Merge pull request #5332 from yyforyongyu/5259-routing-fix-state

routing: fix payment state and refactor payment lifecycle tests
This commit is contained in:
Olaoluwa Osuntokun 2021-06-24 18:42:17 -07:00 committed by GitHub
commit 198ac3482c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 4739 additions and 3031 deletions

1
go.sum

@ -274,6 +274,7 @@ github.com/spf13/pflag v1.0.1 h1:aCvUg6QPl3ibpQUxyLkrEkCHtPqYJL4x9AuhqVqFis4=
github.com/spf13/pflag v1.0.1/go.mod h1:DYY7MBk1bdzusC3SYhjObp+wFpr4gzcvqqNjLnInEg4=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/objx v0.1.1/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/objx v0.2.0 h1:Hbg2NidpLE8veEBkEZTL3CvlkUIVzuU9jDplZO54c48=
github.com/stretchr/objx v0.2.0/go.mod h1:qt09Ya8vawLte6SNmTgCsAVtYtaKzEcn8ATUoHMkEqE=
github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
github.com/stretchr/testify v1.3.0/go.mod h1:M5WIy9Dh21IEIfnGCwXGc5bZfKNJtfHm1UVUgZn+9EI=

@ -0,0 +1,2213 @@
package itest
import (
"bytes"
"context"
"encoding/hex"
"fmt"
"strings"
"testing"
"time"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/chainreg"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/stretchr/testify/require"
"google.golang.org/protobuf/proto"
)
type singleHopSendToRouteCase struct {
name string
// streaming tests streaming SendToRoute if true, otherwise tests
// synchronous SenToRoute.
streaming bool
// routerrpc submits the request to the routerrpc subserver if true,
// otherwise submits to the main rpc server.
routerrpc bool
}
var singleHopSendToRouteCases = []singleHopSendToRouteCase{
{
name: "regular main sync",
},
{
name: "regular main stream",
streaming: true,
},
{
name: "regular routerrpc sync",
routerrpc: true,
},
{
name: "mpp main sync",
},
{
name: "mpp main stream",
streaming: true,
},
{
name: "mpp routerrpc sync",
routerrpc: true,
},
}
// testSingleHopSendToRoute tests that payments are properly processed through a
// provided route with a single hop. We'll create the following network
// topology:
// Carol --100k--> Dave
// We'll query the daemon for routes from Carol to Dave and then send payments
// by feeding the route back into the various SendToRoute RPC methods. Here we
// test all three SendToRoute endpoints, forcing each to perform both a regular
// payment and an MPP payment.
func testSingleHopSendToRoute(net *lntest.NetworkHarness, t *harnessTest) {
for _, test := range singleHopSendToRouteCases {
test := test
t.t.Run(test.name, func(t1 *testing.T) {
ht := newHarnessTest(t1, t.lndHarness)
ht.RunTestCase(&testCase{
name: test.name,
test: func(_ *lntest.NetworkHarness, tt *harnessTest) {
testSingleHopSendToRouteCase(net, tt, test)
},
})
})
}
}
func testSingleHopSendToRouteCase(net *lntest.NetworkHarness, t *harnessTest,
test singleHopSendToRouteCase) {
const chanAmt = btcutil.Amount(100000)
const paymentAmtSat = 1000
const numPayments = 5
const amountPaid = int64(numPayments * paymentAmtSat)
ctxb := context.Background()
var networkChans []*lnrpc.ChannelPoint
// Create Carol and Dave, then establish a channel between them. Carol
// is the sole funder of the channel with 100k satoshis. The network
// topology should look like:
// Carol -> 100k -> Dave
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
// Open a channel with 100k satoshis between Carol and Dave with Carol
// being the sole funder of the channel.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{carol, dave}
for _, chanPoint := range networkChans {
for _, node := range nodes {
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", node.Name(),
node.NodeID, point, err)
}
}
}
// Create invoices for Dave, which expect a payment from Carol.
payReqs, rHashes, _, err := createPayReqs(
dave, paymentAmtSat, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Reconstruct payment addresses.
var payAddrs [][]byte
for _, payReq := range payReqs {
ctx, _ := context.WithTimeout(
context.Background(), defaultTimeout,
)
resp, err := dave.DecodePayReq(
ctx,
&lnrpc.PayReqString{PayReq: payReq},
)
if err != nil {
t.Fatalf("decode pay req: %v", err)
}
payAddrs = append(payAddrs, resp.PaymentAddr)
}
// Assert Carol and Dave are synced to the chain before proceeding, to
// ensure the queried route will have a valid final CLTV once the HTLC
// reaches Dave.
_, minerHeight, err := net.Miner.Client.GetBestBlock()
if err != nil {
t.Fatalf("unable to get best height: %v", err)
}
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
require.NoError(t.t, waitForNodeBlockHeight(ctxt, carol, minerHeight))
require.NoError(t.t, waitForNodeBlockHeight(ctxt, dave, minerHeight))
// Query for routes to pay from Carol to Dave using the default CLTV
// config.
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: dave.PubKeyStr,
Amt: paymentAmtSat,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routes, err := carol.QueryRoutes(ctxt, routesReq)
if err != nil {
t.Fatalf("unable to get route from %s: %v",
carol.Name(), err)
}
// There should only be one route to try, so take the first item.
r := routes.Routes[0]
// Construct a closure that will set MPP fields on the route, which
// allows us to test MPP payments.
setMPPFields := func(i int) {
hop := r.Hops[len(r.Hops)-1]
hop.TlvPayload = true
hop.MppRecord = &lnrpc.MPPRecord{
PaymentAddr: payAddrs[i],
TotalAmtMsat: paymentAmtSat * 1000,
}
}
// Construct closures for each of the payment types covered:
// - main rpc server sync
// - main rpc server streaming
// - routerrpc server sync
sendToRouteSync := func() {
for i, rHash := range rHashes {
setMPPFields(i)
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: r,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.SendToRouteSync(
ctxt, sendReq,
)
if err != nil {
t.Fatalf("unable to send to route for "+
"%s: %v", carol.Name(), err)
}
if resp.PaymentError != "" {
t.Fatalf("received payment error from %s: %v",
carol.Name(), resp.PaymentError)
}
}
}
sendToRouteStream := func() {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
alicePayStream, err := carol.SendToRoute(ctxt) // nolint:staticcheck
if err != nil {
t.Fatalf("unable to create payment stream for "+
"carol: %v", err)
}
for i, rHash := range rHashes {
setMPPFields(i)
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: routes.Routes[0],
}
err := alicePayStream.Send(sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
resp, err := alicePayStream.Recv()
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError != "" {
t.Fatalf("received payment error: %v",
resp.PaymentError)
}
}
}
sendToRouteRouterRPC := func() {
for i, rHash := range rHashes {
setMPPFields(i)
sendReq := &routerrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: r,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.RouterClient.SendToRouteV2(
ctxt, sendReq,
)
if err != nil {
t.Fatalf("unable to send to route for "+
"%s: %v", carol.Name(), err)
}
if resp.Failure != nil {
t.Fatalf("received payment error from %s: %v",
carol.Name(), resp.Failure)
}
}
}
// Using Carol as the node as the source, send the payments
// synchronously via the the routerrpc's SendToRoute, or via the main RPC
// server's SendToRoute streaming or sync calls.
switch {
case !test.routerrpc && test.streaming:
sendToRouteStream()
case !test.routerrpc && !test.streaming:
sendToRouteSync()
case test.routerrpc && !test.streaming:
sendToRouteRouterRPC()
default:
t.Fatalf("routerrpc does not support streaming send_to_route")
}
// Verify that the payment's from Carol's PoV have the correct payment
// hash and amount.
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
paymentsResp, err := carol.ListPayments(
ctxt, &lnrpc.ListPaymentsRequest{},
)
if err != nil {
t.Fatalf("error when obtaining %s payments: %v",
carol.Name(), err)
}
if len(paymentsResp.Payments) != numPayments {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsResp.Payments), numPayments)
}
for i, p := range paymentsResp.Payments {
// Assert that the payment hashes for each payment match up.
rHashHex := hex.EncodeToString(rHashes[i])
if p.PaymentHash != rHashHex {
t.Fatalf("incorrect payment hash for payment %d, "+
"want: %s got: %s",
i, rHashHex, p.PaymentHash)
}
// Assert that each payment has no invoice since the payment was
// completed using SendToRoute.
if p.PaymentRequest != "" {
t.Fatalf("incorrect payment request for payment: %d, "+
"want: \"\", got: %s",
i, p.PaymentRequest)
}
// Assert the payment amount is correct.
if p.ValueSat != paymentAmtSat {
t.Fatalf("incorrect payment amt for payment %d, "+
"want: %d, got: %d",
i, paymentAmtSat, p.ValueSat)
}
// Assert exactly one htlc was made.
if len(p.Htlcs) != 1 {
t.Fatalf("expected 1 htlc for payment %d, got: %d",
i, len(p.Htlcs))
}
// Assert the htlc's route is populated.
htlc := p.Htlcs[0]
if htlc.Route == nil {
t.Fatalf("expected route for payment %d", i)
}
// Assert the hop has exactly one hop.
if len(htlc.Route.Hops) != 1 {
t.Fatalf("expected 1 hop for payment %d, got: %d",
i, len(htlc.Route.Hops))
}
// If this is an MPP test, assert the MPP record's fields are
// properly populated. Otherwise the hop should not have an MPP
// record.
hop := htlc.Route.Hops[0]
if hop.MppRecord == nil {
t.Fatalf("expected mpp record for mpp payment")
}
if hop.MppRecord.TotalAmtMsat != paymentAmtSat*1000 {
t.Fatalf("incorrect mpp total msat for payment %d "+
"want: %d, got: %d",
i, paymentAmtSat*1000,
hop.MppRecord.TotalAmtMsat)
}
expAddr := payAddrs[i]
if !bytes.Equal(hop.MppRecord.PaymentAddr, expAddr) {
t.Fatalf("incorrect mpp payment addr for payment %d "+
"want: %x, got: %x",
i, expAddr, hop.MppRecord.PaymentAddr)
}
}
// Verify that the invoices's from Dave's PoV have the correct payment
// hash and amount.
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
invoicesResp, err := dave.ListInvoices(
ctxt, &lnrpc.ListInvoiceRequest{},
)
if err != nil {
t.Fatalf("error when obtaining %s payments: %v",
dave.Name(), err)
}
if len(invoicesResp.Invoices) != numPayments {
t.Fatalf("incorrect number of invoices, got %v, want %v",
len(invoicesResp.Invoices), numPayments)
}
for i, inv := range invoicesResp.Invoices {
// Assert that the payment hashes match up.
if !bytes.Equal(inv.RHash, rHashes[i]) {
t.Fatalf("incorrect payment hash for invoice %d, "+
"want: %x got: %x",
i, rHashes[i], inv.RHash)
}
// Assert that the amount paid to the invoice is correct.
if inv.AmtPaidSat != paymentAmtSat {
t.Fatalf("incorrect payment amt for invoice %d, "+
"want: %d, got %d",
i, paymentAmtSat, inv.AmtPaidSat)
}
}
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Dave, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Carol->Dave, order is Dave and then Carol.
assertAmountPaid(t, "Carol(local) => Dave(remote)", dave,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Carol(local) => Dave(remote)", carol,
carolFundPoint, amountPaid, int64(0))
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testMultiHopSendToRoute tests that payments are properly processed
// through a provided route. We'll create the following network topology:
// Alice --100k--> Bob --100k--> Carol
// We'll query the daemon for routes from Alice to Carol and then
// send payments through the routes.
func testMultiHopSendToRoute(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Create Carol and establish a channel from Bob. Bob is the sole funder
// of the channel with 100k satoshis. The network topology should look like:
// Alice -> Bob -> Carol
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Bob); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, net.Bob)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointBob)
bobChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointBob)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
bobFundPoint := wire.OutPoint{
Hash: *bobChanTXID,
Index: chanPointBob.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
nodeNames := []string{"Alice", "Bob", "Carol"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Alice for 1k
// satoshis with a different preimage each time.
const (
numPayments = 5
paymentAmt = 1000
)
_, rHashes, invoices, err := createPayReqs(
carol, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Construct a route from Alice to Carol for each of the invoices
// created above. We set FinalCltvDelta to 40 since by default
// QueryRoutes returns the last hop with a final cltv delta of 9 where
// as the default in htlcswitch is 40.
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: carol.PubKeyStr,
Amt: paymentAmt,
FinalCltvDelta: chainreg.DefaultBitcoinTimeLockDelta,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routes, err := net.Alice.QueryRoutes(ctxt, routesReq)
if err != nil {
t.Fatalf("unable to get route: %v", err)
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("bob didn't advertise his channel in time: %v", err)
}
time.Sleep(time.Millisecond * 50)
// Using Alice as the source, pay to the 5 invoices from Carol created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
for i, rHash := range rHashes {
// Manually set the MPP payload a new for each payment since
// the payment addr will change with each invoice, although we
// can re-use the route itself.
route := *routes.Routes[0]
route.Hops[len(route.Hops)-1].TlvPayload = true
route.Hops[len(route.Hops)-1].MppRecord = &lnrpc.MPPRecord{
PaymentAddr: invoices[i].PaymentAddr,
TotalAmtMsat: int64(
lnwire.NewMSatFromSatoshis(paymentAmt),
),
}
sendReq := &routerrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: &route,
}
resp, err := net.Alice.RouterClient.SendToRouteV2(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.Failure != nil {
t.Fatalf("received payment error: %v", resp.Failure)
}
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Alice->Bob->Carol, order is Carol, Bob,
// Alice.
const amountPaid = int64(5000)
assertAmountPaid(t, "Bob(local) => Carol(remote)", carol,
bobFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Bob(local) => Carol(remote)", net.Bob,
bobFundPoint, amountPaid, int64(0))
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, amountPaid+(baseFee*numPayments), int64(0))
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointBob, false)
}
// testSendToRouteErrorPropagation tests propagation of errors that occur
// while processing a multi-hop payment through an unknown route.
func testSendToRouteErrorPropagation(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't advertise her channel: %v", err)
}
// Create a new nodes (Carol and Charlie), load her with some funds,
// then establish a connection between Carol and Charlie with a channel
// that has identical capacity to the one created above.Then we will
// get route via queryroutes call which will be fake route for Alice ->
// Bob graph.
//
// The network topology should now look like: Alice -> Bob; Carol -> Charlie.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
charlie := net.NewNode(t.t, "Charlie", nil)
defer shutdownAndAssert(net, t, charlie)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, charlie)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, charlie); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, charlie,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel: %v", err)
}
// Query routes from Carol to Charlie which will be an invalid route
// for Alice -> Bob.
fakeReq := &lnrpc.QueryRoutesRequest{
PubKey: charlie.PubKeyStr,
Amt: int64(1),
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
fakeRoute, err := carol.QueryRoutes(ctxt, fakeReq)
if err != nil {
t.Fatalf("unable get fake route: %v", err)
}
// Create 1 invoices for Bob, which expect a payment from Alice for 1k
// satoshis
const paymentAmt = 1000
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := net.Bob.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
rHash := resp.RHash
// Using Alice as the source, pay to the 5 invoices from Bob created above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
alicePayStream, err := net.Alice.SendToRoute(ctxt) // nolint:staticcheck
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: fakeRoute.Routes[0],
}
if err := alicePayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// At this place we should get an rpc error with notification
// that edge is not found on hop(0)
if _, err := alicePayStream.Recv(); err != nil && strings.Contains(err.Error(),
"edge not found") {
} else if err != nil {
t.Fatalf("payment stream has been closed but fake route has consumed: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testPrivateChannels tests that a private channel can be used for
// routing by the two endpoints of the channel, but is not known by
// the rest of the nodes in the graph.
func testPrivateChannels(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// We create the following topology:
//
// Dave --100k--> Alice --200k--> Bob
// ^ ^
// | |
// 100k 100k
// | |
// +---- Carol ----+
//
// where the 100k channel between Carol and Alice is private.
