c := make(chan time.Time, 1)
ctx.timeoutChan <- c
return c
},
Store: store,
Signer: &mockSigner{},
SweepTxConfTarget: 1,
ChainIO: &mockChainIO{},
GenSweepScript: func() ([]byte, error) {
script := []byte{outputScriptCount}
outputScriptCount++
return script, nil
},
Estimator: estimator,
MaxInputsPerTx: testMaxInputsPerTx,
MaxSweepAttempts: testMaxSweepAttempts,
NextAttemptDeltaFunc: func(attempts int) int32 {
// Use delta func without random factor.
return 1 << uint(attempts-1)
},
})
ctx.sweeper.Start()
return ctx
}
func (ctx *sweeperTestContext) tick() {
testLog.Trace("Waiting for tick to be consumed")
select {
case c := <-ctx.timeoutChan:
select {
case c <- time.Time{}:
testLog.Trace("Tick")
case <-time.After(defaultTestTimeout):
debug.PrintStack()
ctx.t.Fatal("tick timeout - tick not consumed")
}
case <-time.After(defaultTestTimeout):
debug.PrintStack()
ctx.t.Fatal("tick timeout - no new timer created")
}
}
func (ctx *sweeperTestContext) assertNoNewTimer() {
select {
case <-ctx.timeoutChan:
ctx.t.Fatal("no new timer expected")
default:
}
}
func (ctx *sweeperTestContext) finish(expectedGoroutineCount int) {
// We assume that when finish is called, sweeper has finished all its
// goroutines. This implies that the waitgroup is empty.
signalChan := make(chan struct{})
go func() {
ctx.sweeper.wg.Wait()
close(signalChan)
}()
// Simulate exits of the expected number of running goroutines.
for i := 0; i < expectedGoroutineCount; i++ {
ctx.sweeper.wg.Done()
}
// We now expect the Wait to succeed.
select {
case <-signalChan:
case <-time.After(time.Second):
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
ctx.t.Fatalf("lingering goroutines detected after test " +
"is finished")
}
// Restore waitgroup state to what it was before.
ctx.sweeper.wg.Add(expectedGoroutineCount)
// Stop sweeper.
ctx.sweeper.Stop()
// We should have consumed and asserted all published transactions in
// our unit tests.
ctx.assertNoTx()
ctx.assertNoNewTimer()
if !ctx.backend.isDone() {
ctx.t.Fatal("unconfirmed txes remaining")
}
}
func (ctx *sweeperTestContext) assertNoTx() {
ctx.t.Helper()
select {
case <-ctx.publishChan:
ctx.t.Fatalf("unexpected transactions published")
default:
}
}
func (ctx *sweeperTestContext) receiveTx() wire.MsgTx {
ctx.t.Helper()
var tx wire.MsgTx
select {
case tx = <-ctx.publishChan:
return tx
case <-time.After(5 * time.Second):
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
ctx.t.Fatalf("tx not published")
}
return tx
}
func (ctx *sweeperTestContext) expectResult(c chan Result, expected error) {
ctx.t.Helper()
select {
case result := <-c:
if result.Err != expected {
ctx.t.Fatalf("expected %v result, but got %v",
expected, result.Err,
)
}
case <-time.After(defaultTestTimeout):
ctx.t.Fatalf("no result received")
}
}
// TestSuccess tests the sweeper happy flow.
func TestSuccess(t *testing.T) {
ctx := createSweeperTestContext(t)
resultChan, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
ctx.backend.mine()
select {
case result := <-resultChan:
if result.Err != nil {
t.Fatalf("expected successful spend, but received "+
"error %v instead", result.Err)
}
if result.Tx.TxHash() != sweepTx.TxHash() {
t.Fatalf("expected sweep tx ")
}
case <-time.After(5 * time.Second):
t.Fatalf("no result received")
}
ctx.finish(1)
// Assert that last tx is stored in the database so we can republish
// on restart.
lastTx, err := ctx.store.GetLastPublishedTx()
if err != nil {
t.Fatal(err)
}
if lastTx == nil || sweepTx.TxHash() != lastTx.TxHash() {
t.Fatalf("last tx not stored")
}
}
// TestDust asserts that inputs that are not big enough to raise above the dust
// limit, are held back until the total set does surpass the limit.
func TestDust(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweeping a single output produces a tx of 486 weight units. With the
// test fee rate, the sweep tx will pay 4860 sat in fees.
//
// Create an input so that the output after paying fees is still
// positive (400 sat), but less than the dust limit (537 sat) for the
// sweep tx output script (P2WPKH).
dustInput := createTestInput(5260, lnwallet.CommitmentTimeLock)
_, err := ctx.sweeper.SweepInput(&dustInput)
if err != nil {
t.Fatal(err)
}
// No sweep transaction is expected now. The sweeper should recognize
// that the sweep output will not be relayed and not generate the tx.
// Sweep another input that brings the tx output above the dust limit.
largeInput := createTestInput(100000, lnwallet.CommitmentTimeLock)
_, err = ctx.sweeper.SweepInput(&largeInput)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// The second input brings the sweep output above the dust limit. We
// expect a sweep tx now.
sweepTx := ctx.receiveTx()
if len(sweepTx.TxIn) != 2 {
t.Fatalf("Expected tx to sweep 2 inputs, but contains %v "+
"inputs instead", len(sweepTx.TxIn))
}
ctx.backend.mine()
ctx.finish(1)
}
// TestNegativeInput asserts that no inputs with a negative yield are swept.
// Negative yield means that the value minus the added fee is negative.
func TestNegativeInput(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep an input large enough to cover fees, so in any case the tx
// output will be above the dust limit.
largeInput := createTestInput(100000, lnwallet.CommitmentNoDelay)
largeInputResult, err := ctx.sweeper.SweepInput(&largeInput)
if err != nil {
t.Fatal(err)
}
// Sweep an additional input with a negative net yield. The weight of
// the HtlcAcceptedRemoteSuccess input type adds more in fees than its
// value at the current fee level.
negInput := createTestInput(2900, lnwallet.HtlcOfferedRemoteTimeout)
negInputResult, err := ctx.sweeper.SweepInput(&negInput)
if err != nil {
t.Fatal(err)
}
// Sweep a third input that has a smaller output than the previous one,
// but yields positively because of its lower weight.
positiveInput := createTestInput(2800, lnwallet.CommitmentNoDelay)
positiveInputResult, err := ctx.sweeper.SweepInput(&positiveInput)
if err != nil {
t.Fatal(err)
}
ctx.tick()
// We expect that a sweep tx is published now, but it should only
// contain the large input. The negative input should stay out of sweeps
// until fees come down to get a positive net yield.
sweepTx1 := ctx.receiveTx()
if !testTxIns(&sweepTx1, []*wire.OutPoint{
largeInput.OutPoint(), positiveInput.OutPoint(),
}) {
t.Fatal("Tx does not contain expected inputs")
}
ctx.backend.mine()
ctx.expectResult(largeInputResult, nil)
ctx.expectResult(positiveInputResult, nil)
// Lower fee rate so that the negative input is no longer negative.
ctx.estimator.updateFees(1000, 1000)
// Create another large input
secondLargeInput := createTestInput(100000, lnwallet.CommitmentNoDelay)
secondLargeInputResult, err := ctx.sweeper.SweepInput(&secondLargeInput)
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx2 := ctx.receiveTx()
if !testTxIns(&sweepTx2, []*wire.OutPoint{
secondLargeInput.OutPoint(), negInput.OutPoint(),
}) {
t.Fatal("Tx does not contain expected inputs")
}
ctx.backend.mine()
ctx.expectResult(secondLargeInputResult, nil)
ctx.expectResult(negInputResult, nil)
ctx.finish(1)
}
func testTxIns(tx *wire.MsgTx, inputs []*wire.OutPoint) bool {
if len(tx.TxIn) != len(inputs) {
return false
}
ins := make(map[wire.OutPoint]struct{})
for _, in := range tx.TxIn {
ins[in.PreviousOutPoint] = struct{}{}
}
for _, expectedIn := range inputs {
if _, ok := ins[*expectedIn]; !ok {
return false
}
}
return true
}
// TestChunks asserts that large sets of inputs are split into multiple txes.
func TestChunks(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep five inputs.
for _, input := range spendableInputs[:5] {
_, err := ctx.sweeper.SweepInput(input)
if err != nil {
t.Fatal(err)
}
}
ctx.tick()
// We expect two txes to be published because of the max input count of
// three.
sweepTx1 := ctx.receiveTx()
if len(sweepTx1.TxIn) != 3 {
t.Fatalf("Expected first tx to sweep 3 inputs, but contains %v "+
"inputs instead", len(sweepTx1.TxIn))
}
sweepTx2 := ctx.receiveTx()
if len(sweepTx2.TxIn) != 2 {
t.Fatalf("Expected first tx to sweep 2 inputs, but contains %v "+
"inputs instead", len(sweepTx1.TxIn))
}
ctx.backend.mine()
ctx.finish(1)
}
// TestRemoteSpend asserts that remote spends are properly detected and handled
// both before the sweep is published as well as after.
func TestRemoteSpend(t *testing.T) {
t.Run("pre-sweep", func(t *testing.T) {
testRemoteSpend(t, false)
})
t.Run("post-sweep", func(t *testing.T) {
testRemoteSpend(t, true)
})
}
func testRemoteSpend(t *testing.T, postSweep bool) {
ctx := createSweeperTestContext(t)
resultChan1, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
resultChan2, err := ctx.sweeper.SweepInput(spendableInputs[1])
if err != nil {
t.Fatal(err)
}
// Spend the input with an unknown tx.
remoteTx := &wire.MsgTx{
TxIn: []*wire.TxIn{
{
PreviousOutPoint: *(spendableInputs[0].OutPoint()),
},
},
}
err = ctx.backend.publishTransaction(remoteTx)
if err != nil {
t.Fatal(err)
}
if postSweep {
ctx.tick()
// Tx publication by sweeper returns ErrDoubleSpend. Sweeper
// will retry the inputs without reporting a result. It could be
// spent by the remote party.
ctx.receiveTx()
}
ctx.backend.mine()
select {
case result := <-resultChan1:
if result.Err != ErrRemoteSpend {
t.Fatalf("expected remote spend")
}
if result.Tx.TxHash() != remoteTx.TxHash() {
t.Fatalf("expected remote spend tx")
}
case <-time.After(5 * time.Second):
t.Fatalf("no result received")
}
if !postSweep {
// Assert that the sweeper sweeps the remaining input.
ctx.tick()
sweepTx := ctx.receiveTx()
if len(sweepTx.TxIn) != 1 {
t.Fatal("expected sweep to only sweep the one remaining output")
}
ctx.backend.mine()
ctx.expectResult(resultChan2, nil)
ctx.finish(1)
} else {
// Expected sweeper to be still listening for spend of the
// error input.
ctx.finish(2)
select {
case <-resultChan2:
t.Fatalf("no result expected for error input")
default:
}
}
}
// TestIdempotency asserts that offering the same input multiple times is
// handled correctly.
func TestIdempotency(t *testing.T) {
ctx := createSweeperTestContext(t)
resultChan1, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
resultChan2, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
ctx.tick()
ctx.receiveTx()
resultChan3, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
// Spend the input of the sweep tx.
ctx.backend.mine()
ctx.expectResult(resultChan1, nil)
ctx.expectResult(resultChan2, nil)
ctx.expectResult(resultChan3, nil)
// Offer the same input again. The sweeper will register a spend ntfn
// for this input. Because the input has already been spent, it will
// immediately receive the spend notification with a spending tx hash.
// Because the sweeper kept track of all of its sweep txes, it will
// recognize the spend as its own.
resultChan4, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
ctx.expectResult(resultChan4, nil)
// Timer is still running, but spend notification was delivered before
// it expired.
ctx.tick()
ctx.finish(1)
}
// TestNoInputs asserts that nothing happens if nothing happens.
func TestNoInputs(t *testing.T) {
ctx := createSweeperTestContext(t)
// No tx should appear. This is asserted in finish().
ctx.finish(1)
}
// TestRestart asserts that the sweeper picks up sweeping properly after
// a restart.
func TestRestart(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep input and expect sweep tx.
_, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
ctx.tick()
ctx.receiveTx()
// Restart sweeper.
ctx.sweeper.Stop()
ctx.sweeper = New(ctx.sweeper.cfg)
ctx.sweeper.Start()
// Expect last tx to be republished.
ctx.receiveTx()
// Simulate other subsystem (eg contract resolver) re-offering inputs.
spendChan1, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
spendChan2, err := ctx.sweeper.SweepInput(spendableInputs[1])
if err != nil {
t.Fatal(err)
}
// Spend inputs of sweep txes and verify that spend channels signal
// spends.
ctx.backend.mine()
// Sweeper should recognize that its sweep tx of the previous run is
// spending the input.
select {
case result := <-spendChan1:
if result.Err != nil {
t.Fatalf("expected successful sweep")
}
case <-time.After(defaultTestTimeout):
t.Fatalf("no result received")
}
// Timer tick should trigger republishing a sweep for the remaining
// input.
ctx.tick()
ctx.receiveTx()
ctx.backend.mine()
select {
case result := <-spendChan2:
if result.Err != nil {
t.Fatalf("expected successful sweep")
}
case <-time.After(defaultTestTimeout):
t.Fatalf("no result received")
}
// Restart sweeper again. No action is expected.
ctx.sweeper.Stop()
ctx.sweeper = New(ctx.sweeper.cfg)
ctx.sweeper.Start()
// Expect last tx to be republished.
ctx.receiveTx()
ctx.finish(1)
}
// TestRestartRemoteSpend asserts that the sweeper picks up sweeping properly after
// a restart with remote spend.
func TestRestartRemoteSpend(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep input.
_, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
// Sweep another input.
_, err = ctx.sweeper.SweepInput(spendableInputs[1])
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
// Restart sweeper.
ctx.sweeper.Stop()
ctx.sweeper = New(ctx.sweeper.cfg)
ctx.sweeper.Start()
// Expect last tx to be republished.
ctx.receiveTx()
// Replace the sweep tx with a remote tx spending input 1.
ctx.backend.deleteUnconfirmed(sweepTx.TxHash())
remoteTx := &wire.MsgTx{
TxIn: []*wire.TxIn{
{
PreviousOutPoint: *(spendableInputs[1].OutPoint()),
},
},
}
err = ctx.backend.publishTransaction(remoteTx)
if err != nil {
t.Fatal(err)
}
// Mine remote spending tx.
ctx.backend.mine()
// Simulate other subsystem (eg contract resolver) re-offering input 0.
spendChan, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
// Expect sweeper to construct a new tx, because input 1 was spend
// remotely.
ctx.tick()
ctx.receiveTx()
ctx.backend.mine()
ctx.expectResult(spendChan, nil)
ctx.finish(1)
}
// TestRestartConfirmed asserts that the sweeper picks up sweeping properly after
// a restart with a confirm of our own sweep tx.
func TestRestartConfirmed(t *testing.T) {
ctx := createSweeperTestContext(t)
// Sweep input.
_, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
ctx.tick()
ctx.receiveTx()
// Restart sweeper.
ctx.sweeper.Stop()
ctx.sweeper = New(ctx.sweeper.cfg)
ctx.sweeper.Start()
// Expect last tx to be republished.
ctx.receiveTx()
// Mine the sweep tx.
ctx.backend.mine()
// Simulate other subsystem (eg contract resolver) re-offering input 0.
spendChan, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
// Here we expect again a successful sweep.
ctx.expectResult(spendChan, nil)
// Timer started but not needed because spend ntfn was sent.
ctx.tick()
ctx.finish(1)
}
// TestRestartRepublish asserts that sweeper republishes the last published
// tx on restart.
func TestRestartRepublish(t *testing.T) {
ctx := createSweeperTestContext(t)
_, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
ctx.tick()
sweepTx := ctx.receiveTx()
// Restart sweeper again. No action is expected.
ctx.sweeper.Stop()
ctx.sweeper = New(ctx.sweeper.cfg)
ctx.sweeper.Start()
republishedTx := ctx.receiveTx()
if sweepTx.TxHash() != republishedTx.TxHash() {
t.Fatalf("last tx not republished")
}
// Mine the tx to conclude the test properly.
ctx.backend.mine()
ctx.finish(1)
}
// TestRetry tests the sweeper retry flow.
func TestRetry(t *testing.T) {
ctx := createSweeperTestContext(t)
resultChan0, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
ctx.tick()
// We expect a sweep to be published.
ctx.receiveTx()
// New block arrives. This should trigger a new sweep attempt timer
// start.
ctx.notifier.NotifyEpoch(1000)
// Offer a fresh input.
resultChan1, err := ctx.sweeper.SweepInput(spendableInputs[1])
if err != nil {
t.Fatal(err)
}
ctx.tick()
// Two txes are expected to be published, because new and retry inputs
// are separated.
ctx.receiveTx()
ctx.receiveTx()
ctx.backend.mine()
ctx.expectResult(resultChan0, nil)
ctx.expectResult(resultChan1, nil)
ctx.finish(1)
}
// TestGiveUp asserts that the sweeper gives up on an input if it can't be swept
// after a configured number of attempts.a
func TestGiveUp(t *testing.T) {
ctx := createSweeperTestContext(t)
resultChan0, err := ctx.sweeper.SweepInput(spendableInputs[0])
if err != nil {
t.Fatal(err)
}
ctx.tick()
// We expect a sweep to be published at height 100 (mockChainIOHeight).
ctx.receiveTx()
// Because of MaxSweepAttemps, two more sweeps will be attempted. We
// configured exponential back-off without randomness for the test. The
// second attempt, we expect to happen at 101. The third attempt at 103.
// At that point, the input is expected to be failed.
// Second attempt
ctx.notifier.NotifyEpoch(101)
ctx.tick()
ctx.receiveTx()
// Third attempt
ctx.notifier.NotifyEpoch(103)
ctx.tick()
ctx.receiveTx()
ctx.expectResult(resultChan0, ErrTooManyAttempts)
ctx.backend.mine()
ctx.finish(1)
}

258
sweep/test_utils.go Normal file

@ -0,0 +1,258 @@
package sweep
import (
"fmt"
"os"
"runtime/pprof"
"sync"
"testing"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/lnwallet"
)
var (
defaultTestTimeout = 5 * time.Second
mockChainIOHeight = int32(100)
)
type mockSigner struct {
}
func (m *mockSigner) SignOutputRaw(tx *wire.MsgTx,
signDesc *lnwallet.SignDescriptor) ([]byte, error) {
return []byte{}, nil
}
func (m *mockSigner) ComputeInputScript(tx *wire.MsgTx,
signDesc *lnwallet.SignDescriptor) (*lnwallet.InputScript, error) {
return &lnwallet.InputScript{}, nil
}
// MockNotifier simulates the chain notifier for test purposes. This type is
// exported because it is used in nursery tests.
type MockNotifier struct {
confChannel map[chainhash.Hash]chan *chainntnfs.TxConfirmation
epochChan map[chan *chainntnfs.BlockEpoch]int32
spendChan map[wire.OutPoint][]chan *chainntnfs.SpendDetail
spends map[wire.OutPoint]*wire.MsgTx
mutex sync.RWMutex
t *testing.T
}
// NewMockNotifier instantiates a new mock notifier.
func NewMockNotifier(t *testing.T) *MockNotifier {
return &MockNotifier{
confChannel: make(map[chainhash.Hash]chan *chainntnfs.TxConfirmation),
epochChan: make(map[chan *chainntnfs.BlockEpoch]int32),
spendChan: make(map[wire.OutPoint][]chan *chainntnfs.SpendDetail),
spends: make(map[wire.OutPoint]*wire.MsgTx),
t: t,
}
}
// NotifyEpoch simulates a new epoch arriving.
func (m *MockNotifier) NotifyEpoch(height int32) {
for epochChan, chanHeight := range m.epochChan {
// Only send notifications if the height is greater than the
// height the caller passed into the register call.
if chanHeight >= height {
continue
}
log.Debugf("Notifying height %v to listener", height)
select {
case epochChan <- &chainntnfs.BlockEpoch{
Height: height,
}:
case <-time.After(defaultTestTimeout):
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
m.t.Fatal("epoch event not consumed")
}
}
}
// ConfirmTx simulates a tx confirming.