// Open a channel with 200k satoshis between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt * 2,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Create Dave, and a channel to Alice of 100k.
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, dave)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, dave, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointDave)
daveChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel from her to
// Dave of 100k.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all these channels, as they
// are all public.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Now create a _private_ channel directly between Carol and
// Alice of 100k.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanOpenUpdate := openChannelStream(
ctxt, t, net, carol, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// One block is enough to make the channel ready for use, since the
// nodes have defaultNumConfs=1 set.
block := mineBlocks(t, net, 1, 1)[0]
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanPointPrivate, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := lnrpc.GetChanPointFundingTxid(chanPointPrivate)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information returned by
// both peers.
privateFundPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: chanPointPrivate.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.AssertChannelExists(ctxt, carol, &privateFundPoint)
if err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.AssertChannelExists(ctxt, net.Alice, &privateFundPoint)
if err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// The channel should be available for payments between Carol and Alice.
// We check this by sending payments from Carol to Bob, that
// collectively would deplete at least one of Carol's channels.
// Create 2 invoices for Bob, each of 70k satoshis. Since each of
// Carol's channels is of size 100k, these payments cannot succeed
// by only using one of the channels.
const numPayments = 2
const paymentAmt = 70000
payReqs, _, _, err := createPayReqs(
net.Bob, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
time.Sleep(time.Millisecond * 50)
// Let Carol pay the invoices.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, carol.RouterClient, payReqs, true,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// Bob should have received 140k satoshis from Alice.
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), 2*paymentAmt)
// Alice sent 140k to Bob.
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, 2*paymentAmt, int64(0))
// Alice received 70k + fee from Dave.
assertAmountPaid(t, "Dave(local) => Alice(remote)", net.Alice,
daveFundPoint, int64(0), paymentAmt+baseFee)
// Dave sent 70k+fee to Alice.
assertAmountPaid(t, "Dave(local) => Alice(remote)", dave,
daveFundPoint, paymentAmt+baseFee, int64(0))
// Dave received 70k+fee of two hops from Carol.
assertAmountPaid(t, "Carol(local) => Dave(remote)", dave,
carolFundPoint, int64(0), paymentAmt+baseFee*2)
// Carol sent 70k+fee of two hops to Dave.
assertAmountPaid(t, "Carol(local) => Dave(remote)", carol,
carolFundPoint, paymentAmt+baseFee*2, int64(0))
// Alice received 70k+fee from Carol.
assertAmountPaid(t, "Carol(local) [private=>] Alice(remote)",
net.Alice, privateFundPoint, int64(0), paymentAmt+baseFee)
// Carol sent 70k+fee to Alice.
assertAmountPaid(t, "Carol(local) [private=>] Alice(remote)",
carol, privateFundPoint, paymentAmt+baseFee, int64(0))
// Alice should also be able to route payments using this channel,
// so send two payments of 60k back to Carol.
const paymentAmt60k = 60000
payReqs, _, _, err = createPayReqs(
carol, paymentAmt60k, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
time.Sleep(time.Millisecond * 50)
// Let Bob pay the invoices.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, net.Alice, net.Alice.RouterClient, payReqs, true,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Finally, we make sure Dave and Bob does not know about the
// private channel between Carol and Alice. We first mine
// plenty of blocks, such that the channel would have been
// announced in case it was public.
mineBlocks(t, net, 10, 0)
// We create a helper method to check how many edges each of the
// nodes know about. Carol and Alice should know about 4, while
// Bob and Dave should only know about 3, since one channel is
// private.
numChannels := func(node *lntest.HarnessNode, includeUnannounced bool) int {
req := &lnrpc.ChannelGraphRequest{
IncludeUnannounced: includeUnannounced,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err := node.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable go describegraph: %v", err)
}
return len(chanGraph.Edges)
}
var predErr error
err = wait.Predicate(func() bool {
aliceChans := numChannels(net.Alice, true)
if aliceChans != 4 {
predErr = fmt.Errorf("expected Alice to know 4 edges, "+
"had %v", aliceChans)
return false
}
alicePubChans := numChannels(net.Alice, false)
if alicePubChans != 3 {
predErr = fmt.Errorf("expected Alice to know 3 public edges, "+
"had %v", alicePubChans)
return false
}
bobChans := numChannels(net.Bob, true)
if bobChans != 3 {
predErr = fmt.Errorf("expected Bob to know 3 edges, "+
"had %v", bobChans)
return false
}
carolChans := numChannels(carol, true)
if carolChans != 4 {
predErr = fmt.Errorf("expected Carol to know 4 edges, "+
"had %v", carolChans)
return false
}
carolPubChans := numChannels(carol, false)
if carolPubChans != 3 {
predErr = fmt.Errorf("expected Carol to know 3 public edges, "+
"had %v", carolPubChans)
return false
}
daveChans := numChannels(dave, true)
if daveChans != 3 {
predErr = fmt.Errorf("expected Dave to know 3 edges, "+
"had %v", daveChans)
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("%v", predErr)
}
// Close all channels.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointPrivate, false)
}
// testUpdateChannelPolicyForPrivateChannel tests when a private channel
// updates its channel edge policy, we will use the updated policy to send our
// payment.
// The topology is created as: Alice -> Bob -> Carol, where Alice -> Bob is
// public and Bob -> Carol is private. After an invoice is created by Carol,
// Bob will update the base fee via UpdateChannelPolicy, we will test that
// Alice will not fail the payment and send it using the updated channel
// policy.
func testUpdateChannelPolicyForPrivateChannel(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
defer ctxb.Done()
// We'll create the following topology first,
// Alice <--public:100k--> Bob <--private:100k--> Carol
const chanAmt = btcutil.Amount(100000)
// Open a channel with 100k satoshis between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAliceBob := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
defer closeChannelAndAssert(
ctxt, t, net, net.Alice, chanPointAliceBob, false,
)
// Get Alice's funding point.
aliceChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointAliceBob)
require.NoError(t.t, err, "unable to get txid")
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAliceBob.OutputIndex,
}
// Create a new node Carol.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
// Connect Carol to Bob.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
require.NoError(t.t,
net.ConnectNodes(ctxt, carol, net.Bob),
"unable to connect carol to bob",
)
// Open a channel with 100k satoshis between Bob and Carol.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBobCarol := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
defer closeChannelAndAssert(
ctxt, t, net, net.Bob, chanPointBobCarol, false,
)
// Get Bob's funding point.
bobChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointBobCarol)
require.NoError(t.t, err, "unable to get txid")
bobFundPoint := wire.OutPoint{
Hash: *bobChanTXID,
Index: chanPointBobCarol.OutputIndex,
}
// We should have the following topology now,
// Alice <--public:100k--> Bob <--private:100k--> Carol
//
// Now we will create an invoice for Carol.
const paymentAmt = 20000
invoice := &lnrpc.Invoice{
Memo: "routing hints",
Value: paymentAmt,
Private: true,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.AddInvoice(ctxt, invoice)
require.NoError(t.t, err, "unable to create invoice for carol")
// Bob now updates the channel edge policy for the private channel.
const (
baseFeeMSat = 33000
)
timeLockDelta := uint32(chainreg.DefaultBitcoinTimeLockDelta)
updateFeeReq := &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFeeMSat,
TimeLockDelta: timeLockDelta,
Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
ChanPoint: chanPointBobCarol,
},
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = net.Bob.UpdateChannelPolicy(ctxt, updateFeeReq)
require.NoError(t.t, err, "unable to update chan policy")
// Alice pays the invoices. She will use the updated baseFeeMSat in the
// payment
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
payReqs := []string{resp.PaymentRequest}
require.NoError(t.t,
completePaymentRequests(
ctxt, net.Alice, net.Alice.RouterClient, payReqs, true,
), "unable to send payment",
)
// Check that Alice did make the payment with two HTLCs, one failed and
// one succeeded.
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
paymentsResp, err := net.Alice.ListPayments(
ctxt, &lnrpc.ListPaymentsRequest{},
)
require.NoError(t.t, err, "failed to obtain payments for Alice")
require.Equal(t.t, 1, len(paymentsResp.Payments), "expected 1 payment")
htlcs := paymentsResp.Payments[0].Htlcs
require.Equal(t.t, 2, len(htlcs), "expected to have 2 HTLCs")
require.Equal(
t.t, lnrpc.HTLCAttempt_FAILED, htlcs[0].Status,
"the first HTLC attempt should fail",
)
require.Equal(
t.t, lnrpc.HTLCAttempt_SUCCEEDED, htlcs[1].Status,
"the second HTLC attempt should succeed",
)
// Carol should have received 20k satoshis from Bob.
assertAmountPaid(t, "Carol(remote) [<=private] Bob(local)",
carol, bobFundPoint, 0, paymentAmt)
// Bob should have sent 20k satoshis to Carol.
assertAmountPaid(t, "Bob(local) [private=>] Carol(remote)",
net.Bob, bobFundPoint, paymentAmt, 0)
// Calcuate the amount in satoshis.
amtExpected := int64(paymentAmt + baseFeeMSat/1000)
// Bob should have received 20k satoshis + fee from Alice.
assertAmountPaid(t, "Bob(remote) <= Alice(local)",
net.Bob, aliceFundPoint, 0, amtExpected)
// Alice should have sent 20k satoshis + fee to Bob.
assertAmountPaid(t, "Alice(local) => Bob(remote)",
net.Alice, aliceFundPoint, amtExpected, 0)
}
// testInvoiceRoutingHints tests that the routing hints for an invoice are
// created properly.
func testInvoiceRoutingHints(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
// Throughout this test, we'll be opening a channel between Alice and
// several other parties.
//
// First, we'll create a private channel between Alice and Bob. This
// will be the only channel that will be considered as a routing hint
// throughout this test. We'll include a push amount since we currently
// require channels to have enough remote balance to cover the invoice's
// payment.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
Private: true,
},
)
// Then, we'll create Carol's node and open a public channel between her
// and Alice. This channel will not be considered as a routing hint due
// to it being public.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
},
)
// We'll also create a public channel between Bob and Carol to ensure
// that Bob gets selected as the only routing hint. We do this as
// we should only include routing hints for nodes that are publicly
// advertised, otherwise we'd end up leaking information about nodes
// that wish to stay unadvertised.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBobCarol := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
},
)
// Then, we'll create Dave's node and open a private channel between him
// and Alice. We will not include a push amount in order to not consider
// this channel as a routing hint as it will not have enough remote
// balance for the invoice's amount.
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, dave); err != nil {
t.Fatalf("unable to connect alice to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, net.Alice, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
// Finally, we'll create Eve's node and open a private channel between
// her and Alice. This time though, we'll take Eve's node down after the
// channel has been created to avoid populating routing hints for
// inactive channels.
eve := net.NewNode(t.t, "Eve", nil)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, eve); err != nil {
t.Fatalf("unable to connect alice to eve: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointEve := openChannelAndAssert(
ctxt, t, net, net.Alice, eve,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
Private: true,
},
)
// Make sure all the channels have been opened.
chanNames := []string{
"alice-bob", "alice-carol", "bob-carol", "alice-dave",
"alice-eve",
}
aliceChans := []*lnrpc.ChannelPoint{
chanPointBob, chanPointCarol, chanPointBobCarol, chanPointDave,
chanPointEve,
}
for i, chanPoint := range aliceChans {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("timed out waiting for channel open %s: %v",
chanNames[i], err)
}
}
// Now that the channels are open, we'll take down Eve's node.
shutdownAndAssert(net, t, eve)
// Create an invoice for Alice that will populate the routing hints.
invoice := &lnrpc.Invoice{
Memo: "routing hints",
Value: int64(chanAmt / 4),
Private: true,
}
// Due to the way the channels were set up above, the channel between
// Alice and Bob should be the only channel used as a routing hint.
var predErr error
var decoded *lnrpc.PayReq
err := wait.Predicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := net.Alice.AddInvoice(ctxt, invoice)
if err != nil {
predErr = fmt.Errorf("unable to add invoice: %v", err)
return false
}
// We'll decode the invoice's payment request to determine which
// channels were used as routing hints.
payReq := &lnrpc.PayReqString{
PayReq: resp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
decoded, err = net.Alice.DecodePayReq(ctxt, payReq)
if err != nil {
predErr = fmt.Errorf("unable to decode payment "+
"request: %v", err)
return false
}
if len(decoded.RouteHints) != 1 {
predErr = fmt.Errorf("expected one route hint, got %d",
len(decoded.RouteHints))
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf(predErr.Error())
}
hops := decoded.RouteHints[0].HopHints
if len(hops) != 1 {
t.Fatalf("expected one hop in route hint, got %d", len(hops))
}
chanID := hops[0].ChanId
// We'll need the short channel ID of the channel between Alice and Bob
// to make sure the routing hint is for this channel.
listReq := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
listResp, err := net.Alice.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to retrieve alice's channels: %v", err)
}
var aliceBobChanID uint64
for _, channel := range listResp.Channels {
if channel.RemotePubkey == net.Bob.PubKeyStr {
aliceBobChanID = channel.ChanId
}
}
if aliceBobChanID == 0 {
t.Fatalf("channel between alice and bob not found")
}
if chanID != aliceBobChanID {
t.Fatalf("expected channel ID %d, got %d", aliceBobChanID,
chanID)
}
// Now that we've confirmed the routing hints were added correctly, we
// can close all the channels and shut down all the nodes created.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBobCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointDave, false)
// The channel between Alice and Eve should be force closed since Eve
// is offline.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointEve, true)
// Cleanup by mining the force close and sweep transaction.
cleanupForceClose(t, net, net.Alice, chanPointEve)
}
// testMultiHopOverPrivateChannels tests that private channels can be used as
// intermediate hops in a route for payments.
func testMultiHopOverPrivateChannels(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// We'll test that multi-hop payments over private channels work as
// intended. To do so, we'll create the following topology:
// private public private
// Alice <--100k--> Bob <--100k--> Carol <--100k--> Dave
const chanAmt = btcutil.Amount(100000)
// First, we'll open a private channel between Alice and Bob with Alice
// being the funder.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't see the channel alice <-> bob before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("bob didn't see the channel alice <-> bob before "+
"timeout: %v", err)
}
// Retrieve Alice's funding outpoint.
aliceChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Next, we'll create Carol's node and open a public channel between
// her and Bob with Bob being the funder.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("bob didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("carol didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("alice didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
// Retrieve Bob's funding outpoint.
bobChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointBob)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
bobFundPoint := wire.OutPoint{
Hash: *bobChanTXID,
Index: chanPointBob.OutputIndex,
}
// Next, we'll create Dave's node and open a private channel between him
// and Carol with Carol being the funder.