func (m *MockNotifier) ConfirmTx(txid *chainhash.Hash, height uint32) error {
confirm := &chainntnfs.TxConfirmation{
BlockHeight: height,
}
select {
case m.getConfChannel(txid) <- confirm:
case <-time.After(defaultTestTimeout):
return fmt.Errorf("confirmation not consumed")
}
return nil
}
// SpendOutpoint simulates a utxo being spent.
func (m *MockNotifier) SpendOutpoint(outpoint wire.OutPoint,
spendingTx wire.MsgTx) {
log.Debugf("Spending outpoint %v", outpoint)
m.mutex.Lock()
defer m.mutex.Unlock()
channels, ok := m.spendChan[outpoint]
if ok {
for _, channel := range channels {
m.sendSpend(channel, &outpoint, &spendingTx)
}
}
m.spends[outpoint] = &spendingTx
}
func (m *MockNotifier) sendSpend(channel chan *chainntnfs.SpendDetail,
outpoint *wire.OutPoint,
spendingTx *wire.MsgTx) {
spenderTxHash := spendingTx.TxHash()
channel <- &chainntnfs.SpendDetail{
SpenderTxHash: &spenderTxHash,
SpendingTx: spendingTx,
SpentOutPoint: outpoint,
}
}
// RegisterConfirmationsNtfn registers for tx confirm notifications.
func (m *MockNotifier) RegisterConfirmationsNtfn(txid *chainhash.Hash,
_ []byte, numConfs, heightHint uint32) (*chainntnfs.ConfirmationEvent,
error) {
return &chainntnfs.ConfirmationEvent{
Confirmed: m.getConfChannel(txid),
}, nil
}
func (m *MockNotifier) getConfChannel(
txid *chainhash.Hash) chan *chainntnfs.TxConfirmation {
m.mutex.Lock()
defer m.mutex.Unlock()
channel, ok := m.confChannel[*txid]
if ok {
return channel
}
channel = make(chan *chainntnfs.TxConfirmation)
m.confChannel[*txid] = channel
return channel
}
// RegisterBlockEpochNtfn registers a block notification.
func (m *MockNotifier) RegisterBlockEpochNtfn(
bestBlock *chainntnfs.BlockEpoch) (*chainntnfs.BlockEpochEvent, error) {
log.Tracef("Mock block ntfn registered")
m.mutex.Lock()
epochChan := make(chan *chainntnfs.BlockEpoch, 0)
bestHeight := int32(0)
if bestBlock != nil {
bestHeight = bestBlock.Height
}
m.epochChan[epochChan] = bestHeight
m.mutex.Unlock()
return &chainntnfs.BlockEpochEvent{
Epochs: epochChan,
Cancel: func() {
log.Tracef("Mock block ntfn cancelled")
m.mutex.Lock()
delete(m.epochChan, epochChan)
m.mutex.Unlock()
},
}, nil
}
// Start the notifier.
func (m *MockNotifier) Start() error {
return nil
}
// Stop the notifier.
func (m *MockNotifier) Stop() error {
return nil
}
// RegisterSpendNtfn registers for spend notifications.
func (m *MockNotifier) RegisterSpendNtfn(outpoint *wire.OutPoint,
_ []byte, heightHint uint32) (*chainntnfs.SpendEvent, error) {
// Add channel to global spend ntfn map.
m.mutex.Lock()
channels, ok := m.spendChan[*outpoint]
if !ok {
channels = make([]chan *chainntnfs.SpendDetail, 0)
}
channel := make(chan *chainntnfs.SpendDetail, 1)
channels = append(channels, channel)
m.spendChan[*outpoint] = channels
// Check if this output has already been spent.
spendingTx, spent := m.spends[*outpoint]
m.mutex.Unlock()
// If output has been spent already, signal now. Do this outside the
// lock to prevent a dead lock.
if spent {
m.sendSpend(channel, outpoint, spendingTx)
}
return &chainntnfs.SpendEvent{
Spend: channel,
Cancel: func() {
log.Infof("Cancelling RegisterSpendNtfn for %v",
outpoint)
m.mutex.Lock()
defer m.mutex.Unlock()
channels := m.spendChan[*outpoint]
for i, c := range channels {
if c == channel {
channels[i] = channels[len(channels)-1]
m.spendChan[*outpoint] =
channels[:len(channels)-1]
}
}
close(channel)
log.Infof("Spend ntfn channel closed for %v",
outpoint)
},
}, nil
}
type mockChainIO struct{}
func (m *mockChainIO) GetBestBlock() (*chainhash.Hash, int32, error) {
return nil, mockChainIOHeight, nil
}
func (m *mockChainIO) GetUtxo(op *wire.OutPoint, pkScript []byte,
heightHint uint32) (*wire.TxOut, error) {
return nil, nil
}
func (m *mockChainIO) GetBlockHash(blockHeight int64) (*chainhash.Hash, error) {
return nil, nil
}
func (m *mockChainIO) GetBlock(blockHash *chainhash.Hash) (*wire.MsgBlock, error) {
return nil, nil
}

335
sweep/txgenerator.go Normal file

@ -0,0 +1,335 @@
package sweep
import (
"fmt"
"sort"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcwallet/wallet/txrules"
"github.com/lightningnetwork/lnd/lnwallet"
)
var (
// DefaultMaxInputsPerTx specifies the default maximum number of inputs
// allowed in a single sweep tx. If more need to be swept, multiple txes
// are created and published.
DefaultMaxInputsPerTx = 100
)
// inputSet is a set of inputs that can be used as the basis to generate a tx
// on.
type inputSet []Input
// generateInputPartitionings goes through all given inputs and constructs sets
// of inputs that can be used to generate a sensible transaction. Each set
// contains up to the configured maximum number of inputs. Negative yield
// inputs are skipped. No input sets with a total value after fees below the
// dust limit are returned.
func generateInputPartitionings(sweepableInputs []Input,
relayFeePerKW, feePerKW lnwallet.SatPerKWeight,
maxInputsPerTx int) ([]inputSet, error) {
// Calculate dust limit based on the P2WPKH output script of the sweep
// txes.
dustLimit := txrules.GetDustThreshold(
lnwallet.P2WPKHSize,
btcutil.Amount(relayFeePerKW.FeePerKVByte()),
)
// Sort input by yield. We will start constructing input sets starting
// with the highest yield inputs. This is to prevent the construction
// of a set with an output below the dust limit, causing the sweep
// process to stop, while there are still higher value inputs
// available. It also allows us to stop evaluating more inputs when the
// first input in this ordering is encountered with a negative yield.
//
// Yield is calculated as the difference between value and added fee
// for this input. The fee calculation excludes fee components that are
// common to all inputs, as those wouldn't influence the order. The
// single component that is differentiating is witness size.
//
// For witness size, the upper limit is taken. The actual size depends
// on the signature length, which is not known yet at this point.
yields := make(map[wire.OutPoint]int64)
for _, input := range sweepableInputs {
size, err := getInputWitnessSizeUpperBound(input)
if err != nil {
return nil, fmt.Errorf(
"failed adding input weight: %v", err)
}
yields[*input.OutPoint()] = input.SignDesc().Output.Value -
int64(feePerKW.FeeForWeight(int64(size)))
}
sort.Slice(sweepableInputs, func(i, j int) bool {
return yields[*sweepableInputs[i].OutPoint()] >
yields[*sweepableInputs[j].OutPoint()]
})
// Select blocks of inputs up to the configured maximum number.
var sets []inputSet
for len(sweepableInputs) > 0 {
// Get the maximum number of inputs from sweepableInputs that
// we can use to create a positive yielding set from.
count, outputValue := getPositiveYieldInputs(
sweepableInputs, maxInputsPerTx, feePerKW,
)
// If there are no positive yield inputs left, we can stop
// here.
if count == 0 {
return sets, nil
}
// If the output value of this block of inputs does not reach
// the dust limit, stop sweeping. Because of the sorting,
// continuing with the remaining inputs will only lead to sets
// with a even lower output value.
if outputValue < dustLimit {
log.Debugf("Set value %v below dust limit of %v",
outputValue, dustLimit)
return sets, nil
}
log.Infof("Candidate sweep set of size=%v, has yield=%v",
count, outputValue)
sets = append(sets, sweepableInputs[:count])
sweepableInputs = sweepableInputs[count:]
}
return sets, nil
}
// getPositiveYieldInputs returns the maximum of a number n for which holds
// that the inputs [0,n) of sweepableInputs have a positive yield.
// Additionally, the total values of these inputs minus the fee is returned.
//
// TODO(roasbeef): Consider including some negative yield inputs too to clean
// up the utxo set even if it costs us some fees up front. In the spirit of
// minimizing any negative externalities we cause for the Bitcoin system as a
// whole.
func getPositiveYieldInputs(sweepableInputs []Input, maxInputs int,
feePerKW lnwallet.SatPerKWeight) (int, btcutil.Amount) {
var weightEstimate lnwallet.TxWeightEstimator
// Add the sweep tx output to the weight estimate.
weightEstimate.AddP2WKHOutput()
var total, outputValue btcutil.Amount
for idx, input := range sweepableInputs {
// Can ignore error, because it has already been checked when
// calculating the yields.
size, _ := getInputWitnessSizeUpperBound(input)
// Keep a running weight estimate of the input set.
weightEstimate.AddWitnessInput(size)
newTotal := total + btcutil.Amount(input.SignDesc().Output.Value)
weight := weightEstimate.Weight()
fee := feePerKW.FeeForWeight(int64(weight))
// Calculate the output value if the current input would be
// added to the set.
newOutputValue := newTotal - fee
// If adding this input makes the total output value of the set
// decrease, this is a negative yield input. It shouldn't be
// added to the set. We return the current index as the number
// of inputs, so the current input is being excluded.
if newOutputValue <= outputValue {
return idx, outputValue
}
// Update running values.
total = newTotal
outputValue = newOutputValue
// Stop if max inputs is reached.
if idx == maxInputs-1 {
return maxInputs, outputValue
}
}
// We could add all inputs to the set, so return them all.
return len(sweepableInputs), outputValue
}
// createSweepTx builds a signed tx spending the inputs to a the output script.
func createSweepTx(inputs []Input, outputPkScript []byte,
currentBlockHeight uint32, feePerKw lnwallet.SatPerKWeight,
signer lnwallet.Signer) (*wire.MsgTx, error) {
inputs, txWeight, csvCount, cltvCount := getWeightEstimate(inputs)
log.Infof("Creating sweep transaction for %v inputs (%v CSV, %v CLTV) "+
"using %v sat/kw", len(inputs), csvCount, cltvCount,
int64(feePerKw))
txFee := feePerKw.FeeForWeight(txWeight)
// Sum up the total value contained in the inputs.
var totalSum btcutil.Amount
for _, o := range inputs {
totalSum += btcutil.Amount(o.SignDesc().Output.Value)
}
// Sweep as much possible, after subtracting txn fees.
sweepAmt := int64(totalSum - txFee)
// Create the sweep transaction that we will be building. We use
// version 2 as it is required for CSV. The txn will sweep the amount
// after fees to the pkscript generated above.
sweepTx := wire.NewMsgTx(2)
sweepTx.AddTxOut(&wire.TxOut{
PkScript: outputPkScript,
Value: sweepAmt,
})
sweepTx.LockTime = currentBlockHeight
// Add all inputs to the sweep transaction. Ensure that for each
// csvInput, we set the sequence number properly.
for _, input := range inputs {
sweepTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *input.OutPoint(),
Sequence: input.BlocksToMaturity(),
})
}
// Before signing the transaction, check to ensure that it meets some
// basic validity requirements.