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't see the channel carol <-> dave before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("dave didn't see the channel carol <-> dave before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("dave didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
// Retrieve Carol's funding point.
carolChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Now that all the channels are set up according to the topology from
// above, we can proceed to test payments. We'll create an invoice for
// Dave of 20k satoshis and pay it with Alice. Since there is no public
// route from Alice to Dave, we'll need to use the private channel
// between Carol and Dave as a routing hint encoded in the invoice.
const paymentAmt = 20000
// Create the invoice for Dave.
invoice := &lnrpc.Invoice{
Memo: "two hopz!",
Value: paymentAmt,
Private: true,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := dave.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice for dave: %v", err)
}
// Let Alice pay the invoice.
payReqs := []string{resp.PaymentRequest}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, net.Alice, net.Alice.RouterClient, payReqs, true,
)
if err != nil {
t.Fatalf("unable to send payments from alice to dave: %v", err)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when opening
// the channels.
const baseFee = 1
// Dave should have received 20k satoshis from Carol.
assertAmountPaid(t, "Carol(local) [private=>] Dave(remote)",
dave, carolFundPoint, 0, paymentAmt)
// Carol should have sent 20k satoshis to Dave.
assertAmountPaid(t, "Carol(local) [private=>] Dave(remote)",
carol, carolFundPoint, paymentAmt, 0)
// Carol should have received 20k satoshis + fee for one hop from Bob.
assertAmountPaid(t, "Bob(local) => Carol(remote)",
carol, bobFundPoint, 0, paymentAmt+baseFee)
// Bob should have sent 20k satoshis + fee for one hop to Carol.
assertAmountPaid(t, "Bob(local) => Carol(remote)",
net.Bob, bobFundPoint, paymentAmt+baseFee, 0)
// Bob should have received 20k satoshis + fee for two hops from Alice.
assertAmountPaid(t, "Alice(local) [private=>] Bob(remote)", net.Bob,
aliceFundPoint, 0, paymentAmt+baseFee*2)
// Alice should have sent 20k satoshis + fee for two hops to Bob.
assertAmountPaid(t, "Alice(local) [private=>] Bob(remote)", net.Alice,
aliceFundPoint, paymentAmt+baseFee*2, 0)
// At this point, the payment was successful. We can now close all the
// channels and shutdown the nodes created throughout this test.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// computeFee calculates the payment fee as specified in BOLT07
func computeFee(baseFee, feeRate, amt lnwire.MilliSatoshi) lnwire.MilliSatoshi {
return baseFee + amt*feeRate/1000000
}
// testQueryRoutes checks the response of queryroutes.
// We'll create the following network topology:
// Alice --> Bob --> Carol --> Dave
// and query the daemon for routes from Alice to Dave.
func testQueryRoutes(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
// Create Carol and establish a channel from Bob.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Bob); err != nil {
t.Fatalf("unable to connect carol to bob: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, net.Bob)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointBob)
// Create Dave and establish a channel from Carol.
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, carol); err != nil {
t.Fatalf("unable to connect dave to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Query for routes to pay from Alice to Dave.
const paymentAmt = 1000
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: dave.PubKeyStr,
Amt: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routesRes, err := net.Alice.QueryRoutes(ctxt, routesReq)
if err != nil {
t.Fatalf("unable to get route: %v", err)
}
const mSat = 1000
feePerHopMSat := computeFee(1000, 1, paymentAmt*mSat)
for i, route := range routesRes.Routes {
expectedTotalFeesMSat :=
lnwire.MilliSatoshi(len(route.Hops)-1) * feePerHopMSat
expectedTotalAmtMSat := (paymentAmt * mSat) + expectedTotalFeesMSat
if route.TotalFees != route.TotalFeesMsat/mSat { // nolint:staticcheck
t.Fatalf("route %v: total fees %v (msat) does not "+
"round down to %v (sat)",
i, route.TotalFeesMsat, route.TotalFees) // nolint:staticcheck
}
if route.TotalFeesMsat != int64(expectedTotalFeesMSat) {
t.Fatalf("route %v: total fees in msat expected %v got %v",
i, expectedTotalFeesMSat, route.TotalFeesMsat)
}
if route.TotalAmt != route.TotalAmtMsat/mSat { // nolint:staticcheck
t.Fatalf("route %v: total amt %v (msat) does not "+
"round down to %v (sat)",
i, route.TotalAmtMsat, route.TotalAmt) // nolint:staticcheck
}
if route.TotalAmtMsat != int64(expectedTotalAmtMSat) {
t.Fatalf("route %v: total amt in msat expected %v got %v",
i, expectedTotalAmtMSat, route.TotalAmtMsat)
}
// For all hops except the last, we check that fee equals feePerHop
// and amount to forward deducts feePerHop on each hop.
expectedAmtToForwardMSat := expectedTotalAmtMSat
for j, hop := range route.Hops[:len(route.Hops)-1] {
expectedAmtToForwardMSat -= feePerHopMSat
if hop.Fee != hop.FeeMsat/mSat { // nolint:staticcheck
t.Fatalf("route %v hop %v: fee %v (msat) does not "+
"round down to %v (sat)",
i, j, hop.FeeMsat, hop.Fee) // nolint:staticcheck
}
if hop.FeeMsat != int64(feePerHopMSat) {
t.Fatalf("route %v hop %v: fee in msat expected %v got %v",
i, j, feePerHopMSat, hop.FeeMsat)
}
if hop.AmtToForward != hop.AmtToForwardMsat/mSat { // nolint:staticcheck
t.Fatalf("route %v hop %v: amt to forward %v (msat) does not "+
"round down to %v (sat)",
i, j, hop.AmtToForwardMsat, hop.AmtToForward) // nolint:staticcheck
}
if hop.AmtToForwardMsat != int64(expectedAmtToForwardMSat) {
t.Fatalf("route %v hop %v: amt to forward in msat "+
"expected %v got %v",
i, j, expectedAmtToForwardMSat, hop.AmtToForwardMsat)
}
}
// Last hop should have zero fee and amount to forward should equal
// payment amount.
hop := route.Hops[len(route.Hops)-1]
if hop.Fee != 0 || hop.FeeMsat != 0 { // nolint:staticcheck
t.Fatalf("route %v hop %v: fee expected 0 got %v (sat) %v (msat)",
i, len(route.Hops)-1, hop.Fee, hop.FeeMsat) // nolint:staticcheck
}
if hop.AmtToForward != hop.AmtToForwardMsat/mSat { // nolint:staticcheck
t.Fatalf("route %v hop %v: amt to forward %v (msat) does not "+
"round down to %v (sat)",
i, len(route.Hops)-1, hop.AmtToForwardMsat, hop.AmtToForward) // nolint:staticcheck
}
if hop.AmtToForwardMsat != paymentAmt*mSat {
t.Fatalf("route %v hop %v: amt to forward in msat "+
"expected %v got %v",
i, len(route.Hops)-1, paymentAmt*mSat, hop.AmtToForwardMsat)
}
}
// While we're here, we test updating mission control's config values
// and assert that they are correctly updated and check that our mission
// control import function updates appropriately.
testMissionControlCfg(t.t, net.Alice)
testMissionControlImport(
t.t, net.Alice, net.Bob.PubKey[:], carol.PubKey[:],
)
// We clean up the test case by closing channels that were created for
// the duration of the tests.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testMissionControlCfg tests getting and setting of a node's mission control
// config, resetting to the original values after testing so that no other
// tests are affected.
func testMissionControlCfg(t *testing.T, node *lntest.HarnessNode) {
ctxb := context.Background()
startCfg, err := node.RouterClient.GetMissionControlConfig(
ctxb, &routerrpc.GetMissionControlConfigRequest{},
)
require.NoError(t, err)
cfg := &routerrpc.MissionControlConfig{
HalfLifeSeconds: 8000,
HopProbability: 0.8,
Weight: 0.3,
MaximumPaymentResults: 30,
MinimumFailureRelaxInterval: 60,
}
_, err = node.RouterClient.SetMissionControlConfig(
ctxb, &routerrpc.SetMissionControlConfigRequest{
Config: cfg,
},
)
require.NoError(t, err)
resp, err := node.RouterClient.GetMissionControlConfig(
ctxb, &routerrpc.GetMissionControlConfigRequest{},
)
require.NoError(t, err)
require.True(t, proto.Equal(cfg, resp.Config))
_, err = node.RouterClient.SetMissionControlConfig(
ctxb, &routerrpc.SetMissionControlConfigRequest{
Config: startCfg.Config,
},
)
require.NoError(t, err)
}
// testMissionControlImport tests import of mission control results from an
// external source.
func testMissionControlImport(t *testing.T, node *lntest.HarnessNode,
fromNode, toNode []byte) {
ctxb := context.Background()
// Reset mission control so that our query will return the default
// probability for our first request.
_, err := node.RouterClient.ResetMissionControl(
ctxb, &routerrpc.ResetMissionControlRequest{},
)
require.NoError(t, err, "could not reset mission control")
// Get our baseline probability for a 10 msat hop between our target
// nodes.
var amount int64 = 10
probReq := &routerrpc.QueryProbabilityRequest{
FromNode: fromNode,
ToNode: toNode,
AmtMsat: amount,
}
importHistory := &routerrpc.PairData{
FailTime: time.Now().Unix(),
FailAmtMsat: amount,
}
// Assert that our history is not already equal to the value we want to
// set. This should not happen because we have just cleared our state.
resp1, err := node.RouterClient.QueryProbability(ctxb, probReq)
require.NoError(t, err, "query probability failed")
require.Zero(t, resp1.History.FailTime)
require.Zero(t, resp1.History.FailAmtMsat)
// Now, we import a single entry which tracks a failure of the amount
// we want to query between our nodes.
req := &routerrpc.XImportMissionControlRequest{
Pairs: []*routerrpc.PairHistory{
{
NodeFrom: fromNode,
NodeTo: toNode,
History: importHistory,
},
},
}
_, err = node.RouterClient.XImportMissionControl(ctxb, req)
require.NoError(t, err, "could not import config")
resp2, err := node.RouterClient.QueryProbability(ctxb, probReq)
require.NoError(t, err, "query probability failed")
require.Equal(t, importHistory.FailTime, resp2.History.FailTime)
require.Equal(t, importHistory.FailAmtMsat, resp2.History.FailAmtMsat)
// Finally, check that we will fail if inconsistent sat/msat values are
// set.
importHistory.FailAmtSat = amount * 2
_, err = node.RouterClient.XImportMissionControl(ctxb, req)
require.Error(t, err, "mismatched import amounts succeeded")
}
// testRouteFeeCutoff tests that we are able to prevent querying routes and
// sending payments that incur a fee higher than the fee limit.
func testRouteFeeCutoff(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// For this test, we'll create the following topology:
//
// --- Bob ---
// / \
// Alice ---- ---- Dave
// \ /
// -- Carol --
//
// Alice will attempt to send payments to Dave that should not incur a
// fee greater than the fee limit expressed as a percentage of the
// amount and as a fixed amount of satoshis.
const chanAmt = btcutil.Amount(100000)
// Open a channel between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAliceBob := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Create Carol's node and open a channel between her and Alice with
// Alice being the funder.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAliceCarol := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Create Dave's node and open a channel between him and Bob with Bob
// being the funder.
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Bob); err != nil {
t.Fatalf("unable to connect dave to bob: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBobDave := openChannelAndAssert(
ctxt, t, net, net.Bob, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Open a channel between Carol and Dave.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarolDave := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Now that all the channels were set up, we'll wait for all the nodes
// to have seen all the channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"alice", "bob", "carol", "dave"}
networkChans := []*lnrpc.ChannelPoint{
chanPointAliceBob, chanPointAliceCarol, chanPointBobDave,
chanPointCarolDave,
}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
outpoint := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d) timed out waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, outpoint, err)
}
}
}
// The payments should only be successful across the route:
// Alice -> Bob -> Dave
// Therefore, we'll update the fee policy on Carol's side for the
// channel between her and Dave to invalidate the route:
// Alice -> Carol -> Dave
baseFee := int64(10000)
feeRate := int64(5)
timeLockDelta := uint32(chainreg.DefaultBitcoinTimeLockDelta)
maxHtlc := calculateMaxHtlc(chanAmt)
expectedPolicy := &lnrpc.RoutingPolicy{
FeeBaseMsat: baseFee,
FeeRateMilliMsat: testFeeBase * feeRate,
TimeLockDelta: timeLockDelta,
MinHtlc: 1000, // default value
MaxHtlcMsat: maxHtlc,
}
updateFeeReq := &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: float64(feeRate),
TimeLockDelta: timeLockDelta,
MaxHtlcMsat: maxHtlc,
Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
ChanPoint: chanPointCarolDave,
},
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if _, err := carol.UpdateChannelPolicy(ctxt, updateFeeReq); err != nil {
t.Fatalf("unable to update chan policy: %v", err)
}
// Wait for Alice to receive the channel update from Carol.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceSub := subscribeGraphNotifications(ctxt, t, net.Alice)
defer close(aliceSub.quit)
waitForChannelUpdate(
t, aliceSub,
[]expectedChanUpdate{
{carol.PubKeyStr, expectedPolicy, chanPointCarolDave},
},
)
// We'll also need the channel IDs for Bob's channels in order to
// confirm the route of the payments.
listReq := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
listResp, err := net.Bob.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to retrieve bob's channels: %v", err)
}
var aliceBobChanID, bobDaveChanID uint64
for _, channel := range listResp.Channels {
switch channel.RemotePubkey {
case net.Alice.PubKeyStr:
aliceBobChanID = channel.ChanId
case dave.PubKeyStr:
bobDaveChanID = channel.ChanId
}
}
if aliceBobChanID == 0 {
t.Fatalf("channel between alice and bob not found")
}
if bobDaveChanID == 0 {
t.Fatalf("channel between bob and dave not found")
}
hopChanIDs := []uint64{aliceBobChanID, bobDaveChanID}
// checkRoute is a helper closure to ensure the route contains the
// correct intermediate hops.
checkRoute := func(route *lnrpc.Route) {
if len(route.Hops) != 2 {
t.Fatalf("expected two hops, got %d", len(route.Hops))
}
for i, hop := range route.Hops {
if hop.ChanId != hopChanIDs[i] {
t.Fatalf("expected chan id %d, got %d",
hopChanIDs[i], hop.ChanId)
}
}
}
// We'll be attempting to send two payments from Alice to Dave. One will
// have a fee cutoff expressed as a percentage of the amount and the
// other will have it expressed as a fixed amount of satoshis.
const paymentAmt = 100
carolFee := computeFee(lnwire.MilliSatoshi(baseFee), 1, paymentAmt)
// testFeeCutoff is a helper closure that will ensure the different
// types of fee limits work as intended when querying routes and sending
// payments.