//
// TODO(conner): add more control to sanity checks, allowing us to
// delay spending "problem" outputs, e.g. possibly batching with other
// classes if fees are too low.
btx := btcutil.NewTx(sweepTx)
if err := blockchain.CheckTransactionSanity(btx); err != nil {
return nil, err
}
hashCache := txscript.NewTxSigHashes(sweepTx)
// With all the inputs in place, use each output's unique witness
// function to generate the final witness required for spending.
addWitness := func(idx int, tso Input) error {
witness, err := tso.BuildWitness(
signer, sweepTx, hashCache, idx,
)
if err != nil {
return err
}
sweepTx.TxIn[idx].Witness = witness
return nil
}
// Finally we'll attach a valid witness to each csv and cltv input
// within the sweeping transaction.
for i, input := range inputs {
if err := addWitness(i, input); err != nil {
return nil, err
}
}
return sweepTx, nil
}
// getInputWitnessSizeUpperBound returns the maximum length of the witness for
// the given input if it would be included in a tx.
func getInputWitnessSizeUpperBound(input Input) (int, error) {
switch input.WitnessType() {
// Outputs on a remote commitment transaction that pay directly
// to us.
case lnwallet.CommitmentNoDelay:
return lnwallet.P2WKHWitnessSize, nil
// Outputs on a past commitment transaction that pay directly
// to us.
case lnwallet.CommitmentTimeLock:
return lnwallet.ToLocalTimeoutWitnessSize, nil
// Outgoing second layer HTLC's that have confirmed within the
// chain, and the output they produced is now mature enough to
// sweep.
case lnwallet.HtlcOfferedTimeoutSecondLevel:
return lnwallet.ToLocalTimeoutWitnessSize, nil
// Incoming second layer HTLC's that have confirmed within the
// chain, and the output they produced is now mature enough to
// sweep.
case lnwallet.HtlcAcceptedSuccessSecondLevel:
return lnwallet.ToLocalTimeoutWitnessSize, nil
// An HTLC on the commitment transaction of the remote party,
// that has had its absolute timelock expire.
case lnwallet.HtlcOfferedRemoteTimeout:
return lnwallet.AcceptedHtlcTimeoutWitnessSize, nil
// An HTLC on the commitment transaction of the remote party,
// that can be swept with the preimage.
case lnwallet.HtlcAcceptedRemoteSuccess:
return lnwallet.OfferedHtlcSuccessWitnessSize, nil
}
return 0, fmt.Errorf("unexpected witness type: %v", input.WitnessType())
}
// getWeightEstimate returns a weight estimate for the given inputs.
// Additionally, it returns counts for the number of csv and cltv inputs.
func getWeightEstimate(inputs []Input) ([]Input, int64, int, int) {
// We initialize a weight estimator so we can accurately asses the
// amount of fees we need to pay for this sweep transaction.
//
// TODO(roasbeef): can be more intelligent about buffering outputs to
// be more efficient on-chain.
var weightEstimate lnwallet.TxWeightEstimator
// Our sweep transaction will pay to a single segwit p2wkh address,
// ensure it contributes to our weight estimate.
weightEstimate.AddP2WKHOutput()
// For each output, use its witness type to determine the estimate
// weight of its witness, and add it to the proper set of spendable
// outputs.
var (
sweepInputs []Input
csvCount, cltvCount int
)
for i := range inputs {
input := inputs[i]
size, err := getInputWitnessSizeUpperBound(input)
if err != nil {
log.Warn(err)
// Skip inputs for which no weight estimate can be
// given.
continue
}
weightEstimate.AddWitnessInput(size)
switch input.WitnessType() {
case lnwallet.CommitmentTimeLock,
lnwallet.HtlcOfferedTimeoutSecondLevel,
lnwallet.HtlcAcceptedSuccessSecondLevel:
csvCount++
case lnwallet.HtlcOfferedRemoteTimeout:
cltvCount++
}
sweepInputs = append(sweepInputs, input)
}
txWeight := int64(weightEstimate.Weight())
return sweepInputs, txWeight, csvCount, cltvCount
}

@ -202,7 +202,7 @@ func createTestPeer(notifier chainntnfs.ChainNotifier,
return nil, nil, nil, nil, err return nil, nil, nil, nil, err
} }
estimator := &lnwallet.StaticFeeEstimator{FeePerKW: 12500} estimator := lnwallet.NewStaticFeeEstimator(12500, 0)
feePerKw, err := estimator.EstimateFeePerKW(1) feePerKw, err := estimator.EstimateFeePerKW(1)
if err != nil { if err != nil {
return nil, nil, nil, nil, err return nil, nil, nil, nil, err
@ -316,7 +316,9 @@ func createTestPeer(notifier chainntnfs.ChainNotifier,
} }
bobPool.Start() bobPool.Start()
chainIO := &mockChainIO{} chainIO := &mockChainIO{
bestHeight: fundingBroadcastHeight,
}
wallet := &lnwallet.LightningWallet{ wallet := &lnwallet.LightningWallet{
WalletController: &mockWalletController{ WalletController: &mockWalletController{
rootKey: aliceKeyPriv, rootKey: aliceKeyPriv,

@ -72,17 +72,6 @@ import (
// the utxo nursery will sweep all KNDR outputs scheduled for that height // the utxo nursery will sweep all KNDR outputs scheduled for that height
// using a single txn. // using a single txn.
// //
// NOTE: Due to the fact that KNDR outputs can be dynamically aggregated and
// swept, we make precautions to finalize the KNDR outputs at a particular
// height on our first attempt to sweep it. Finalizing involves signing the
// sweep transaction and persisting it in the nursery store, and recording
// the last finalized height. Any attempts to replay an already finalized
// height will result in broadcasting the already finalized txn, ensuring the
// nursery does not broadcast different txids for the same batch of KNDR
// outputs. The reason txids may change is due to the probabilistic nature of
// generating the pkscript in the sweep txn's output, even if the set of
// inputs remains static across attempts.
//
// - GRAD (kidOutput) outputs are KNDR outputs that have successfully been // - GRAD (kidOutput) outputs are KNDR outputs that have successfully been
// swept into the user's wallet. A channel is considered mature once all of // swept into the user's wallet. A channel is considered mature once all of
// its outputs, including two-stage htlcs, have entered the GRAD state, // its outputs, including two-stage htlcs, have entered the GRAD state,
@ -183,10 +172,6 @@ type NurseryConfig struct {
// determining outputs in the chain as confirmed. // determining outputs in the chain as confirmed.
ConfDepth uint32 ConfDepth uint32
// SweepTxConfTarget assigns a confirmation target for sweep txes on
// which the fee calculation will be based.
SweepTxConfTarget uint32
// FetchClosedChannels provides access to a user's channels, such that // FetchClosedChannels provides access to a user's channels, such that
// they can be marked fully closed after incubation has concluded. // they can be marked fully closed after incubation has concluded.
FetchClosedChannels func(pendingOnly bool) ( FetchClosedChannels func(pendingOnly bool) (
@ -254,25 +239,22 @@ func (u *utxoNursery) Start() error {
utxnLog.Tracef("Starting UTXO nursery") utxnLog.Tracef("Starting UTXO nursery")
// 1. Start watching for new blocks, as this will drive the nursery // Retrieve the currently best known block. This is needed to have the
// store's state machine. // state machine catch up with the blocks we missed when we were down.
bestHash, bestHeight, err := u.cfg.ChainIO.GetBestBlock()
// Register with the notifier to receive notifications for each newly
// connected block. We register immediately on startup to ensure that
// no blocks are missed while we are handling blocks that were missed
// during the time the UTXO nursery was unavailable.
newBlockChan, err := u.cfg.Notifier.RegisterBlockEpochNtfn(nil)
if err != nil { if err != nil {
return err return err
} }
// Set best known height to schedule late registrations properly.
atomic.StoreUint32(&u.bestHeight, uint32(bestHeight))
// 2. Flush all fully-graduated channels from the pipeline. // 2. Flush all fully-graduated channels from the pipeline.
// Load any pending close channels, which represents the super set of // Load any pending close channels, which represents the super set of
// all channels that may still be incubating. // all channels that may still be incubating.
pendingCloseChans, err := u.cfg.FetchClosedChannels(true) pendingCloseChans, err := u.cfg.FetchClosedChannels(true)
if err != nil { if err != nil {
newBlockChan.Cancel()
return err return err
} }
@ -281,7 +263,6 @@ func (u *utxoNursery) Start() error {
for _, pendingClose := range pendingCloseChans { for _, pendingClose := range pendingCloseChans {
err := u.closeAndRemoveIfMature(&pendingClose.ChanPoint) err := u.closeAndRemoveIfMature(&pendingClose.ChanPoint)
if err != nil { if err != nil {
newBlockChan.Cancel()
return err return err
} }
} }
@ -289,15 +270,6 @@ func (u *utxoNursery) Start() error {
// TODO(conner): check if any fully closed channels can be removed from // TODO(conner): check if any fully closed channels can be removed from
// utxn. // utxn.
// Query the nursery store for the lowest block height we could be
// incubating, which is taken to be the last height for which the
// database was purged.
lastGraduatedHeight, err := u.cfg.Store.LastGraduatedHeight()
if err != nil {
newBlockChan.Cancel()
return err
}
// 2. Restart spend ntfns for any preschool outputs, which are waiting // 2. Restart spend ntfns for any preschool outputs, which are waiting
// for the force closed commitment txn to confirm, or any second-layer // for the force closed commitment txn to confirm, or any second-layer
// HTLC success transactions. // HTLC success transactions.
@ -306,15 +278,24 @@ func (u *utxoNursery) Start() error {
// point forward, we must close the nursery's quit channel if we detect // point forward, we must close the nursery's quit channel if we detect
// any failures during startup to ensure they terminate. // any failures during startup to ensure they terminate.
if err := u.reloadPreschool(); err != nil { if err := u.reloadPreschool(); err != nil {
newBlockChan.Cancel()
close(u.quit) close(u.quit)
return err return err
} }
// 3. Replay all crib and kindergarten outputs from last pruned to // 3. Replay all crib and kindergarten outputs up to the current best
// current best height. // height.
if err := u.reloadClasses(lastGraduatedHeight); err != nil { if err := u.reloadClasses(uint32(bestHeight)); err != nil {
newBlockChan.Cancel() close(u.quit)
return err
}
// Start watching for new blocks, as this will drive the nursery store's
// state machine.
newBlockChan, err := u.cfg.Notifier.RegisterBlockEpochNtfn(&chainntnfs.BlockEpoch{
Height: bestHeight,
Hash: bestHash,
})
if err != nil {
close(u.quit) close(u.quit)
return err return err
} }
@ -672,123 +653,44 @@ func (u *utxoNursery) reloadPreschool() error {
// reloadClasses reinitializes any height-dependent state transitions for which // reloadClasses reinitializes any height-dependent state transitions for which
// the utxonursery has not received confirmation, and replays the graduation of // the utxonursery has not received confirmation, and replays the graduation of
// all kindergarten and crib outputs for heights that have not been finalized. // all kindergarten and crib outputs for all heights up to the current block.
// This allows the nursery to reinitialize all state to continue sweeping // This allows the nursery to reinitialize all state to continue sweeping
// outputs, even in the event that we missed blocks while offline. // outputs, even in the event that we missed blocks while offline. reloadClasses
// reloadClasses is called during the startup of the UTXO Nursery. // is called during the startup of the UTXO Nursery.
func (u *utxoNursery) reloadClasses(lastGradHeight uint32) error { func (u *utxoNursery) reloadClasses(bestHeight uint32) error {
// Begin by loading all of the still-active heights up to and including // Loading all active heights up to and including the current block.
// the last height we successfully graduated. activeHeights, err := u.cfg.Store.HeightsBelowOrEqual(
activeHeights, err := u.cfg.Store.HeightsBelowOrEqual(lastGradHeight) uint32(bestHeight))
if err != nil { if err != nil {
return err return err
} }
if len(activeHeights) > 0 { // Return early if nothing to sweep.
utxnLog.Infof("Re-registering confirmations for %d already "+ if len(activeHeights) == 0 {
"graduated heights below height=%d", len(activeHeights), return nil
lastGradHeight)
} }
utxnLog.Infof("(Re)-sweeping %d heights below height=%d",
len(activeHeights), bestHeight)
// Attempt to re-register notifications for any outputs still at these // Attempt to re-register notifications for any outputs still at these
// heights. // heights.
for _, classHeight := range activeHeights { for _, classHeight := range activeHeights {
utxnLog.Debugf("Attempting to regraduate outputs at height=%v", utxnLog.Debugf("Attempting to sweep outputs at height=%v",
classHeight) classHeight)
if err = u.regraduateClass(classHeight); err != nil { if err = u.graduateClass(classHeight); err != nil {
utxnLog.Errorf("Failed to regraduate outputs at "+ utxnLog.Errorf("Failed to sweep outputs at "+
"height=%v: %v", classHeight, err) "height=%v: %v", classHeight, err)
return err return err
} }
} }
// Get the most recently mined block.
_, bestHeight, err := u.cfg.ChainIO.GetBestBlock()
if err != nil {
return err
}
// If we haven't yet seen any registered force closes, or we're already
// caught up with the current best chain, then we can exit early.
if lastGradHeight == 0 || uint32(bestHeight) == lastGradHeight {
return nil
}
utxnLog.Infof("Processing outputs from missed blocks. Starting with "+
"blockHeight=%v, to current blockHeight=%v", lastGradHeight,
bestHeight)
// Loop through and check for graduating outputs at each of the missed
// block heights.
for curHeight := lastGradHeight + 1; curHeight <= uint32(bestHeight); curHeight++ {
utxnLog.Debugf("Attempting to graduate outputs at height=%v",
curHeight)
if err := u.graduateClass(curHeight); err != nil {
utxnLog.Errorf("Failed to graduate outputs at "+
"height=%v: %v", curHeight, err)
return err
}
}
utxnLog.Infof("UTXO Nursery is now fully synced") utxnLog.Infof("UTXO Nursery is now fully synced")
return nil return nil
} }
// regraduateClass handles the steps involved in re-registering for
// confirmations for all still-active outputs at a particular height. This is
// used during restarts to ensure that any still-pending state transitions are
// properly registered, so they can be driven by the chain notifier. No
// transactions or signing are done as a result of this step.
func (u *utxoNursery) regraduateClass(classHeight uint32) error {
// Fetch all information about the crib and kindergarten outputs at
// this height. In addition to the outputs, we also retrieve the
// finalized kindergarten sweep txn, which will be nil if we have not
// attempted this height before, or if no kindergarten outputs exist at
// this height.
finalTx, kgtnOutputs, cribOutputs, err := u.cfg.Store.FetchClass(
classHeight)
if err != nil {
return err
}
if finalTx != nil {
utxnLog.Infof("Re-registering confirmation for kindergarten "+
"sweep transaction at height=%d ", classHeight)
err = u.sweepMatureOutputs(classHeight, finalTx, kgtnOutputs)
if err != nil {
utxnLog.Errorf("Failed to re-register for kindergarten "+
"sweep transaction at height=%d: %v",
classHeight, err)
return err
}
}
if len(cribOutputs) == 0 {
return nil
}
utxnLog.Infof("Re-registering confirmation for first-stage HTLC "+
"outputs at height=%d ", classHeight)
// Now, we broadcast all pre-signed htlc txns from the crib outputs at
// this height. There is no need to finalize these txns, since the txid
// is predetermined when signed in the wallet.
for i := range cribOutputs {
err := u.sweepCribOutput(classHeight, &cribOutputs[i])
if err != nil {
utxnLog.Errorf("Failed to re-register first-stage "+
"HTLC output %v", cribOutputs[i].OutPoint())
return err
}
}
return nil
}
// incubator is tasked with driving all state transitions that are dependent on // incubator is tasked with driving all state transitions that are dependent on
// the current height of the blockchain. As new blocks arrive, the incubator // the current height of the blockchain. As new blocks arrive, the incubator
// will attempt spend outputs at the latest height. The asynchronous // will attempt spend outputs at the latest height. The asynchronous
@ -821,6 +723,11 @@ func (u *utxoNursery) incubator(newBlockChan *chainntnfs.BlockEpochEvent) {
// as signing and broadcasting a sweep txn that spends // as signing and broadcasting a sweep txn that spends
// from all kindergarten outputs at this height. // from all kindergarten outputs at this height.
height := uint32(epoch.Height) height := uint32(epoch.Height)
// Update best known block height for late registrations
// to be scheduled properly.
atomic.StoreUint32(&u.bestHeight, height)
if err := u.graduateClass(height); err != nil { if err := u.graduateClass(height); err != nil {
utxnLog.Errorf("error while graduating "+ utxnLog.Errorf("error while graduating "+
"class at height=%d: %v", height, err) "class at height=%d: %v", height, err)
@ -843,14 +750,9 @@ func (u *utxoNursery) graduateClass(classHeight uint32) error {
u.mu.Lock() u.mu.Lock()
defer u.mu.Unlock() defer u.mu.Unlock()
u.bestHeight = classHeight
// Fetch all information about the crib and kindergarten outputs at // Fetch all information about the crib and kindergarten outputs at
// this height. In addition to the outputs, we also retrieve the
// finalized kindergarten sweep txn, which will be nil if we have not
// attempted this height before, or if no kindergarten outputs exist at
// this height. // this height.
finalTx, kgtnOutputs, cribOutputs, err := u.cfg.Store.FetchClass( kgtnOutputs, cribOutputs, err := u.cfg.Store.FetchClass(
classHeight) classHeight)
if err != nil { if err != nil {
return err return err
@ -859,64 +761,11 @@ func (u *utxoNursery) graduateClass(classHeight uint32) error {
utxnLog.Infof("Attempting to graduate height=%v: num_kids=%v, "+ utxnLog.Infof("Attempting to graduate height=%v: num_kids=%v, "+
"num_babies=%v", classHeight, len(kgtnOutputs), len(cribOutputs)) "num_babies=%v", classHeight, len(kgtnOutputs), len(cribOutputs))
// Load the last finalized height, so we can determine if the // Offer the outputs to the sweeper and set up notifications that will
// kindergarten sweep txn should be crafted. // transition the swept kindergarten outputs and cltvCrib into graduated
lastFinalizedHeight, err := u.cfg.Store.LastFinalizedHeight() // outputs.
if err != nil {
return err
}
// If we haven't processed this height before, we finalize the
// graduating kindergarten outputs, by signing a sweep transaction that
// spends from them. This txn is persisted such that we never broadcast
// a different txn for the same height. This allows us to recover from
// failures, and watch for the correct txid.
if classHeight > lastFinalizedHeight {
// If this height has never been finalized, we have never
// generated a sweep txn for this height. Generate one if there
// are kindergarten outputs or cltv crib outputs to be spent.
if len(kgtnOutputs) > 0 { if len(kgtnOutputs) > 0 {
sweepInputs := make([]sweep.Input, len(kgtnOutputs)) if err := u.sweepMatureOutputs(classHeight, kgtnOutputs); err != nil {
for i := range kgtnOutputs {
sweepInputs[i] = &kgtnOutputs[i]
}
finalTx, err = u.cfg.Sweeper.CreateSweepTx(
sweepInputs, u.cfg.SweepTxConfTarget,
classHeight,
)
if err != nil {
utxnLog.Errorf("Failed to create sweep txn at "+
"height=%d", classHeight)
return err
}
}
// Persist the kindergarten sweep txn to the nursery store. It
// is safe to store a nil finalTx, which happens if there are
// no graduating kindergarten outputs.