testFeeCutoff := func(feeLimit *lnrpc.FeeLimit) {
queryRoutesReq := &lnrpc.QueryRoutesRequest{
PubKey: dave.PubKeyStr,
Amt: paymentAmt,
FeeLimit: feeLimit,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routesResp, err := net.Alice.QueryRoutes(ctxt, queryRoutesReq)
if err != nil {
t.Fatalf("unable to get routes: %v", err)
}
checkRoute(routesResp.Routes[0])
invoice := &lnrpc.Invoice{Value: paymentAmt}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
invoiceResp, err := dave.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to create invoice: %v", err)
}
sendReq := &routerrpc.SendPaymentRequest{
PaymentRequest: invoiceResp.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
switch limit := feeLimit.Limit.(type) {
case *lnrpc.FeeLimit_Fixed:
sendReq.FeeLimitMsat = 1000 * limit.Fixed
case *lnrpc.FeeLimit_Percent:
sendReq.FeeLimitMsat = 1000 * paymentAmt * limit.Percent / 100
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
result := sendAndAssertSuccess(ctxt, t, net.Alice, sendReq)
checkRoute(result.Htlcs[0].Route)
}
// We'll start off using percentages first. Since the fee along the
// route using Carol as an intermediate hop is 10% of the payment's
// amount, we'll use a lower percentage in order to invalid that route.
feeLimitPercent := &lnrpc.FeeLimit{
Limit: &lnrpc.FeeLimit_Percent{
Percent: baseFee/1000 - 1,
},
}
testFeeCutoff(feeLimitPercent)
// Now we'll test using fixed fee limit amounts. Since we computed the
// fee for the route using Carol as an intermediate hop earlier, we can
// use a smaller value in order to invalidate that route.
feeLimitFixed := &lnrpc.FeeLimit{
Limit: &lnrpc.FeeLimit_Fixed{
Fixed: int64(carolFee.ToSatoshis()) - 1,
},
}
testFeeCutoff(feeLimitFixed)
// Once we're done, close the channels and shut down the nodes created
// throughout this test.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAliceBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAliceCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBobDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarolDave, false)
}

@ -232,7 +232,7 @@ func closeChannelAndAssertType(ctx context.Context, t *harnessTest,
// updates before initiating the channel closure.
var graphSub *graphSubscription
if expectDisable {
sub := subscribeGraphNotifications(t, ctx, node)
sub := subscribeGraphNotifications(ctx, t, node)
graphSub = &sub
defer close(graphSub.quit)
}
@ -1568,9 +1568,9 @@ func testUpdateChannelPolicy(net *lntest.NetworkHarness, t *harnessTest) {
// Launch notification clients for all nodes, such that we can
// get notified when they discover new channels and updates in the
// graph.
aliceSub := subscribeGraphNotifications(t, ctxb, net.Alice)
aliceSub := subscribeGraphNotifications(ctxb, t, net.Alice)
defer close(aliceSub.quit)
bobSub := subscribeGraphNotifications(t, ctxb, net.Bob)
bobSub := subscribeGraphNotifications(ctxb, t, net.Bob)
defer close(bobSub.quit)
chanAmt := funding.MaxBtcFundingAmount
@ -1643,7 +1643,7 @@ func testUpdateChannelPolicy(net *lntest.NetworkHarness, t *harnessTest) {
// Clean up carol's node when the test finishes.
defer shutdownAndAssert(net, t, carol)
carolSub := subscribeGraphNotifications(t, ctxb, carol)
carolSub := subscribeGraphNotifications(ctxb, t, carol)
defer close(carolSub.quit)
graphSubs = append(graphSubs, carolSub)
@ -4888,7 +4888,7 @@ func testUpdateChanStatus(net *lntest.NetworkHarness, t *harnessTest) {
t.Fatalf("unable to connect bob to carol: %v", err)
}
carolSub := subscribeGraphNotifications(t, ctxb, carol)
carolSub := subscribeGraphNotifications(ctxb, t, carol)
defer close(carolSub.quit)
// sendReq sends an UpdateChanStatus request to the given node.
@ -5347,7 +5347,7 @@ func updateChannelPolicy(t *harnessTest, node *lntest.HarnessNode,
// Wait for listener node to receive the channel update from node.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
graphSub := subscribeGraphNotifications(t, ctxt, listenerNode)
graphSub := subscribeGraphNotifications(ctxt, t, listenerNode)
defer close(graphSub.quit)
waitForChannelUpdate(
@ -5358,720 +5358,6 @@ func updateChannelPolicy(t *harnessTest, node *lntest.HarnessNode,
)
}
type singleHopSendToRouteCase struct {
name string
// streaming tests streaming SendToRoute if true, otherwise tests
// synchronous SenToRoute.
streaming bool
// routerrpc submits the request to the routerrpc subserver if true,
// otherwise submits to the main rpc server.
routerrpc bool
}
var singleHopSendToRouteCases = []singleHopSendToRouteCase{
{
name: "regular main sync",
},
{
name: "regular main stream",
streaming: true,
},
{
name: "regular routerrpc sync",
routerrpc: true,
},
{
name: "mpp main sync",
},
{
name: "mpp main stream",
streaming: true,
},
{
name: "mpp routerrpc sync",
routerrpc: true,
},
}
// testSingleHopSendToRoute tests that payments are properly processed through a
// provided route with a single hop. We'll create the following network
// topology:
// Carol --100k--> Dave
// We'll query the daemon for routes from Carol to Dave and then send payments
// by feeding the route back into the various SendToRoute RPC methods. Here we
// test all three SendToRoute endpoints, forcing each to perform both a regular
// payment and an MPP payment.
func testSingleHopSendToRoute(net *lntest.NetworkHarness, t *harnessTest) {
for _, test := range singleHopSendToRouteCases {
test := test
t.t.Run(test.name, func(t1 *testing.T) {
ht := newHarnessTest(t1, t.lndHarness)
ht.RunTestCase(&testCase{
name: test.name,
test: func(_ *lntest.NetworkHarness, tt *harnessTest) {
testSingleHopSendToRouteCase(net, tt, test)
},
})
})
}
}
func testSingleHopSendToRouteCase(net *lntest.NetworkHarness, t *harnessTest,
test singleHopSendToRouteCase) {
const chanAmt = btcutil.Amount(100000)
const paymentAmtSat = 1000
const numPayments = 5
const amountPaid = int64(numPayments * paymentAmtSat)
ctxb := context.Background()
var networkChans []*lnrpc.ChannelPoint
// Create Carol and Dave, then establish a channel between them. Carol
// is the sole funder of the channel with 100k satoshis. The network
// topology should look like:
// Carol -> 100k -> Dave
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
// Open a channel with 100k satoshis between Carol and Dave with Carol
// being the sole funder of the channel.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{carol, dave}
for _, chanPoint := range networkChans {
for _, node := range nodes {
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", node.Name(),
node.NodeID, point, err)
}
}
}
// Create invoices for Dave, which expect a payment from Carol.
payReqs, rHashes, _, err := createPayReqs(
dave, paymentAmtSat, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Reconstruct payment addresses.
var payAddrs [][]byte
for _, payReq := range payReqs {
ctx, _ := context.WithTimeout(
context.Background(), defaultTimeout,
)
resp, err := dave.DecodePayReq(
ctx,
&lnrpc.PayReqString{PayReq: payReq},
)
if err != nil {
t.Fatalf("decode pay req: %v", err)
}
payAddrs = append(payAddrs, resp.PaymentAddr)
}
// Assert Carol and Dave are synced to the chain before proceeding, to
// ensure the queried route will have a valid final CLTV once the HTLC
// reaches Dave.
_, minerHeight, err := net.Miner.Client.GetBestBlock()
if err != nil {
t.Fatalf("unable to get best height: %v", err)
}
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
require.NoError(t.t, waitForNodeBlockHeight(ctxt, carol, minerHeight))
require.NoError(t.t, waitForNodeBlockHeight(ctxt, dave, minerHeight))
// Query for routes to pay from Carol to Dave using the default CLTV
// config.
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: dave.PubKeyStr,
Amt: paymentAmtSat,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routes, err := carol.QueryRoutes(ctxt, routesReq)
if err != nil {
t.Fatalf("unable to get route from %s: %v",
carol.Name(), err)
}
// There should only be one route to try, so take the first item.
r := routes.Routes[0]
// Construct a closure that will set MPP fields on the route, which
// allows us to test MPP payments.
setMPPFields := func(i int) {
hop := r.Hops[len(r.Hops)-1]
hop.TlvPayload = true
hop.MppRecord = &lnrpc.MPPRecord{
PaymentAddr: payAddrs[i],
TotalAmtMsat: paymentAmtSat * 1000,
}
}
// Construct closures for each of the payment types covered:
// - main rpc server sync
// - main rpc server streaming
// - routerrpc server sync
sendToRouteSync := func() {
for i, rHash := range rHashes {
setMPPFields(i)
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: r,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.SendToRouteSync(
ctxt, sendReq,
)
if err != nil {
t.Fatalf("unable to send to route for "+
"%s: %v", carol.Name(), err)
}
if resp.PaymentError != "" {
t.Fatalf("received payment error from %s: %v",
carol.Name(), resp.PaymentError)
}
}
}
sendToRouteStream := func() {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
alicePayStream, err := carol.SendToRoute(ctxt) // nolint:staticcheck
if err != nil {
t.Fatalf("unable to create payment stream for "+
"carol: %v", err)
}
for i, rHash := range rHashes {
setMPPFields(i)
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: routes.Routes[0],
}
err := alicePayStream.Send(sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
resp, err := alicePayStream.Recv()
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError != "" {
t.Fatalf("received payment error: %v",
resp.PaymentError)
}
}
}
sendToRouteRouterRPC := func() {
for i, rHash := range rHashes {
setMPPFields(i)
sendReq := &routerrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: r,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := carol.RouterClient.SendToRouteV2(
ctxt, sendReq,
)
if err != nil {
t.Fatalf("unable to send to route for "+
"%s: %v", carol.Name(), err)
}
if resp.Failure != nil {
t.Fatalf("received payment error from %s: %v",
carol.Name(), resp.Failure)
}
}
}
// Using Carol as the node as the source, send the payments
// synchronously via the the routerrpc's SendToRoute, or via the main RPC
// server's SendToRoute streaming or sync calls.
switch {
case !test.routerrpc && test.streaming:
sendToRouteStream()
case !test.routerrpc && !test.streaming:
sendToRouteSync()
case test.routerrpc && !test.streaming:
sendToRouteRouterRPC()
default:
t.Fatalf("routerrpc does not support streaming send_to_route")
}
// Verify that the payment's from Carol's PoV have the correct payment
// hash and amount.
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
paymentsResp, err := carol.ListPayments(
ctxt, &lnrpc.ListPaymentsRequest{},
)
if err != nil {
t.Fatalf("error when obtaining %s payments: %v",
carol.Name(), err)
}
if len(paymentsResp.Payments) != numPayments {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsResp.Payments), numPayments)
}
for i, p := range paymentsResp.Payments {
// Assert that the payment hashes for each payment match up.
rHashHex := hex.EncodeToString(rHashes[i])
if p.PaymentHash != rHashHex {
t.Fatalf("incorrect payment hash for payment %d, "+
"want: %s got: %s",
i, rHashHex, p.PaymentHash)
}
// Assert that each payment has no invoice since the payment was
// completed using SendToRoute.
if p.PaymentRequest != "" {
t.Fatalf("incorrect payment request for payment: %d, "+
"want: \"\", got: %s",
i, p.PaymentRequest)
}
// Assert the payment amount is correct.
if p.ValueSat != paymentAmtSat {
t.Fatalf("incorrect payment amt for payment %d, "+
"want: %d, got: %d",
i, paymentAmtSat, p.ValueSat)
}
// Assert exactly one htlc was made.
if len(p.Htlcs) != 1 {
t.Fatalf("expected 1 htlc for payment %d, got: %d",
i, len(p.Htlcs))
}
// Assert the htlc's route is populated.
htlc := p.Htlcs[0]
if htlc.Route == nil {
t.Fatalf("expected route for payment %d", i)
}
// Assert the hop has exactly one hop.
if len(htlc.Route.Hops) != 1 {
t.Fatalf("expected 1 hop for payment %d, got: %d",
i, len(htlc.Route.Hops))
}
// If this is an MPP test, assert the MPP record's fields are
// properly populated. Otherwise the hop should not have an MPP
// record.
hop := htlc.Route.Hops[0]
if hop.MppRecord == nil {
t.Fatalf("expected mpp record for mpp payment")
}
if hop.MppRecord.TotalAmtMsat != paymentAmtSat*1000 {
t.Fatalf("incorrect mpp total msat for payment %d "+
"want: %d, got: %d",
i, paymentAmtSat*1000,
hop.MppRecord.TotalAmtMsat)
}
expAddr := payAddrs[i]
if !bytes.Equal(hop.MppRecord.PaymentAddr, expAddr) {
t.Fatalf("incorrect mpp payment addr for payment %d "+
"want: %x, got: %x",
i, expAddr, hop.MppRecord.PaymentAddr)
}
}
// Verify that the invoices's from Dave's PoV have the correct payment
// hash and amount.
ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
invoicesResp, err := dave.ListInvoices(
ctxt, &lnrpc.ListInvoiceRequest{},
)
if err != nil {
t.Fatalf("error when obtaining %s payments: %v",
dave.Name(), err)
}
if len(invoicesResp.Invoices) != numPayments {
t.Fatalf("incorrect number of invoices, got %v, want %v",
len(invoicesResp.Invoices), numPayments)
}
for i, inv := range invoicesResp.Invoices {
// Assert that the payment hashes match up.
if !bytes.Equal(inv.RHash, rHashes[i]) {
t.Fatalf("incorrect payment hash for invoice %d, "+
"want: %x got: %x",
i, rHashes[i], inv.RHash)
}
// Assert that the amount paid to the invoice is correct.
if inv.AmtPaidSat != paymentAmtSat {
t.Fatalf("incorrect payment amt for invoice %d, "+
"want: %d, got %d",
i, paymentAmtSat, inv.AmtPaidSat)
}
}
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Dave, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Carol->Dave, order is Dave and then Carol.
assertAmountPaid(t, "Carol(local) => Dave(remote)", dave,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Carol(local) => Dave(remote)", carol,
carolFundPoint, amountPaid, int64(0))
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testMultiHopSendToRoute tests that payments are properly processed
// through a provided route. We'll create the following network topology:
// Alice --100k--> Bob --100k--> Carol
// We'll query the daemon for routes from Alice to Carol and then
// send payments through the routes.
func testMultiHopSendToRoute(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Create Carol and establish a channel from Bob. Bob is the sole funder
// of the channel with 100k satoshis. The network topology should look like:
// Alice -> Bob -> Carol
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Bob); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, net.Bob)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointBob)
bobChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointBob)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
bobFundPoint := wire.OutPoint{
Hash: *bobChanTXID,
Index: chanPointBob.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
nodeNames := []string{"Alice", "Bob", "Carol"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Alice for 1k
// satoshis with a different preimage each time.
const (
numPayments = 5
paymentAmt = 1000
)
_, rHashes, invoices, err := createPayReqs(
carol, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// Construct a route from Alice to Carol for each of the invoices
// created above. We set FinalCltvDelta to 40 since by default
// QueryRoutes returns the last hop with a final cltv delta of 9 where
// as the default in htlcswitch is 40.
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: carol.PubKeyStr,
Amt: paymentAmt,
FinalCltvDelta: chainreg.DefaultBitcoinTimeLockDelta,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routes, err := net.Alice.QueryRoutes(ctxt, routesReq)
if err != nil {
t.Fatalf("unable to get route: %v", err)
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("bob didn't advertise his channel in time: %v", err)
}
time.Sleep(time.Millisecond * 50)
// Using Alice as the source, pay to the 5 invoices from Carol created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
for i, rHash := range rHashes {
// Manually set the MPP payload a new for each payment since
// the payment addr will change with each invoice, although we
// can re-use the route itself.
route := *routes.Routes[0]
route.Hops[len(route.Hops)-1].TlvPayload = true
route.Hops[len(route.Hops)-1].MppRecord = &lnrpc.MPPRecord{
PaymentAddr: invoices[i].PaymentAddr,
TotalAmtMsat: int64(
lnwire.NewMSatFromSatoshis(paymentAmt),
),
}
sendReq := &routerrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: &route,
}
resp, err := net.Alice.RouterClient.SendToRouteV2(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.Failure != nil {
t.Fatalf("received payment error: %v", resp.Failure)
}
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Alice->Bob->Carol, order is Carol, Bob,
// Alice.
const amountPaid = int64(5000)
assertAmountPaid(t, "Bob(local) => Carol(remote)", carol,
bobFundPoint, int64(0), amountPaid)
assertAmountPaid(t, "Bob(local) => Carol(remote)", net.Bob,
bobFundPoint, amountPaid, int64(0))
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, amountPaid+(baseFee*numPayments), int64(0))
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointBob, false)
}
// testSendToRouteErrorPropagation tests propagation of errors that occur
// while processing a multi-hop payment through an unknown route.
func testSendToRouteErrorPropagation(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't advertise her channel: %v", err)
}
// Create a new nodes (Carol and Charlie), load her with some funds,
// then establish a connection between Carol and Charlie with a channel
// that has identical capacity to the one created above.Then we will
// get route via queryroutes call which will be fake route for Alice ->
// Bob graph.
//
// The network topology should now look like: Alice -> Bob; Carol -> Charlie.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
charlie := net.NewNode(t.t, "Charlie", nil)
defer shutdownAndAssert(net, t, charlie)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, charlie)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, charlie); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, charlie,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel: %v", err)
}
// Query routes from Carol to Charlie which will be an invalid route
// for Alice -> Bob.
fakeReq := &lnrpc.QueryRoutesRequest{
PubKey: charlie.PubKeyStr,
Amt: int64(1),
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
fakeRoute, err := carol.QueryRoutes(ctxt, fakeReq)
if err != nil {
t.Fatalf("unable get fake route: %v", err)
}
// Create 1 invoices for Bob, which expect a payment from Alice for 1k
// satoshis
const paymentAmt = 1000
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := net.Bob.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
rHash := resp.RHash
// Using Alice as the source, pay to the 5 invoices from Bob created above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
alicePayStream, err := net.Alice.SendToRoute(ctxt)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: rHash,
Route: fakeRoute.Routes[0],
}
if err := alicePayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// At this place we should get an rpc error with notification
// that edge is not found on hop(0)
if _, err := alicePayStream.Recv(); err != nil && strings.Contains(err.Error(),
"edge not found") {
} else if err != nil {
t.Fatalf("payment stream has been closed but fake route has consumed: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testUnannouncedChannels checks unannounced channels are not returned by
// describeGraph RPC request unless explicitly asked for.
func testUnannouncedChannels(net *lntest.NetworkHarness, t *harnessTest) {
@ -6179,765 +5465,6 @@ func testUnannouncedChannels(net *lntest.NetworkHarness, t *harnessTest) {
closeChannelAndAssert(ctxt, t, net, net.Alice, fundingChanPoint, false)
}
// testPrivateChannels tests that a private channel can be used for
// routing by the two endpoints of the channel, but is not known by
// the rest of the nodes in the graph.
func testPrivateChannels(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// We create the following topology:
//
// Dave --100k--> Alice --200k--> Bob
// ^ ^
// | |
// 100k 100k
// | |
// +---- Carol ----+
//
// where the 100k channel between Carol and Alice is private.
// Open a channel with 200k satoshis between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt * 2,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Create Dave, and a channel to Alice of 100k.
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, dave)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, dave, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointDave)
daveChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel from her to
// Dave of 100k.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all these channels, as they
// are all public.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Now create a _private_ channel directly between Carol and
// Alice of 100k.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanOpenUpdate := openChannelStream(
ctxt, t, net, carol, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// One block is enough to make the channel ready for use, since the
// nodes have defaultNumConfs=1 set.
block := mineBlocks(t, net, 1, 1)[0]
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanPointPrivate, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := lnrpc.GetChanPointFundingTxid(chanPointPrivate)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information returned by
// both peers.
privateFundPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: chanPointPrivate.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.AssertChannelExists(ctxt, carol, &privateFundPoint)
if err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.AssertChannelExists(ctxt, net.Alice, &privateFundPoint)
if err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// The channel should be available for payments between Carol and Alice.
// We check this by sending payments from Carol to Bob, that
// collectively would deplete at least one of Carol's channels.
// Create 2 invoices for Bob, each of 70k satoshis. Since each of
// Carol's channels is of size 100k, these payments cannot succeed
// by only using one of the channels.
const numPayments = 2
const paymentAmt = 70000
payReqs, _, _, err := createPayReqs(
net.Bob, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
time.Sleep(time.Millisecond * 50)
// Let Carol pay the invoices.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, carol.RouterClient, payReqs, true,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// Bob should have received 140k satoshis from Alice.
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), 2*paymentAmt)
// Alice sent 140k to Bob.
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, 2*paymentAmt, int64(0))
// Alice received 70k + fee from Dave.
assertAmountPaid(t, "Dave(local) => Alice(remote)", net.Alice,
daveFundPoint, int64(0), paymentAmt+baseFee)
// Dave sent 70k+fee to Alice.
assertAmountPaid(t, "Dave(local) => Alice(remote)", dave,
daveFundPoint, paymentAmt+baseFee, int64(0))
// Dave received 70k+fee of two hops from Carol.
assertAmountPaid(t, "Carol(local) => Dave(remote)", dave,
carolFundPoint, int64(0), paymentAmt+baseFee*2)
// Carol sent 70k+fee of two hops to Dave.
assertAmountPaid(t, "Carol(local) => Dave(remote)", carol,
carolFundPoint, paymentAmt+baseFee*2, int64(0))
// Alice received 70k+fee from Carol.
assertAmountPaid(t, "Carol(local) [private=>] Alice(remote)",
net.Alice, privateFundPoint, int64(0), paymentAmt+baseFee)
// Carol sent 70k+fee to Alice.
assertAmountPaid(t, "Carol(local) [private=>] Alice(remote)",
carol, privateFundPoint, paymentAmt+baseFee, int64(0))
// Alice should also be able to route payments using this channel,
// so send two payments of 60k back to Carol.
const paymentAmt60k = 60000
payReqs, _, _, err = createPayReqs(
carol, paymentAmt60k, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
time.Sleep(time.Millisecond * 50)
// Let Bob pay the invoices.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, net.Alice, net.Alice.RouterClient, payReqs, true,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Finally, we make sure Dave and Bob does not know about the
// private channel between Carol and Alice. We first mine
// plenty of blocks, such that the channel would have been
// announced in case it was public.
mineBlocks(t, net, 10, 0)
// We create a helper method to check how many edges each of the
// nodes know about. Carol and Alice should know about 4, while
// Bob and Dave should only know about 3, since one channel is
// private.
numChannels := func(node *lntest.HarnessNode, includeUnannounced bool) int {
req := &lnrpc.ChannelGraphRequest{
IncludeUnannounced: includeUnannounced,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err := node.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable go describegraph: %v", err)
}
return len(chanGraph.Edges)
}
var predErr error
err = wait.Predicate(func() bool {
aliceChans := numChannels(net.Alice, true)
if aliceChans != 4 {
predErr = fmt.Errorf("expected Alice to know 4 edges, "+
"had %v", aliceChans)
return false
}
alicePubChans := numChannels(net.Alice, false)
if alicePubChans != 3 {
predErr = fmt.Errorf("expected Alice to know 3 public edges, "+
"had %v", alicePubChans)
return false
}
bobChans := numChannels(net.Bob, true)
if bobChans != 3 {
predErr = fmt.Errorf("expected Bob to know 3 edges, "+
"had %v", bobChans)
return false
}
carolChans := numChannels(carol, true)
if carolChans != 4 {
predErr = fmt.Errorf("expected Carol to know 4 edges, "+
"had %v", carolChans)
return false
}
carolPubChans := numChannels(carol, false)
if carolPubChans != 3 {
predErr = fmt.Errorf("expected Carol to know 3 public edges, "+
"had %v", carolPubChans)
return false
}
daveChans := numChannels(dave, true)
if daveChans != 3 {
predErr = fmt.Errorf("expected Dave to know 3 edges, "+
"had %v", daveChans)
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("%v", predErr)
}
// Close all channels.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointPrivate, false)
}
// testInvoiceRoutingHints tests that the routing hints for an invoice are
// created properly.
func testInvoiceRoutingHints(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
// Throughout this test, we'll be opening a channel between Alice and
// several other parties.
//
// First, we'll create a private channel between Alice and Bob. This
// will be the only channel that will be considered as a routing hint
// throughout this test. We'll include a push amount since we currently
// require channels to have enough remote balance to cover the invoice's
// payment.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
Private: true,
},
)
// Then, we'll create Carol's node and open a public channel between her
// and Alice. This channel will not be considered as a routing hint due
// to it being public.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
},
)
// We'll also create a public channel between Bob and Carol to ensure
// that Bob gets selected as the only routing hint. We do this as
// we should only include routing hints for nodes that are publicly
// advertised, otherwise we'd end up leaking information about nodes
// that wish to stay unadvertised.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBobCarol := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
},
)
// Then, we'll create Dave's node and open a private channel between him
// and Alice. We will not include a push amount in order to not consider
// this channel as a routing hint as it will not have enough remote
// balance for the invoice's amount.
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, dave); err != nil {
t.Fatalf("unable to connect alice to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, net.Alice, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
// Finally, we'll create Eve's node and open a private channel between
// her and Alice. This time though, we'll take Eve's node down after the
// channel has been created to avoid populating routing hints for
// inactive channels.
eve := net.NewNode(t.t, "Eve", nil)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Alice, eve); err != nil {
t.Fatalf("unable to connect alice to eve: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointEve := openChannelAndAssert(
ctxt, t, net, net.Alice, eve,
lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: chanAmt / 2,
Private: true,
},
)
// Make sure all the channels have been opened.
chanNames := []string{
"alice-bob", "alice-carol", "bob-carol", "alice-dave",
"alice-eve",
}
aliceChans := []*lnrpc.ChannelPoint{
chanPointBob, chanPointCarol, chanPointBobCarol, chanPointDave,
chanPointEve,
}
for i, chanPoint := range aliceChans {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("timed out waiting for channel open %s: %v",
chanNames[i], err)
}
}
// Now that the channels are open, we'll take down Eve's node.
shutdownAndAssert(net, t, eve)
// Create an invoice for Alice that will populate the routing hints.
invoice := &lnrpc.Invoice{
Memo: "routing hints",
Value: int64(chanAmt / 4),
Private: true,
}
// Due to the way the channels were set up above, the channel between
// Alice and Bob should be the only channel used as a routing hint.
var predErr error
var decoded *lnrpc.PayReq
err := wait.Predicate(func() bool {
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := net.Alice.AddInvoice(ctxt, invoice)
if err != nil {
predErr = fmt.Errorf("unable to add invoice: %v", err)
return false
}
// We'll decode the invoice's payment request to determine which
// channels were used as routing hints.
payReq := &lnrpc.PayReqString{
PayReq: resp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
decoded, err = net.Alice.DecodePayReq(ctxt, payReq)
if err != nil {
predErr = fmt.Errorf("unable to decode payment "+
"request: %v", err)
return false
}
if len(decoded.RouteHints) != 1 {
predErr = fmt.Errorf("expected one route hint, got %d",
len(decoded.RouteHints))
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf(predErr.Error())
}
hops := decoded.RouteHints[0].HopHints
if len(hops) != 1 {
t.Fatalf("expected one hop in route hint, got %d", len(hops))
}
chanID := hops[0].ChanId
// We'll need the short channel ID of the channel between Alice and Bob
// to make sure the routing hint is for this channel.
listReq := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
listResp, err := net.Alice.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to retrieve alice's channels: %v", err)
}
var aliceBobChanID uint64
for _, channel := range listResp.Channels {
if channel.RemotePubkey == net.Bob.PubKeyStr {
aliceBobChanID = channel.ChanId
}
}
if aliceBobChanID == 0 {
t.Fatalf("channel between alice and bob not found")
}
if chanID != aliceBobChanID {
t.Fatalf("expected channel ID %d, got %d", aliceBobChanID,
chanID)
}
// Now that we've confirmed the routing hints were added correctly, we
// can close all the channels and shut down all the nodes created.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBobCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointDave, false)
// The channel between Alice and Eve should be force closed since Eve
// is offline.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointEve, true)
// Cleanup by mining the force close and sweep transaction.
cleanupForceClose(t, net, net.Alice, chanPointEve)
}
// testMultiHopOverPrivateChannels tests that private channels can be used as
// intermediate hops in a route for payments.
func testMultiHopOverPrivateChannels(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// We'll test that multi-hop payments over private channels work as
// intended. To do so, we'll create the following topology:
// private public private
// Alice <--100k--> Bob <--100k--> Carol <--100k--> Dave
const chanAmt = btcutil.Amount(100000)
// First, we'll open a private channel between Alice and Bob with Alice
// being the funder.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't see the channel alice <-> bob before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("bob didn't see the channel alice <-> bob before "+
"timeout: %v", err)
}
// Retrieve Alice's funding outpoint.
aliceChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Next, we'll create Carol's node and open a public channel between
// her and Bob with Bob being the funder.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("bob didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("carol didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("alice didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
// Retrieve Bob's funding outpoint.
bobChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointBob)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
bobFundPoint := wire.OutPoint{
Hash: *bobChanTXID,
Index: chanPointBob.OutputIndex,
}
// Next, we'll create Dave's node and open a private channel between him
// and Carol with Carol being the funder.