err = u.cfg.Store.FinalizeKinder(classHeight, finalTx)
if err != nil {
utxnLog.Errorf("Failed to finalize kindergarten at "+
"height=%d", classHeight)
return err
}
// Log if the finalized transaction is non-trivial.
if finalTx != nil {
utxnLog.Infof("Finalized kindergarten at height=%d ",
classHeight)
}
}
// Now that the kindergarten sweep txn has either been finalized or
// restored, broadcast the txn, and set up notifications that will
// transition the swept kindergarten outputs and cltvCrib into
// graduated outputs.
if finalTx != nil {
err := u.sweepMatureOutputs(classHeight, finalTx, kgtnOutputs)
if err != nil {
utxnLog.Errorf("Failed to sweep %d kindergarten "+ utxnLog.Errorf("Failed to sweep %d kindergarten "+
"outputs at height=%d: %v", "outputs at height=%d: %v",
len(kgtnOutputs), classHeight, err) len(kgtnOutputs), classHeight, err)
@ -925,8 +774,7 @@ func (u *utxoNursery) graduateClass(classHeight uint32) error {
} }
// Now, we broadcast all pre-signed htlc txns from the csv crib outputs // Now, we broadcast all pre-signed htlc txns from the csv crib outputs
// at this height. There is no need to finalize these txns, since the // at this height.
// txid is predetermined when signed in the wallet.
for i := range cribOutputs { for i := range cribOutputs {
err := u.sweepCribOutput(classHeight, &cribOutputs[i]) err := u.sweepCribOutput(classHeight, &cribOutputs[i])
if err != nil { if err != nil {
@ -937,61 +785,31 @@ func (u *utxoNursery) graduateClass(classHeight uint32) error {
} }
} }
return u.cfg.Store.GraduateHeight(classHeight) return nil
} }
// sweepMatureOutputs generates and broadcasts the transaction that transfers // sweepMatureOutputs generates and broadcasts the transaction that transfers
// control of funds from a prior channel commitment transaction to the user's // control of funds from a prior channel commitment transaction to the user's
// wallet. The outputs swept were previously time locked (either absolute or // wallet. The outputs swept were previously time locked (either absolute or
// relative), but are not mature enough to sweep into the wallet. // relative), but are not mature enough to sweep into the wallet.
func (u *utxoNursery) sweepMatureOutputs(classHeight uint32, finalTx *wire.MsgTx, func (u *utxoNursery) sweepMatureOutputs(classHeight uint32,
kgtnOutputs []kidOutput) error { kgtnOutputs []kidOutput) error {
utxnLog.Infof("Sweeping %v CSV-delayed outputs with sweep tx "+ utxnLog.Infof("Sweeping %v CSV-delayed outputs with sweep tx for "+
"(txid=%v): %v", len(kgtnOutputs), "height %v", len(kgtnOutputs), classHeight)
finalTx.TxHash(), newLogClosure(func() string {
return spew.Sdump(finalTx)
}),
)
// With the sweep transaction fully signed, broadcast the transaction for _, output := range kgtnOutputs {
// to the network. Additionally, we can stop tracking these outputs as // Create local copy to prevent pointer to loop variable to be
// they've just been swept. // passed in with disastruous consequences.
err := u.cfg.PublishTransaction(finalTx) local := output
if err != nil && err != lnwallet.ErrDoubleSpend {
utxnLog.Errorf("unable to broadcast sweep tx: %v, %v",
err, spew.Sdump(finalTx))
return err
}
return u.registerSweepConf(finalTx, kgtnOutputs, classHeight) resultChan, err := u.cfg.Sweeper.SweepInput(&local)
}
// registerSweepConf is responsible for registering a finalized kindergarten
// sweep transaction for confirmation notifications. If the confirmation was
// successfully registered, a goroutine will be spawned that waits for the
// confirmation, and graduates the provided kindergarten class within the
// nursery store.
func (u *utxoNursery) registerSweepConf(finalTx *wire.MsgTx,
kgtnOutputs []kidOutput, heightHint uint32) error {
finalTxID := finalTx.TxHash()
confChan, err := u.cfg.Notifier.RegisterConfirmationsNtfn(
&finalTxID, finalTx.TxOut[0].PkScript, u.cfg.ConfDepth,
heightHint,
)
if err != nil { if err != nil {
utxnLog.Errorf("unable to register notification for "+
"sweep confirmation: %v", finalTxID)
return err return err
} }
utxnLog.Infof("Registering sweep tx %v for confs at height=%d",
finalTxID, heightHint)
u.wg.Add(1) u.wg.Add(1)
go u.waitForSweepConf(heightHint, kgtnOutputs, confChan) go u.waitForSweepConf(classHeight, &output, resultChan)
}
return nil return nil
} }
@ -1002,16 +820,30 @@ func (u *utxoNursery) registerSweepConf(finalTx *wire.MsgTx,
// to mark any mature channels as fully closed in channeldb. // to mark any mature channels as fully closed in channeldb.
// NOTE(conner): this method MUST be called as a go routine. // NOTE(conner): this method MUST be called as a go routine.
func (u *utxoNursery) waitForSweepConf(classHeight uint32, func (u *utxoNursery) waitForSweepConf(classHeight uint32,
kgtnOutputs []kidOutput, confChan *chainntnfs.ConfirmationEvent) { output *kidOutput, resultChan chan sweep.Result) {
defer u.wg.Done() defer u.wg.Done()
select { select {
case _, ok := <-confChan.Confirmed: case result, ok := <-resultChan:
if !ok { if !ok {
utxnLog.Errorf("Notification chan closed, can't"+ utxnLog.Errorf("Notification chan closed, can't" +
" advance %v graduating outputs", " advance graduating output")
len(kgtnOutputs)) return
}
// In case of a remote spend, still graduate the output. There
// is no way to sweep it anymore.
if result.Err == sweep.ErrRemoteSpend {
utxnLog.Infof("Output %v was spend by remote party",
output.OutPoint())
break
}
if result.Err != nil {
utxnLog.Errorf("Failed to sweep %v at "+
"height=%d", output.OutPoint(),
classHeight)
return return
} }
@ -1024,33 +856,24 @@ func (u *utxoNursery) waitForSweepConf(classHeight uint32,
// TODO(conner): add retry logic? // TODO(conner): add retry logic?
// Mark the confirmed kindergarten outputs as graduated. // Mark the confirmed kindergarten output as graduated.
if err := u.cfg.Store.GraduateKinder(classHeight); err != nil { if err := u.cfg.Store.GraduateKinder(classHeight, output); err != nil {
utxnLog.Errorf("Unable to graduate %v kindergarten outputs: "+ utxnLog.Errorf("Unable to graduate kindergarten output %v: %v",
"%v", len(kgtnOutputs), err) output.OutPoint(), err)
return return
} }
utxnLog.Infof("Graduated %d kindergarten outputs from height=%d", utxnLog.Infof("Graduated kindergarten output from height=%d",
len(kgtnOutputs), classHeight) classHeight)
// Iterate over the kid outputs and construct a set of all channel // Attempt to close the channel, only doing so if all of the channel's
// points to which they belong.
var possibleCloses = make(map[wire.OutPoint]struct{})
for _, kid := range kgtnOutputs {
possibleCloses[*kid.OriginChanPoint()] = struct{}{}
}
// Attempt to close each channel, only doing so if all of the channel's
// outputs have been graduated. // outputs have been graduated.
for chanPoint := range possibleCloses { chanPoint := output.OriginChanPoint()
if err := u.closeAndRemoveIfMature(&chanPoint); err != nil { if err := u.closeAndRemoveIfMature(chanPoint); err != nil {
utxnLog.Errorf("Failed to close and remove channel %v", utxnLog.Errorf("Failed to close and remove channel %v",
chanPoint) *chanPoint)
return return
} }
}
} }
// sweepCribOutput broadcasts the crib output's htlc timeout txn, and sets up a // sweepCribOutput broadcasts the crib output's htlc timeout txn, and sets up a
@ -1216,7 +1039,8 @@ func (u *utxoNursery) waitForPreschoolConf(kid *kidOutput,
outputType = "Commitment" outputType = "Commitment"
} }
err := u.cfg.Store.PreschoolToKinder(kid) bestHeight := atomic.LoadUint32(&u.bestHeight)
err := u.cfg.Store.PreschoolToKinder(kid, bestHeight)
if err != nil { if err != nil {
utxnLog.Errorf("Unable to move %v output "+ utxnLog.Errorf("Unable to move %v output "+
"from preschool to kindergarten bucket: %v", "from preschool to kindergarten bucket: %v",
@ -1554,8 +1378,6 @@ type kidOutput struct {
// NOTE: This will only be set for: outgoing HTLC's on the commitment // NOTE: This will only be set for: outgoing HTLC's on the commitment
// transaction of the remote party. // transaction of the remote party.
absoluteMaturity uint32 absoluteMaturity uint32
confHeight uint32
} }
func makeKidOutput(outpoint, originChanPoint *wire.OutPoint, func makeKidOutput(outpoint, originChanPoint *wire.OutPoint,
@ -1569,9 +1391,14 @@ func makeKidOutput(outpoint, originChanPoint *wire.OutPoint,
isHtlc := (witnessType == lnwallet.HtlcAcceptedSuccessSecondLevel || isHtlc := (witnessType == lnwallet.HtlcAcceptedSuccessSecondLevel ||
witnessType == lnwallet.HtlcOfferedRemoteTimeout) witnessType == lnwallet.HtlcOfferedRemoteTimeout)
// heightHint can be safely set to zero here, because after this
// function returns, nursery will set a proper confirmation height in
// waitForTimeoutConf or waitForPreschoolConf.