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't see the channel carol <-> dave before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("dave didn't see the channel carol <-> dave before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointBob)
if err != nil {
t.Fatalf("dave didn't see the channel bob <-> carol before "+
"timeout: %v", err)
}
// Retrieve Carol's funding point.
carolChanTXID, err := lnrpc.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Now that all the channels are set up according to the topology from
// above, we can proceed to test payments. We'll create an invoice for
// Dave of 20k satoshis and pay it with Alice. Since there is no public
// route from Alice to Dave, we'll need to use the private channel
// between Carol and Dave as a routing hint encoded in the invoice.
const paymentAmt = 20000
// Create the invoice for Dave.
invoice := &lnrpc.Invoice{
Memo: "two hopz!",
Value: paymentAmt,
Private: true,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
resp, err := dave.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice for dave: %v", err)
}
// Let Alice pay the invoice.
payReqs := []string{resp.PaymentRequest}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, net.Alice, net.Alice.RouterClient, payReqs, true,
)
if err != nil {
t.Fatalf("unable to send payments from alice to dave: %v", err)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when opening
// the channels.
const baseFee = 1
// Dave should have received 20k satoshis from Carol.
assertAmountPaid(t, "Carol(local) [private=>] Dave(remote)",
dave, carolFundPoint, 0, paymentAmt)
// Carol should have sent 20k satoshis to Dave.
assertAmountPaid(t, "Carol(local) [private=>] Dave(remote)",
carol, carolFundPoint, paymentAmt, 0)
// Carol should have received 20k satoshis + fee for one hop from Bob.
assertAmountPaid(t, "Bob(local) => Carol(remote)",
carol, bobFundPoint, 0, paymentAmt+baseFee)
// Bob should have sent 20k satoshis + fee for one hop to Carol.
assertAmountPaid(t, "Bob(local) => Carol(remote)",
net.Bob, bobFundPoint, paymentAmt+baseFee, 0)
// Bob should have received 20k satoshis + fee for two hops from Alice.
assertAmountPaid(t, "Alice(local) [private=>] Bob(remote)", net.Bob,
aliceFundPoint, 0, paymentAmt+baseFee*2)
// Alice should have sent 20k satoshis + fee for two hops to Bob.
assertAmountPaid(t, "Alice(local) [private=>] Bob(remote)", net.Alice,
aliceFundPoint, paymentAmt+baseFee*2, 0)
// At this point, the payment was successful. We can now close all the
// channels and shutdown the nodes created throughout this test.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
func testInvoiceSubscriptions(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
@ -6996,7 +5523,7 @@ func testInvoiceSubscriptions(net *lntest.NetworkHarness, t *harnessTest) {
// The invoice update should exactly match the invoice created
// above, but should now be settled and have SettleDate
if !invoiceUpdate.Settled {
if !invoiceUpdate.Settled { // nolint:staticcheck
t.Fatalf("invoice not settled but should be")
}
if invoiceUpdate.SettleDate == 0 {
@ -7094,11 +5621,11 @@ func testInvoiceSubscriptions(net *lntest.NetworkHarness, t *harnessTest) {
// We should now get the ith invoice we added, as they should
// be returned in order.
if invoiceUpdate.Settled {
if invoiceUpdate.Settled { // nolint:staticcheck
t.Fatalf("should have only received add events")
}
originalInvoice := newInvoices[i]
rHash := sha256.Sum256(originalInvoice.RPreimage[:])
rHash := sha256.Sum256(originalInvoice.RPreimage)
if !bytes.Equal(invoiceUpdate.RHash, rHash[:]) {
t.Fatalf("invoices have mismatched payment hashes: "+
"expected %x, got %x", rHash[:],
@ -7138,7 +5665,7 @@ func testInvoiceSubscriptions(net *lntest.NetworkHarness, t *harnessTest) {
// we'll use a map to assert that the proper set has been settled.
settledInvoices := make(map[[32]byte]struct{})
for _, invoice := range newInvoices {
rHash := sha256.Sum256(invoice.RPreimage[:])
rHash := sha256.Sum256(invoice.RPreimage)
settledInvoices[rHash] = struct{}{}
}
for i := 0; i < numInvoices; i++ {
@ -7149,7 +5676,7 @@ func testInvoiceSubscriptions(net *lntest.NetworkHarness, t *harnessTest) {
// We should now get the ith invoice we added, as they should
// be returned in order.
if !invoiceUpdate.Settled {
if !invoiceUpdate.Settled { // nolint:staticcheck
t.Fatalf("should have only received settle events")
}
@ -8009,11 +6536,9 @@ func testGarbageCollectLinkNodes(net *lntest.NetworkHarness, t *harnessTest) {
}
predErr = checkNumForceClosedChannels(pendingChanResp, 0)
if predErr != nil {
return false
}
return true
return predErr == nil
}, defaultTimeout)
if err != nil {
t.Fatalf("channels not marked as fully resolved: %v", predErr)
@ -8421,7 +6946,7 @@ func testRevokedCloseRetributionZeroValueRemoteOutput(net *lntest.NetworkHarness
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
carolChan, err = getChanInfo(ctxt, carol)
_, err = getChanInfo(ctxt, carol)
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
@ -8453,13 +6978,14 @@ func testRevokedCloseRetributionZeroValueRemoteOutput(net *lntest.NetworkHarness
// feel the wrath of Dave's retribution.
var (
closeUpdates lnrpc.Lightning_CloseChannelClient
closeTxId *chainhash.Hash
closeTxID *chainhash.Hash
closeErr error
force bool = true
)
force := true
err = wait.Predicate(func() bool {
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, closeTxId, closeErr = net.CloseChannel(
closeUpdates, closeTxID, closeErr = net.CloseChannel(
ctxt, carol, chanPoint, force,
)
return closeErr == nil
@ -8475,9 +7001,9 @@ func testRevokedCloseRetributionZeroValueRemoteOutput(net *lntest.NetworkHarness
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxId {
if *txid != *closeTxID {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxId, txid)
closeTxID, txid)
}
// Finally, generate a single block, wait for the final close status
@ -8783,7 +7309,7 @@ func testRevokedCloseRetributionRemoteHodl(net *lntest.NetworkHarness,
// feel the wrath of Dave's retribution.
force := true
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeUpdates, closeTxId, err := net.CloseChannel(ctxt, carol,
closeUpdates, closeTxID, err := net.CloseChannel(ctxt, carol,
chanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
@ -8796,9 +7322,9 @@ func testRevokedCloseRetributionRemoteHodl(net *lntest.NetworkHarness,
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxId {
if *txid != *closeTxID {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxId, txid)
closeTxID, txid)
}
// Generate a single block to mine the breach transaction.
@ -8817,9 +7343,9 @@ func testRevokedCloseRetributionRemoteHodl(net *lntest.NetworkHarness,
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
if *breachTXID != *closeTxId {
if *breachTXID != *closeTxID {
t.Fatalf("expected breach ID(%v) to be equal to close ID (%v)",
breachTXID, closeTxId)
breachTXID, closeTxID)
}
assertTxInBlock(t, block, breachTXID)
@ -8916,11 +7442,8 @@ func testRevokedCloseRetributionRemoteHodl(net *lntest.NetworkHarness,
// The sole input should be spending from the commit tx.
txIn := secondLevel.MsgTx().TxIn[0]
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], commitTxid[:]) {
return false
}
return true
return bytes.Equal(txIn.PreviousOutPoint.Hash[:], commitTxid[:])
}
// Check that all the inputs of this transaction are spending outputs
@ -9237,7 +7760,7 @@ func testRevokedCloseRetributionAltruistWatchtowerCase(
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Dave's retribution.
closeUpdates, closeTxId, err := net.CloseChannel(
closeUpdates, closeTxID, err := net.CloseChannel(
ctxb, carol, chanPoint, true,
)
if err != nil {
@ -9251,9 +7774,9 @@ func testRevokedCloseRetributionAltruistWatchtowerCase(
t.Fatalf("unable to find Carol's force close tx in mempool: %v",
err)
}
if *txid != *closeTxId {
if *txid != *closeTxID {
t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
closeTxId, txid)
closeTxID, txid)
}
// Finally, generate a single block, wait for the final close status
@ -9636,7 +8159,7 @@ func testDataLossProtection(net *lntest.NetworkHarness, t *harnessTest) {
// node that Carol will pay to in order to advance the state of
// the channel.
// TODO(halseth): have dangling HTLCs on the commitment, able to
// retrive funds?
// retrieve funds?
payReqs, _, _, err := createPayReqs(
node, paymentAmt, numInvoices,
)
@ -10093,7 +8616,7 @@ type graphSubscription struct {
// subscribeGraphNotifications subscribes to channel graph updates and launches
// a goroutine that forwards these to the returned channel.
func subscribeGraphNotifications(t *harnessTest, ctxb context.Context,
func subscribeGraphNotifications(ctxb context.Context, t *harnessTest,
node *lntest.HarnessNode) graphSubscription {
// We'll first start by establishing a notification client which will
@ -10251,9 +8774,7 @@ func testGraphTopologyNtfns(net *lntest.NetworkHarness, t *harnessTest, pinned b
waitForGraphSync(t, alice)
// Let Alice subscribe to graph notifications.
graphSub := subscribeGraphNotifications(
t, ctxb, alice,
)
graphSub := subscribeGraphNotifications(ctxb, t, alice)
defer close(graphSub.quit)
// Open a new channel between Alice and Bob.
@ -10473,7 +8994,7 @@ out:
func testNodeAnnouncement(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
aliceSub := subscribeGraphNotifications(t, ctxb, net.Alice)
aliceSub := subscribeGraphNotifications(ctxb, t, net.Alice)
defer close(aliceSub.quit)
advertisedAddrs := []string{
@ -10540,7 +9061,7 @@ func testNodeAnnouncement(net *lntest.NetworkHarness, t *harnessTest) {
for _, update := range graphUpdate.NodeUpdates {
if update.IdentityKey == nodePubKey {
assertAddrs(
update.Addresses,
update.Addresses, // nolint:staticcheck
targetAddrs...,
)
return
@ -10790,7 +9311,7 @@ func testAsyncPayments(net *lntest.NetworkHarness, t *harnessTest) {
}
t.Log("\tBenchmark info: Elapsed time: ", timeTaken)
t.Log("\tBenchmark info: TPS: ", float64(numInvoices)/float64(timeTaken.Seconds()))
t.Log("\tBenchmark info: TPS: ", float64(numInvoices)/timeTaken.Seconds())
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
@ -11925,10 +10446,7 @@ func testSwitchOfflineDeliveryPersistence(net *lntest.NetworkHarness, t *harness
var predErr error
err = wait.Predicate(func() bool {
predErr = assertNumActiveHtlcs(nodes, numPayments)
if predErr != nil {
return false
}
return true
return predErr == nil
}, defaultTimeout)
if err != nil {
@ -12346,574 +10864,6 @@ func testSwitchOfflineDeliveryOutgoingOffline(
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
}
// computeFee calculates the payment fee as specified in BOLT07
func computeFee(baseFee, feeRate, amt lnwire.MilliSatoshi) lnwire.MilliSatoshi {
return baseFee + amt*feeRate/1000000
}
// testQueryRoutes checks the response of queryroutes.
// We'll create the following network topology:
// Alice --> Bob --> Carol --> Dave
// and query the daemon for routes from Alice to Dave.
func testQueryRoutes(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
// Create Carol and establish a channel from Bob.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Bob); err != nil {
t.Fatalf("unable to connect carol to bob: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, net.Bob)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBob := openChannelAndAssert(
ctxt, t, net, net.Bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointBob)
// Create Dave and establish a channel from Carol.
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, carol); err != nil {
t.Fatalf("unable to connect dave to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Query for routes to pay from Alice to Dave.
const paymentAmt = 1000
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: dave.PubKeyStr,
Amt: paymentAmt,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routesRes, err := net.Alice.QueryRoutes(ctxt, routesReq)
if err != nil {
t.Fatalf("unable to get route: %v", err)
}
const mSat = 1000
feePerHopMSat := computeFee(1000, 1, paymentAmt*mSat)
for i, route := range routesRes.Routes {
expectedTotalFeesMSat :=
lnwire.MilliSatoshi(len(route.Hops)-1) * feePerHopMSat
expectedTotalAmtMSat := (paymentAmt * mSat) + expectedTotalFeesMSat
if route.TotalFees != route.TotalFeesMsat/mSat { // nolint:staticcheck
t.Fatalf("route %v: total fees %v (msat) does not "+
"round down to %v (sat)",
i, route.TotalFeesMsat, route.TotalFees) // nolint:staticcheck
}
if route.TotalFeesMsat != int64(expectedTotalFeesMSat) {
t.Fatalf("route %v: total fees in msat expected %v got %v",
i, expectedTotalFeesMSat, route.TotalFeesMsat)
}
if route.TotalAmt != route.TotalAmtMsat/mSat { // nolint:staticcheck
t.Fatalf("route %v: total amt %v (msat) does not "+
"round down to %v (sat)",
i, route.TotalAmtMsat, route.TotalAmt) // nolint:staticcheck
}
if route.TotalAmtMsat != int64(expectedTotalAmtMSat) {
t.Fatalf("route %v: total amt in msat expected %v got %v",
i, expectedTotalAmtMSat, route.TotalAmtMsat)
}
// For all hops except the last, we check that fee equals feePerHop
// and amount to forward deducts feePerHop on each hop.
expectedAmtToForwardMSat := expectedTotalAmtMSat
for j, hop := range route.Hops[:len(route.Hops)-1] {
expectedAmtToForwardMSat -= feePerHopMSat
if hop.Fee != hop.FeeMsat/mSat { // nolint:staticcheck
t.Fatalf("route %v hop %v: fee %v (msat) does not "+
"round down to %v (sat)",
i, j, hop.FeeMsat, hop.Fee) // nolint:staticcheck
}
if hop.FeeMsat != int64(feePerHopMSat) {
t.Fatalf("route %v hop %v: fee in msat expected %v got %v",
i, j, feePerHopMSat, hop.FeeMsat)
}
if hop.AmtToForward != hop.AmtToForwardMsat/mSat { // nolint:staticcheck
t.Fatalf("route %v hop %v: amt to forward %v (msat) does not "+
"round down to %v (sat)",
i, j, hop.AmtToForwardMsat, hop.AmtToForward) // nolint:staticcheck
}
if hop.AmtToForwardMsat != int64(expectedAmtToForwardMSat) {
t.Fatalf("route %v hop %v: amt to forward in msat "+
"expected %v got %v",
i, j, expectedAmtToForwardMSat, hop.AmtToForwardMsat)
}
}
// Last hop should have zero fee and amount to forward should equal
// payment amount.
hop := route.Hops[len(route.Hops)-1]
if hop.Fee != 0 || hop.FeeMsat != 0 { // nolint:staticcheck
t.Fatalf("route %v hop %v: fee expected 0 got %v (sat) %v (msat)",
i, len(route.Hops)-1, hop.Fee, hop.FeeMsat) // nolint:staticcheck
}
if hop.AmtToForward != hop.AmtToForwardMsat/mSat { // nolint:staticcheck
t.Fatalf("route %v hop %v: amt to forward %v (msat) does not "+
"round down to %v (sat)",
i, len(route.Hops)-1, hop.AmtToForwardMsat, hop.AmtToForward) // nolint:staticcheck
}
if hop.AmtToForwardMsat != paymentAmt*mSat {
t.Fatalf("route %v hop %v: amt to forward in msat "+
"expected %v got %v",
i, len(route.Hops)-1, paymentAmt*mSat, hop.AmtToForwardMsat)
}
}
// While we're here, we test updating mission control's config values
// and assert that they are correctly updated and check that our mission
// control import function updates appropriately.
testMissionControlCfg(t.t, net.Alice)
testMissionControlImport(
t.t, net.Alice, net.Bob.PubKey[:], carol.PubKey[:],
)
// We clean up the test case by closing channels that were created for
// the duration of the tests.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// testMissionControlCfg tests getting and setting of a node's mission control
// config, resetting to the original values after testing so that no other
// tests are affected.
func testMissionControlCfg(t *testing.T, node *lntest.HarnessNode) {
ctxb := context.Background()
startCfg, err := node.RouterClient.GetMissionControlConfig(
ctxb, &routerrpc.GetMissionControlConfigRequest{},
)
require.NoError(t, err)
cfg := &routerrpc.MissionControlConfig{
HalfLifeSeconds: 8000,
HopProbability: 0.8,
Weight: 0.3,
MaximumPaymentResults: 30,
MinimumFailureRelaxInterval: 60,
}
_, err = node.RouterClient.SetMissionControlConfig(
ctxb, &routerrpc.SetMissionControlConfigRequest{
Config: cfg,
},
)
require.NoError(t, err)
resp, err := node.RouterClient.GetMissionControlConfig(
ctxb, &routerrpc.GetMissionControlConfigRequest{},
)
require.NoError(t, err)
require.True(t, proto.Equal(cfg, resp.Config))
_, err = node.RouterClient.SetMissionControlConfig(
ctxb, &routerrpc.SetMissionControlConfigRequest{
Config: startCfg.Config,
},
)
require.NoError(t, err)
}
// testMissionControlImport tests import of mission control results from an
// external source.
func testMissionControlImport(t *testing.T, node *lntest.HarnessNode,
fromNode, toNode []byte) {
ctxb := context.Background()
// Reset mission control so that our query will return the default
// probability for our first request.