heightHint := uint32(0)
return kidOutput{ return kidOutput{
breachedOutput: makeBreachedOutput( breachedOutput: makeBreachedOutput(
outpoint, witnessType, nil, signDescriptor, outpoint, witnessType, nil, signDescriptor, heightHint,
), ),
isHtlc: isHtlc, isHtlc: isHtlc,
originChanPoint: *originChanPoint, originChanPoint: *originChanPoint,

@ -9,8 +9,9 @@ import (
"github.com/lightningnetwork/lnd/sweep" "github.com/lightningnetwork/lnd/sweep"
"io/ioutil" "io/ioutil"
"math" "math"
"os"
"reflect" "reflect"
"sync" "runtime/pprof"
"testing" "testing"
"time" "time"
@ -19,7 +20,6 @@ import (
"github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil" "github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/lnwallet"
) )
@ -206,10 +206,10 @@ var (
amt: btcutil.Amount(13e7), amt: btcutil.Amount(13e7),
outpoint: outPoints[1], outpoint: outPoints[1],
witnessType: lnwallet.CommitmentTimeLock, witnessType: lnwallet.CommitmentTimeLock,
confHeight: uint32(1000),
}, },
originChanPoint: outPoints[0], originChanPoint: outPoints[0],
blocksToMaturity: uint32(42), blocksToMaturity: uint32(42),
confHeight: uint32(1000),
}, },
{ {
@ -217,10 +217,10 @@ var (
amt: btcutil.Amount(24e7), amt: btcutil.Amount(24e7),
outpoint: outPoints[2], outpoint: outPoints[2],
witnessType: lnwallet.CommitmentTimeLock, witnessType: lnwallet.CommitmentTimeLock,
confHeight: uint32(1000),
}, },
originChanPoint: outPoints[0], originChanPoint: outPoints[0],
blocksToMaturity: uint32(42), blocksToMaturity: uint32(42),
confHeight: uint32(1000),
}, },
{ {
@ -228,10 +228,10 @@ var (
amt: btcutil.Amount(2e5), amt: btcutil.Amount(2e5),
outpoint: outPoints[3], outpoint: outPoints[3],
witnessType: lnwallet.CommitmentTimeLock, witnessType: lnwallet.CommitmentTimeLock,
confHeight: uint32(500),
}, },
originChanPoint: outPoints[0], originChanPoint: outPoints[0],
blocksToMaturity: uint32(28), blocksToMaturity: uint32(28),
confHeight: uint32(500),
}, },
{ {
@ -239,10 +239,10 @@ var (
amt: btcutil.Amount(10e6), amt: btcutil.Amount(10e6),
outpoint: outPoints[4], outpoint: outPoints[4],
witnessType: lnwallet.CommitmentTimeLock, witnessType: lnwallet.CommitmentTimeLock,
confHeight: uint32(500),
}, },
originChanPoint: outPoints[0], originChanPoint: outPoints[0],
blocksToMaturity: uint32(28), blocksToMaturity: uint32(28),
confHeight: uint32(500),
}, },
} }
@ -396,11 +396,14 @@ func TestBabyOutputSerialization(t *testing.T) {
type nurseryTestContext struct { type nurseryTestContext struct {
nursery *utxoNursery nursery *utxoNursery
notifier *nurseryMockNotifier notifier *sweep.MockNotifier
chainIO *mockChainIO
publishChan chan wire.MsgTx publishChan chan wire.MsgTx
store *nurseryStoreInterceptor store *nurseryStoreInterceptor
restart func() bool restart func() bool
receiveTx func() wire.MsgTx receiveTx func() wire.MsgTx
sweeper *sweep.UtxoSweeper
timeoutChan chan chan time.Time
t *testing.T t *testing.T
} }
@ -430,17 +433,50 @@ func createNurseryTestContext(t *testing.T,
// test. // test.
storeIntercepter := newNurseryStoreInterceptor(store) storeIntercepter := newNurseryStoreInterceptor(store)
notifier := newNurseryMockNotifier(t) notifier := sweep.NewMockNotifier(t)
sweeper := sweep.New(&sweep.UtxoSweeperConfig{ publishChan := make(chan wire.MsgTx, 1)
publishFunc := func(tx *wire.MsgTx, source string) error {
utxnLog.Tracef("Publishing tx %v by %v", tx.TxHash(), source)
publishChan <- *tx
return nil
}
timeoutChan := make(chan chan time.Time)
chainIO := &mockChainIO{
bestHeight: 0,
}
sweeperStore := sweep.NewMockSweeperStore()
sweeperCfg := &sweep.UtxoSweeperConfig{
GenSweepScript: func() ([]byte, error) { GenSweepScript: func() ([]byte, error) {
return []byte{}, nil return []byte{}, nil
}, },
Estimator: &lnwallet.StaticFeeEstimator{}, Estimator: &lnwallet.StaticFeeEstimator{},
Signer: &nurseryMockSigner{}, Signer: &nurseryMockSigner{},
}) Notifier: notifier,
PublishTransaction: func(tx *wire.MsgTx) error {
return publishFunc(tx, "sweeper")
},
NewBatchTimer: func() <-chan time.Time {
c := make(chan time.Time, 1)
timeoutChan <- c
return c
},
ChainIO: chainIO,
Store: sweeperStore,
MaxInputsPerTx: 10,
MaxSweepAttempts: 5,
NextAttemptDeltaFunc: func(int) int32 { return 1 },
}
cfg := NurseryConfig{ sweeper := sweep.New(sweeperCfg)
sweeper.Start()
nurseryCfg := NurseryConfig{
Notifier: notifier, Notifier: notifier,
FetchClosedChannels: func(pendingOnly bool) ( FetchClosedChannels: func(pendingOnly bool) (
[]*channeldb.ChannelCloseSummary, error) { []*channeldb.ChannelCloseSummary, error) {
@ -453,54 +489,91 @@ func createNurseryTestContext(t *testing.T,
}, nil }, nil
}, },
Store: storeIntercepter, Store: storeIntercepter,
ChainIO: &mockChainIO{}, ChainIO: chainIO,
Sweeper: sweeper, Sweeper: sweeper,
PublishTransaction: func(tx *wire.MsgTx) error {
return publishFunc(tx, "nursery")
},
} }
publishChan := make(chan wire.MsgTx, 1) nursery := newUtxoNursery(&nurseryCfg)
cfg.PublishTransaction = func(tx *wire.MsgTx) error {
t.Logf("Publishing tx %v", tx.TxHash())
publishChan <- *tx
return nil
}
nursery := newUtxoNursery(&cfg)
nursery.Start() nursery.Start()
ctx := &nurseryTestContext{ ctx := &nurseryTestContext{
nursery: nursery, nursery: nursery,
notifier: notifier, notifier: notifier,
chainIO: chainIO,
store: storeIntercepter, store: storeIntercepter,
publishChan: publishChan, publishChan: publishChan,
sweeper: sweeper,
timeoutChan: timeoutChan,
t: t, t: t,
} }
ctx.restart = func() bool {
return checkStartStop(func() {
ctx.nursery.Stop()
// Simulate lnd restart.
ctx.nursery = newUtxoNursery(ctx.nursery.cfg)
ctx.nursery.Start()
})
}
ctx.receiveTx = func() wire.MsgTx { ctx.receiveTx = func() wire.MsgTx {
var tx wire.MsgTx var tx wire.MsgTx
select { select {
case tx = <-ctx.publishChan: case tx = <-ctx.publishChan:
utxnLog.Debugf("Published tx %v", tx.TxHash())
return tx return tx
case <-time.After(5 * time.Second): case <-time.After(defaultTestTimeout):
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
t.Fatalf("tx not published") t.Fatalf("tx not published")
} }
return tx return tx
} }
ctx.restart = func() bool {
return checkStartStop(func() {
utxnLog.Tracef("Restart sweeper and nursery")
// Simulate lnd restart.
ctx.nursery.Stop()
// Also restart sweeper to test behaviour as one unit.
//
// TODO(joostjager): Mock sweeper to test nursery in
// isolation.
ctx.sweeper.Stop()
// Find out if there is a last tx stored. If so, we
// expect it to be republished on startup.
hasLastTx, err := sweeperCfg.Store.GetLastPublishedTx()
if err != nil {
t.Fatal(err)
}
// Restart sweeper.
ctx.sweeper = sweep.New(sweeperCfg)
ctx.sweeper.Start()
// Receive last tx if expected.
if hasLastTx != nil {
utxnLog.Debugf("Expecting republish")
ctx.receiveTx()
} else {
utxnLog.Debugf("Expecting no republish")
}
/// Restart nursery.
nurseryCfg.Sweeper = ctx.sweeper
ctx.nursery = newUtxoNursery(&nurseryCfg)
ctx.nursery.Start()
})
}
// Start with testing an immediate restart. // Start with testing an immediate restart.
ctx.restart() ctx.restart()
return ctx return ctx
} }
func (ctx *nurseryTestContext) notifyEpoch(height int32) {
ctx.chainIO.bestHeight = height
ctx.notifier.NotifyEpoch(height)
}
func (ctx *nurseryTestContext) finish() { func (ctx *nurseryTestContext) finish() {
// Add a final restart point in this state // Add a final restart point in this state
ctx.restart() ctx.restart()
@ -556,6 +629,8 @@ func (ctx *nurseryTestContext) finish() {
if len(activeHeights) > 0 { if len(activeHeights) > 0 {
ctx.t.Fatalf("Expected height index to be empty") ctx.t.Fatalf("Expected height index to be empty")
} }
ctx.sweeper.Stop()
} }
func createOutgoingRes(onLocalCommitment bool) *lnwallet.OutgoingHtlcResolution { func createOutgoingRes(onLocalCommitment bool) *lnwallet.OutgoingHtlcResolution {
@ -703,6 +778,8 @@ func testRestartLoop(t *testing.T, test func(*testing.T,
return true return true
} }
utxnLog.Debugf("Skipping restart point %v",
currentStartStopIdx)
return false return false
} }
@ -739,7 +816,7 @@ func testNurseryOutgoingHtlcSuccessOnLocal(t *testing.T,
ctx.restart() ctx.restart()
// Notify arrival of block where HTLC CLTV expires. // Notify arrival of block where HTLC CLTV expires.
ctx.notifier.notifyEpoch(125) ctx.notifyEpoch(125)
// This should trigger nursery to publish the timeout tx. // This should trigger nursery to publish the timeout tx.
ctx.receiveTx() ctx.receiveTx()
@ -751,7 +828,7 @@ func testNurseryOutgoingHtlcSuccessOnLocal(t *testing.T,
// Confirm the timeout tx. This should promote the HTLC to KNDR state. // Confirm the timeout tx. This should promote the HTLC to KNDR state.
timeoutTxHash := outgoingRes.SignedTimeoutTx.TxHash() timeoutTxHash := outgoingRes.SignedTimeoutTx.TxHash()
if err := ctx.notifier.confirmTx(&timeoutTxHash, 126); err != nil { if err := ctx.notifier.ConfirmTx(&timeoutTxHash, 126); err != nil {
t.Fatal(err) t.Fatal(err)
} }
@ -765,7 +842,7 @@ func testNurseryOutgoingHtlcSuccessOnLocal(t *testing.T,
ctx.restart() ctx.restart()
// Notify arrival of block where second level HTLC unlocks. // Notify arrival of block where second level HTLC unlocks.
ctx.notifier.notifyEpoch(128) ctx.notifyEpoch(128)
// Check final sweep into wallet. // Check final sweep into wallet.
testSweepHtlc(t, ctx) testSweepHtlc(t, ctx)
@ -790,7 +867,7 @@ func testNurseryOutgoingHtlcSuccessOnRemote(t *testing.T,
// resolving remote commitment tx. // resolving remote commitment tx.