_, err := node.RouterClient.ResetMissionControl(
ctxb, &routerrpc.ResetMissionControlRequest{},
)
require.NoError(t, err, "could not reset mission control")
// Get our baseline probability for a 10 msat hop between our target
// nodes.
var amount int64 = 10
probReq := &routerrpc.QueryProbabilityRequest{
FromNode: fromNode,
ToNode: toNode,
AmtMsat: amount,
}
importHistory := &routerrpc.PairData{
FailTime: time.Now().Unix(),
FailAmtMsat: amount,
}
// Assert that our history is not already equal to the value we want to
// set. This should not happen because we have just cleared our state.
resp1, err := node.RouterClient.QueryProbability(ctxb, probReq)
require.NoError(t, err, "query probability failed")
require.Zero(t, resp1.History.FailTime)
require.Zero(t, resp1.History.FailAmtMsat)
// Now, we import a single entry which tracks a failure of the amount
// we want to query between our nodes.
req := &routerrpc.XImportMissionControlRequest{
Pairs: []*routerrpc.PairHistory{
{
NodeFrom: fromNode,
NodeTo: toNode,
History: importHistory,
},
},
}
_, err = node.RouterClient.XImportMissionControl(ctxb, req)
require.NoError(t, err, "could not import config")
resp2, err := node.RouterClient.QueryProbability(ctxb, probReq)
require.NoError(t, err, "query probability failed")
require.Equal(t, importHistory.FailTime, resp2.History.FailTime)
require.Equal(t, importHistory.FailAmtMsat, resp2.History.FailAmtMsat)
// Finally, check that we will fail if inconsistent sat/msat values are
// set.
importHistory.FailAmtSat = amount * 2
_, err = node.RouterClient.XImportMissionControl(ctxb, req)
require.Error(t, err, "mismatched import amounts succeeded")
}
// testRouteFeeCutoff tests that we are able to prevent querying routes and
// sending payments that incur a fee higher than the fee limit.
func testRouteFeeCutoff(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// For this test, we'll create the following topology:
//
// --- Bob ---
// / \
// Alice ---- ---- Dave
// \ /
// -- Carol --
//
// Alice will attempt to send payments to Dave that should not incur a
// fee greater than the fee limit expressed as a percentage of the
// amount and as a fixed amount of satoshis.
const chanAmt = btcutil.Amount(100000)
// Open a channel between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAliceBob := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Create Carol's node and open a channel between her and Alice with
// Alice being the funder.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
net.SendCoins(ctxt, t.t, btcutil.SatoshiPerBitcoin, carol)
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAliceCarol := openChannelAndAssert(
ctxt, t, net, net.Alice, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Create Dave's node and open a channel between him and Bob with Bob
// being the funder.
dave := net.NewNode(t.t, "Dave", nil)
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Bob); err != nil {
t.Fatalf("unable to connect dave to bob: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointBobDave := openChannelAndAssert(
ctxt, t, net, net.Bob, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Open a channel between Carol and Dave.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarolDave := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Now that all the channels were set up, we'll wait for all the nodes
// to have seen all the channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"alice", "bob", "carol", "dave"}
networkChans := []*lnrpc.ChannelPoint{
chanPointAliceBob, chanPointAliceCarol, chanPointBobDave,
chanPointCarolDave,
}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
outpoint := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d) timed out waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, outpoint, err)
}
}
}
// The payments should only be successful across the route:
// Alice -> Bob -> Dave
// Therefore, we'll update the fee policy on Carol's side for the
// channel between her and Dave to invalidate the route:
// Alice -> Carol -> Dave
baseFee := int64(10000)
feeRate := int64(5)
timeLockDelta := uint32(chainreg.DefaultBitcoinTimeLockDelta)
maxHtlc := calculateMaxHtlc(chanAmt)
expectedPolicy := &lnrpc.RoutingPolicy{
FeeBaseMsat: baseFee,
FeeRateMilliMsat: testFeeBase * feeRate,
TimeLockDelta: timeLockDelta,
MinHtlc: 1000, // default value
MaxHtlcMsat: maxHtlc,
}
updateFeeReq := &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: float64(feeRate),
TimeLockDelta: timeLockDelta,
MaxHtlcMsat: maxHtlc,
Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
ChanPoint: chanPointCarolDave,
},
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if _, err := carol.UpdateChannelPolicy(ctxt, updateFeeReq); err != nil {
t.Fatalf("unable to update chan policy: %v", err)
}
// Wait for Alice to receive the channel update from Carol.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
aliceSub := subscribeGraphNotifications(t, ctxt, net.Alice)
defer close(aliceSub.quit)
waitForChannelUpdate(
t, aliceSub,
[]expectedChanUpdate{
{carol.PubKeyStr, expectedPolicy, chanPointCarolDave},
},
)
// We'll also need the channel IDs for Bob's channels in order to
// confirm the route of the payments.
listReq := &lnrpc.ListChannelsRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
listResp, err := net.Bob.ListChannels(ctxt, listReq)
if err != nil {
t.Fatalf("unable to retrieve bob's channels: %v", err)
}
var aliceBobChanID, bobDaveChanID uint64
for _, channel := range listResp.Channels {
switch channel.RemotePubkey {
case net.Alice.PubKeyStr:
aliceBobChanID = channel.ChanId
case dave.PubKeyStr:
bobDaveChanID = channel.ChanId
}
}
if aliceBobChanID == 0 {
t.Fatalf("channel between alice and bob not found")
}
if bobDaveChanID == 0 {
t.Fatalf("channel between bob and dave not found")
}
hopChanIDs := []uint64{aliceBobChanID, bobDaveChanID}
// checkRoute is a helper closure to ensure the route contains the
// correct intermediate hops.
checkRoute := func(route *lnrpc.Route) {
if len(route.Hops) != 2 {
t.Fatalf("expected two hops, got %d", len(route.Hops))
}
for i, hop := range route.Hops {
if hop.ChanId != hopChanIDs[i] {
t.Fatalf("expected chan id %d, got %d",
hopChanIDs[i], hop.ChanId)
}
}
}
// We'll be attempting to send two payments from Alice to Dave. One will
// have a fee cutoff expressed as a percentage of the amount and the
// other will have it expressed as a fixed amount of satoshis.
const paymentAmt = 100
carolFee := computeFee(lnwire.MilliSatoshi(baseFee), 1, paymentAmt)
// testFeeCutoff is a helper closure that will ensure the different
// types of fee limits work as intended when querying routes and sending
// payments.
testFeeCutoff := func(feeLimit *lnrpc.FeeLimit) {
queryRoutesReq := &lnrpc.QueryRoutesRequest{
PubKey: dave.PubKeyStr,
Amt: paymentAmt,
FeeLimit: feeLimit,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
routesResp, err := net.Alice.QueryRoutes(ctxt, queryRoutesReq)
if err != nil {
t.Fatalf("unable to get routes: %v", err)
}
checkRoute(routesResp.Routes[0])
invoice := &lnrpc.Invoice{Value: paymentAmt}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
invoiceResp, err := dave.AddInvoice(ctxt, invoice)
if err != nil {
t.Fatalf("unable to create invoice: %v", err)
}
sendReq := &routerrpc.SendPaymentRequest{
PaymentRequest: invoiceResp.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
switch limit := feeLimit.Limit.(type) {
case *lnrpc.FeeLimit_Fixed:
sendReq.FeeLimitMsat = 1000 * limit.Fixed
case *lnrpc.FeeLimit_Percent:
sendReq.FeeLimitMsat = 1000 * paymentAmt * limit.Percent / 100
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
result := sendAndAssertSuccess(ctxt, t, net.Alice, sendReq)
checkRoute(result.Htlcs[0].Route)
}
// We'll start off using percentages first. Since the fee along the
// route using Carol as an intermediate hop is 10% of the payment's
// amount, we'll use a lower percentage in order to invalid that route.
feeLimitPercent := &lnrpc.FeeLimit{
Limit: &lnrpc.FeeLimit_Percent{
Percent: baseFee/1000 - 1,
},
}
testFeeCutoff(feeLimitPercent)
// Now we'll test using fixed fee limit amounts. Since we computed the
// fee for the route using Carol as an intermediate hop earlier, we can
// use a smaller value in order to invalidate that route.
feeLimitFixed := &lnrpc.FeeLimit{
Limit: &lnrpc.FeeLimit_Fixed{
Fixed: int64(carolFee.ToSatoshis()) - 1,
},
}
testFeeCutoff(feeLimitFixed)
// Once we're done, close the channels and shut down the nodes created
// throughout this test.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAliceBob, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAliceCarol, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBobDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarolDave, false)
}
// testSendUpdateDisableChannel ensures that a channel update with the disable
// flag set is sent once a channel has been either unilaterally or cooperatively
// closed.
@ -13001,7 +10951,7 @@ func testSendUpdateDisableChannel(net *lntest.NetworkHarness, t *harnessTest) {
t.Fatalf("unable to connect bob to dave: %v", err)
}
daveSub := subscribeGraphNotifications(t, ctxb, dave)
daveSub := subscribeGraphNotifications(ctxb, t, dave)
defer close(daveSub.quit)
// We should expect to see a channel update with the default routing

@ -107,6 +107,11 @@ var allTestCases = []*testCase{
name: "private channels",
test: testPrivateChannels,
},
{
name: "private channel update policy",
test: testUpdateChannelPolicyForPrivateChannel,
},
{
name: "invoice routing hints",
test: testInvoiceRoutingHints,

@ -283,3 +283,4 @@
<time> [ERR] HSWC: ChannelLink(<chan>): failing link: process hodl queue: unable to update commitment: link shutting down with error: internal error
<time> [ERR] INVC: SettleHodlInvoice with preimage <hex>: invoice already canceled
<time> [ERR] RPCS: [/invoicesrpc.Invoices/SettleInvoice]: invoice already canceled
<time> [ERR] HSWC: ChannelLink(<chan>): outgoing htlc(<hex>) has insufficient fee: expected 33000, got 1020

@ -4,25 +4,27 @@ import (
"fmt"
"sync"
"github.com/btcsuite/btcd/btcec"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/stretchr/testify/mock"
)
type mockPaymentAttemptDispatcher struct {
type mockPaymentAttemptDispatcherOld struct {
onPayment func(firstHop lnwire.ShortChannelID) ([32]byte, error)
results map[uint64]*htlcswitch.PaymentResult
sync.Mutex
}
var _ PaymentAttemptDispatcher = (*mockPaymentAttemptDispatcher)(nil)
var _ PaymentAttemptDispatcher = (*mockPaymentAttemptDispatcherOld)(nil)
func (m *mockPaymentAttemptDispatcher) SendHTLC(firstHop lnwire.ShortChannelID,
pid uint64,
func (m *mockPaymentAttemptDispatcherOld) SendHTLC(
firstHop lnwire.ShortChannelID, pid uint64,
_ *lnwire.UpdateAddHTLC) error {
if m.onPayment == nil {
@ -54,7 +56,7 @@ func (m *mockPaymentAttemptDispatcher) SendHTLC(firstHop lnwire.ShortChannelID,
return nil
}
func (m *mockPaymentAttemptDispatcher) GetPaymentResult(paymentID uint64,
func (m *mockPaymentAttemptDispatcherOld) GetPaymentResult(paymentID uint64,
_ lntypes.Hash, _ htlcswitch.ErrorDecrypter) (
<-chan *htlcswitch.PaymentResult, error) {
@ -72,48 +74,51 @@ func (m *mockPaymentAttemptDispatcher) GetPaymentResult(paymentID uint64,
return c, nil
}
func (m *mockPaymentAttemptDispatcher) CleanStore(map[uint64]struct{}) error {
func (m *mockPaymentAttemptDispatcherOld) CleanStore(
map[uint64]struct{}) error {
return nil
}
func (m *mockPaymentAttemptDispatcher) setPaymentResult(
func (m *mockPaymentAttemptDispatcherOld) setPaymentResult(
f func(firstHop lnwire.ShortChannelID) ([32]byte, error)) {
m.onPayment = f
}
type mockPaymentSessionSource struct {
type mockPaymentSessionSourceOld struct {
routes []*route.Route
routeRelease chan struct{}
}
var _ PaymentSessionSource = (*mockPaymentSessionSource)(nil)
var _ PaymentSessionSource = (*mockPaymentSessionSourceOld)(nil)
func (m *mockPaymentSessionSource) NewPaymentSession(
func (m *mockPaymentSessionSourceOld) NewPaymentSession(
_ *LightningPayment) (PaymentSession, error) {
return &mockPaymentSession{
return &mockPaymentSessionOld{
routes: m.routes,
release: m.routeRelease,
}, nil
}
func (m *mockPaymentSessionSource) NewPaymentSessionForRoute(
func (m *mockPaymentSessionSourceOld) NewPaymentSessionForRoute(
preBuiltRoute *route.Route) PaymentSession {
return nil
}
func (m *mockPaymentSessionSource) NewPaymentSessionEmpty() PaymentSession {
return &mockPaymentSession{}
func (m *mockPaymentSessionSourceOld) NewPaymentSessionEmpty() PaymentSession {
return &mockPaymentSessionOld{}
}
type mockMissionControl struct {
type mockMissionControlOld struct {
MissionControl
}
var _ MissionController = (*mockMissionControl)(nil)
var _ MissionController = (*mockMissionControlOld)(nil)
func (m *mockMissionControl) ReportPaymentFail(paymentID uint64, rt *route.Route,
func (m *mockMissionControlOld) ReportPaymentFail(
paymentID uint64, rt *route.Route,
failureSourceIdx *int, failure lnwire.FailureMessage) (
*channeldb.FailureReason, error) {
@ -127,19 +132,19 @@ func (m *mockMissionControl) ReportPaymentFail(paymentID uint64, rt *route.Route
return nil, nil
}
func (m *mockMissionControl) ReportPaymentSuccess(paymentID uint64,
func (m *mockMissionControlOld) ReportPaymentSuccess(paymentID uint64,
rt *route.Route) error {
return nil
}
func (m *mockMissionControl) GetProbability(fromNode, toNode route.Vertex,
func (m *mockMissionControlOld) GetProbability(fromNode, toNode route.Vertex,