// //
// TODO(joostjager): This is probably not correct? // TODO(joostjager): This is probably not correct?
err := ctx.notifier.confirmTx(&outgoingRes.ClaimOutpoint.Hash, 124) err := ctx.notifier.ConfirmTx(&outgoingRes.ClaimOutpoint.Hash, 124)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
@ -805,7 +882,7 @@ func testNurseryOutgoingHtlcSuccessOnRemote(t *testing.T,
ctx.restart() ctx.restart()
// Notify arrival of block where HTLC CLTV expires. // Notify arrival of block where HTLC CLTV expires.
ctx.notifier.notifyEpoch(125) ctx.notifyEpoch(125)
// Check final sweep into wallet. // Check final sweep into wallet.
testSweepHtlc(t, ctx) testSweepHtlc(t, ctx)
@ -840,7 +917,7 @@ func testNurseryCommitSuccessOnLocal(t *testing.T,
ctx.restart() ctx.restart()
// Notify confirmation of the commitment tx. // Notify confirmation of the commitment tx.
err = ctx.notifier.confirmTx(&commitRes.SelfOutPoint.Hash, 124) err = ctx.notifier.ConfirmTx(&commitRes.SelfOutPoint.Hash, 124)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
@ -855,7 +932,7 @@ func testNurseryCommitSuccessOnLocal(t *testing.T,
ctx.restart() ctx.restart()
// Notify arrival of block where commit output CSV expires. // Notify arrival of block where commit output CSV expires.
ctx.notifier.notifyEpoch(126) ctx.notifyEpoch(126)
// Check final sweep into wallet. // Check final sweep into wallet.
testSweep(t, ctx, func() { testSweep(t, ctx, func() {
@ -876,27 +953,28 @@ func testSweepHtlc(t *testing.T, ctx *nurseryTestContext) {
func testSweep(t *testing.T, ctx *nurseryTestContext, func testSweep(t *testing.T, ctx *nurseryTestContext,
afterPublishAssert func()) { afterPublishAssert func()) {
// Wait for nursery to publish the sweep tx. // Wait for nursery to publish the sweep tx.
ctx.tick()
sweepTx := ctx.receiveTx() sweepTx := ctx.receiveTx()
if ctx.restart() { if ctx.restart() {
// Restart will trigger rebroadcast of sweep tx. // Nursery reoffers its input. Sweeper needs a tick to create the sweep
sweepTx = ctx.receiveTx() // tx.
ctx.tick()
ctx.receiveTx()
} }
afterPublishAssert() afterPublishAssert()
// Confirm the sweep tx. // Confirm the sweep tx.
sweepTxHash := sweepTx.TxHash() ctx.notifier.SpendOutpoint(sweepTx.TxIn[0].PreviousOutPoint, sweepTx)
err := ctx.notifier.confirmTx(&sweepTxHash, 129)
if err != nil {
t.Fatal(err)
}
// Wait for output to be promoted in store to GRAD. // Wait for output to be promoted in store to GRAD.
select { select {
case <-ctx.store.graduateKinderChan: case <-ctx.store.graduateKinderChan:
case <-time.After(defaultTestTimeout): case <-time.After(defaultTestTimeout):
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
t.Fatalf("output not graduated") t.Fatalf("output not graduated")
} }
@ -907,6 +985,19 @@ func testSweep(t *testing.T, ctx *nurseryTestContext,
assertNurseryReportUnavailable(t, ctx.nursery) assertNurseryReportUnavailable(t, ctx.nursery)
} }
func (ctx *nurseryTestContext) tick() {
select {
case c := <-ctx.timeoutChan:
select {
case c <- time.Time{}:
case <-time.After(defaultTestTimeout):
ctx.t.Fatal("tick timeout - tick not consumed")
}
case <-time.After(defaultTestTimeout):
ctx.t.Fatal("tick timeout - no new timer created")
}
}
type nurseryStoreInterceptor struct { type nurseryStoreInterceptor struct {
ns NurseryStore ns NurseryStore
@ -941,16 +1032,18 @@ func (i *nurseryStoreInterceptor) CribToKinder(babyOutput *babyOutput) error {
return err return err
} }
func (i *nurseryStoreInterceptor) PreschoolToKinder(kidOutput *kidOutput) error { func (i *nurseryStoreInterceptor) PreschoolToKinder(kidOutput *kidOutput,
err := i.ns.PreschoolToKinder(kidOutput) lastGradHeight uint32) error {
err := i.ns.PreschoolToKinder(kidOutput, lastGradHeight)
i.preschoolToKinderChan <- struct{}{} i.preschoolToKinderChan <- struct{}{}
return err return err
} }
func (i *nurseryStoreInterceptor) GraduateKinder(height uint32) error { func (i *nurseryStoreInterceptor) GraduateKinder(height uint32, kid *kidOutput) error {
err := i.ns.GraduateKinder(height) err := i.ns.GraduateKinder(height, kid)
i.graduateKinderChan <- struct{}{} i.graduateKinderChan <- struct{}{}
@ -961,30 +1054,12 @@ func (i *nurseryStoreInterceptor) FetchPreschools() ([]kidOutput, error) {
return i.ns.FetchPreschools() return i.ns.FetchPreschools()
} }
func (i *nurseryStoreInterceptor) FetchClass(height uint32) (*wire.MsgTx, func (i *nurseryStoreInterceptor) FetchClass(height uint32) (
[]kidOutput, []babyOutput, error) { []kidOutput, []babyOutput, error) {
return i.ns.FetchClass(height) return i.ns.FetchClass(height)
} }
func (i *nurseryStoreInterceptor) FinalizeKinder(height uint32,
tx *wire.MsgTx) error {
return i.ns.FinalizeKinder(height, tx)
}
func (i *nurseryStoreInterceptor) LastFinalizedHeight() (uint32, error) {
return i.ns.LastFinalizedHeight()
}
func (i *nurseryStoreInterceptor) GraduateHeight(height uint32) error {
return i.ns.GraduateHeight(height)
}
func (i *nurseryStoreInterceptor) LastGraduatedHeight() (uint32, error) {
return i.ns.LastGraduatedHeight()
}
func (i *nurseryStoreInterceptor) HeightsBelowOrEqual(height uint32) ( func (i *nurseryStoreInterceptor) HeightsBelowOrEqual(height uint32) (
[]uint32, error) { []uint32, error) {
@ -1025,92 +1100,3 @@ func (m *nurseryMockSigner) ComputeInputScript(tx *wire.MsgTx,
return &lnwallet.InputScript{}, nil return &lnwallet.InputScript{}, nil
} }
type nurseryMockNotifier struct {
confChannel map[chainhash.Hash]chan *chainntnfs.TxConfirmation
epochChan chan *chainntnfs.BlockEpoch
spendChan chan *chainntnfs.SpendDetail
mutex sync.RWMutex
t *testing.T
}
func newNurseryMockNotifier(t *testing.T) *nurseryMockNotifier {
return &nurseryMockNotifier{
confChannel: make(map[chainhash.Hash]chan *chainntnfs.TxConfirmation),
epochChan: make(chan *chainntnfs.BlockEpoch),
spendChan: make(chan *chainntnfs.SpendDetail),
t: t,
}
}
func (m *nurseryMockNotifier) notifyEpoch(height int32) {
select {
case m.epochChan <- &chainntnfs.BlockEpoch{
Height: height,
}:
case <-time.After(defaultTestTimeout):
m.t.Fatal("epoch event not consumed")
}
}
func (m *nurseryMockNotifier) confirmTx(txid *chainhash.Hash, height uint32) error {
confirm := &chainntnfs.TxConfirmation{
BlockHeight: height,
}
select {
case m.getConfChannel(txid) <- confirm:
case <-time.After(defaultTestTimeout):
return fmt.Errorf("confirmation not consumed")
}
return nil
}
func (m *nurseryMockNotifier) RegisterConfirmationsNtfn(txid *chainhash.Hash,
_ []byte, numConfs, heightHint uint32) (*chainntnfs.ConfirmationEvent,
error) {
return &chainntnfs.ConfirmationEvent{
Confirmed: m.getConfChannel(txid),
}, nil
}
func (m *nurseryMockNotifier) getConfChannel(
txid *chainhash.Hash) chan *chainntnfs.TxConfirmation {
m.mutex.Lock()
defer m.mutex.Unlock()
channel, ok := m.confChannel[*txid]
if ok {
return channel
}
channel = make(chan *chainntnfs.TxConfirmation)
m.confChannel[*txid] = channel
return channel
}
func (m *nurseryMockNotifier) RegisterBlockEpochNtfn(
bestBlock *chainntnfs.BlockEpoch) (*chainntnfs.BlockEpochEvent, error) {
return &chainntnfs.BlockEpochEvent{
Epochs: m.epochChan,
Cancel: func() {},
}, nil
}
func (m *nurseryMockNotifier) Start() error {
return nil
}
func (m *nurseryMockNotifier) Stop() error {
return nil
}
func (m *nurseryMockNotifier) RegisterSpendNtfn(outpoint *wire.OutPoint,
_ []byte, heightHint uint32) (*chainntnfs.SpendEvent, error) {
return &chainntnfs.SpendEvent{
Spend: m.spendChan,
Cancel: func() {},
}, nil
}