amt lnwire.MilliSatoshi) float64 {
return 0
}
type mockPaymentSession struct {
type mockPaymentSessionOld struct {
routes []*route.Route
// release is a channel that optionally blocks requesting a route
@ -148,9 +153,9 @@ type mockPaymentSession struct {
release chan struct{}
}
var _ PaymentSession = (*mockPaymentSession)(nil)
var _ PaymentSession = (*mockPaymentSessionOld)(nil)
func (m *mockPaymentSession) RequestRoute(_, _ lnwire.MilliSatoshi,
func (m *mockPaymentSessionOld) RequestRoute(_, _ lnwire.MilliSatoshi,
_, height uint32) (*route.Route, error) {
if m.release != nil {
@ -167,15 +172,27 @@ func (m *mockPaymentSession) RequestRoute(_, _ lnwire.MilliSatoshi,
return r, nil
}
type mockPayer struct {
func (m *mockPaymentSessionOld) UpdateAdditionalEdge(_ *lnwire.ChannelUpdate,
_ *btcec.PublicKey, _ *channeldb.ChannelEdgePolicy) bool {
return false
}
func (m *mockPaymentSessionOld) GetAdditionalEdgePolicy(_ *btcec.PublicKey,
_ uint64) *channeldb.ChannelEdgePolicy {
return nil
}
type mockPayerOld struct {
sendResult chan error
paymentResult chan *htlcswitch.PaymentResult
quit chan struct{}
}
var _ PaymentAttemptDispatcher = (*mockPayer)(nil)
var _ PaymentAttemptDispatcher = (*mockPayerOld)(nil)
func (m *mockPayer) SendHTLC(_ lnwire.ShortChannelID,
func (m *mockPayerOld) SendHTLC(_ lnwire.ShortChannelID,
paymentID uint64,
_ *lnwire.UpdateAddHTLC) error {
@ -188,7 +205,7 @@ func (m *mockPayer) SendHTLC(_ lnwire.ShortChannelID,
}
func (m *mockPayer) GetPaymentResult(paymentID uint64, _ lntypes.Hash,
func (m *mockPayerOld) GetPaymentResult(paymentID uint64, _ lntypes.Hash,
_ htlcswitch.ErrorDecrypter) (<-chan *htlcswitch.PaymentResult, error) {
select {
@ -207,7 +224,7 @@ func (m *mockPayer) GetPaymentResult(paymentID uint64, _ lntypes.Hash,
}
}
func (m *mockPayer) CleanStore(pids map[uint64]struct{}) error {
func (m *mockPayerOld) CleanStore(pids map[uint64]struct{}) error {
return nil
}
@ -236,7 +253,7 @@ type testPayment struct {
attempts []channeldb.HTLCAttempt
}
type mockControlTower struct {
type mockControlTowerOld struct {
payments map[lntypes.Hash]*testPayment
successful map[lntypes.Hash]struct{}
failed map[lntypes.Hash]channeldb.FailureReason
@ -251,17 +268,17 @@ type mockControlTower struct {
sync.Mutex
}
var _ ControlTower = (*mockControlTower)(nil)
var _ ControlTower = (*mockControlTowerOld)(nil)
func makeMockControlTower() *mockControlTower {
return &mockControlTower{
func makeMockControlTower() *mockControlTowerOld {
return &mockControlTowerOld{
payments: make(map[lntypes.Hash]*testPayment),
successful: make(map[lntypes.Hash]struct{}),
failed: make(map[lntypes.Hash]channeldb.FailureReason),
}
}
func (m *mockControlTower) InitPayment(phash lntypes.Hash,
func (m *mockControlTowerOld) InitPayment(phash lntypes.Hash,
c *channeldb.PaymentCreationInfo) error {
if m.init != nil {
@ -292,7 +309,7 @@ func (m *mockControlTower) InitPayment(phash lntypes.Hash,
return nil
}
func (m *mockControlTower) RegisterAttempt(phash lntypes.Hash,
func (m *mockControlTowerOld) RegisterAttempt(phash lntypes.Hash,
a *channeldb.HTLCAttemptInfo) error {
if m.registerAttempt != nil {
@ -346,7 +363,7 @@ func (m *mockControlTower) RegisterAttempt(phash lntypes.Hash,
return nil
}
func (m *mockControlTower) SettleAttempt(phash lntypes.Hash,
func (m *mockControlTowerOld) SettleAttempt(phash lntypes.Hash,
pid uint64, settleInfo *channeldb.HTLCSettleInfo) (
*channeldb.HTLCAttempt, error) {
@ -388,7 +405,7 @@ func (m *mockControlTower) SettleAttempt(phash lntypes.Hash,
return nil, fmt.Errorf("pid not found")
}
func (m *mockControlTower) FailAttempt(phash lntypes.Hash, pid uint64,
func (m *mockControlTowerOld) FailAttempt(phash lntypes.Hash, pid uint64,
failInfo *channeldb.HTLCFailInfo) (*channeldb.HTLCAttempt, error) {
if m.failAttempt != nil {
@ -426,7 +443,7 @@ func (m *mockControlTower) FailAttempt(phash lntypes.Hash, pid uint64,
return nil, fmt.Errorf("pid not found")
}
func (m *mockControlTower) Fail(phash lntypes.Hash,
func (m *mockControlTowerOld) Fail(phash lntypes.Hash,
reason channeldb.FailureReason) error {
m.Lock()
@ -446,7 +463,7 @@ func (m *mockControlTower) Fail(phash lntypes.Hash,
return nil
}
func (m *mockControlTower) FetchPayment(phash lntypes.Hash) (
func (m *mockControlTowerOld) FetchPayment(phash lntypes.Hash) (
*channeldb.MPPayment, error) {
m.Lock()
@ -455,7 +472,7 @@ func (m *mockControlTower) FetchPayment(phash lntypes.Hash) (
return m.fetchPayment(phash)
}
func (m *mockControlTower) fetchPayment(phash lntypes.Hash) (
func (m *mockControlTowerOld) fetchPayment(phash lntypes.Hash) (
*channeldb.MPPayment, error) {
p, ok := m.payments[phash]
@ -477,7 +494,7 @@ func (m *mockControlTower) fetchPayment(phash lntypes.Hash) (
return mp, nil
}
func (m *mockControlTower) FetchInFlightPayments() (
func (m *mockControlTowerOld) FetchInFlightPayments() (
[]*channeldb.MPPayment, error) {
if m.fetchInFlight != nil {
@ -508,8 +525,215 @@ func (m *mockControlTower) FetchInFlightPayments() (
return fl, nil
}
func (m *mockControlTower) SubscribePayment(paymentHash lntypes.Hash) (
func (m *mockControlTowerOld) SubscribePayment(paymentHash lntypes.Hash) (
*ControlTowerSubscriber, error) {
return nil, errors.New("not implemented")
}
type mockPaymentAttemptDispatcher struct {
mock.Mock
resultChan chan *htlcswitch.PaymentResult
}
var _ PaymentAttemptDispatcher = (*mockPaymentAttemptDispatcher)(nil)
func (m *mockPaymentAttemptDispatcher) SendHTLC(firstHop lnwire.ShortChannelID,
pid uint64, htlcAdd *lnwire.UpdateAddHTLC) error {
args := m.Called(firstHop, pid, htlcAdd)
return args.Error(0)
}
func (m *mockPaymentAttemptDispatcher) GetPaymentResult(attemptID uint64,
paymentHash lntypes.Hash, deobfuscator htlcswitch.ErrorDecrypter) (
<-chan *htlcswitch.PaymentResult, error) {
m.Called(attemptID, paymentHash, deobfuscator)
// Instead of returning the mocked returned values, we need to return
// the chan resultChan so it can be converted into a read-only chan.
return m.resultChan, nil
}
func (m *mockPaymentAttemptDispatcher) CleanStore(
keepPids map[uint64]struct{}) error {
args := m.Called(keepPids)
return args.Error(0)
}
type mockPaymentSessionSource struct {
mock.Mock
}
var _ PaymentSessionSource = (*mockPaymentSessionSource)(nil)
func (m *mockPaymentSessionSource) NewPaymentSession(
payment *LightningPayment) (PaymentSession, error) {
args := m.Called(payment)
return args.Get(0).(PaymentSession), args.Error(1)
}
func (m *mockPaymentSessionSource) NewPaymentSessionForRoute(
preBuiltRoute *route.Route) PaymentSession {
args := m.Called(preBuiltRoute)
return args.Get(0).(PaymentSession)
}
func (m *mockPaymentSessionSource) NewPaymentSessionEmpty() PaymentSession {
args := m.Called()
return args.Get(0).(PaymentSession)
}
type mockMissionControl struct {
mock.Mock
failReason *channeldb.FailureReason
}
var _ MissionController = (*mockMissionControl)(nil)
func (m *mockMissionControl) ReportPaymentFail(
paymentID uint64, rt *route.Route,
failureSourceIdx *int, failure lnwire.FailureMessage) (
*channeldb.FailureReason, error) {
args := m.Called(paymentID, rt, failureSourceIdx, failure)
return m.failReason, args.Error(1)
}
func (m *mockMissionControl) ReportPaymentSuccess(paymentID uint64,
rt *route.Route) error {
args := m.Called(paymentID, rt)
return args.Error(0)
}
func (m *mockMissionControl) GetProbability(fromNode, toNode route.Vertex,
amt lnwire.MilliSatoshi) float64 {
args := m.Called(fromNode, toNode, amt)
return args.Get(0).(float64)
}
type mockPaymentSession struct {
mock.Mock
}
var _ PaymentSession = (*mockPaymentSession)(nil)
func (m *mockPaymentSession) RequestRoute(maxAmt, feeLimit lnwire.MilliSatoshi,
activeShards, height uint32) (*route.Route, error) {
args := m.Called(maxAmt, feeLimit, activeShards, height)
return args.Get(0).(*route.Route), args.Error(1)
}
func (m *mockPaymentSession) UpdateAdditionalEdge(msg *lnwire.ChannelUpdate,
pubKey *btcec.PublicKey, policy *channeldb.ChannelEdgePolicy) bool {
args := m.Called(msg, pubKey, policy)
return args.Bool(0)
}
func (m *mockPaymentSession) GetAdditionalEdgePolicy(pubKey *btcec.PublicKey,
channelID uint64) *channeldb.ChannelEdgePolicy {
args := m.Called(pubKey, channelID)
return args.Get(0).(*channeldb.ChannelEdgePolicy)
}
type mockControlTower struct {
mock.Mock
sync.Mutex
}
var _ ControlTower = (*mockControlTower)(nil)
func (m *mockControlTower) InitPayment(phash lntypes.Hash,
c *channeldb.PaymentCreationInfo) error {
args := m.Called(phash, c)
return args.Error(0)
}
func (m *mockControlTower) RegisterAttempt(phash lntypes.Hash,
a *channeldb.HTLCAttemptInfo) error {
m.Lock()
defer m.Unlock()
args := m.Called(phash, a)
return args.Error(0)
}
func (m *mockControlTower) SettleAttempt(phash lntypes.Hash,
pid uint64, settleInfo *channeldb.HTLCSettleInfo) (
*channeldb.HTLCAttempt, error) {
m.Lock()
defer m.Unlock()
args := m.Called(phash, pid, settleInfo)
return args.Get(0).(*channeldb.HTLCAttempt), args.Error(1)
}
func (m *mockControlTower) FailAttempt(phash lntypes.Hash, pid uint64,
failInfo *channeldb.HTLCFailInfo) (*channeldb.HTLCAttempt, error) {
m.Lock()
defer m.Unlock()
args := m.Called(phash, pid, failInfo)
return args.Get(0).(*channeldb.HTLCAttempt), args.Error(1)
}
func (m *mockControlTower) Fail(phash lntypes.Hash,
reason channeldb.FailureReason) error {
m.Lock()
defer m.Unlock()
args := m.Called(phash, reason)
return args.Error(0)
}
func (m *mockControlTower) FetchPayment(phash lntypes.Hash) (
*channeldb.MPPayment, error) {
m.Lock()
defer m.Unlock()
args := m.Called(phash)
// Type assertion on nil will fail, so we check and return here.
if args.Get(0) == nil {
return nil, args.Error(1)
}
// Make a copy of the payment here to avoid data race.
p := args.Get(0).(*channeldb.MPPayment)
payment := &channeldb.MPPayment{
FailureReason: p.FailureReason,
}
payment.HTLCs = make([]channeldb.HTLCAttempt, len(p.HTLCs))
copy(payment.HTLCs, p.HTLCs)
return payment, args.Error(1)
}
func (m *mockControlTower) FetchInFlightPayments() (
[]*channeldb.MPPayment, error) {
args := m.Called()
return args.Get(0).([]*channeldb.MPPayment), args.Error(1)
}
func (m *mockControlTower) SubscribePayment(paymentHash lntypes.Hash) (
*ControlTowerSubscriber, error) {
args := m.Called(paymentHash)
return args.Get(0).(*ControlTowerSubscriber), args.Error(1)
}

@ -352,11 +352,8 @@ func (m *mockChainView) Stop() error {
func TestEdgeUpdateNotification(t *testing.T) {
t.Parallel()
ctx, cleanUp, err := createTestCtxSingleNode(0)
ctx, cleanUp := createTestCtxSingleNode(t, 0)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
// First we'll create the utxo for the channel to be "closed"
const chanValue = 10000
@ -546,11 +543,8 @@ func TestNodeUpdateNotification(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
ctx, cleanUp := createTestCtxSingleNode(t, startingBlockHeight)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
// We only accept node announcements from nodes having a known channel,
// so create one now.
@ -739,11 +733,8 @@ func TestNotificationCancellation(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
ctx, cleanUp := createTestCtxSingleNode(t, startingBlockHeight)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
// Create a new client to receive notifications.
ntfnClient, err := ctx.router.SubscribeTopology()
@ -831,11 +822,8 @@ func TestChannelCloseNotification(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
ctx, cleanUp := createTestCtxSingleNode(t, startingBlockHeight)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
// First we'll create the utxo for the channel to be "closed"
const chanValue = 10000

@ -118,10 +118,13 @@ type testGraph struct {
// testNode represents a node within the test graph above. We skip certain
// information such as the node's IP address as that information isn't needed
// for our tests.
// for our tests. Private keys are optional. If set, they should be consistent
// with the public key. The private key is used to sign error messages
// sent from the node.
type testNode struct {
Source bool `json:"source"`
PubKey string `json:"pubkey"`
PrivKey string `json:"privkey"`
Alias string `json:"alias"`
}
@ -200,6 +203,8 @@ func parseTestGraph(path string) (*testGraphInstance, error) {
}
aliasMap := make(map[string]route.Vertex)
privKeyMap := make(map[string]*btcec.PrivateKey)
channelIDs := make(map[route.Vertex]map[route.Vertex]uint64)
var source *channeldb.LightningNode
// First we insert all the nodes within the graph as vertexes.
@ -230,6 +235,33 @@ func parseTestGraph(path string) (*testGraphInstance, error) {
// alias map for easy lookup.
aliasMap[node.Alias] = dbNode.PubKeyBytes
// private keys are needed for signing error messages. If set
// check the consistency with the public key.
privBytes, err := hex.DecodeString(node.PrivKey)
if err != nil {
return nil, err
}
if len(privBytes) > 0 {
key, derivedPub := btcec.PrivKeyFromBytes(
btcec.S256(), privBytes,
)
if !bytes.Equal(
pubBytes, derivedPub.SerializeCompressed(),
) {
return nil, fmt.Errorf("%s public key and "+
"private key are inconsistent\n"+
"got %x\nwant %x\n",
node.Alias,
derivedPub.SerializeCompressed(),
pubBytes,
)
}
privKeyMap[node.Alias] = key
}
// If the node is tagged as the source, then we create a
// pointer to is so we can mark the source in the graph
// properly.
@ -240,7 +272,8 @@ func parseTestGraph(path string) (*testGraphInstance, error) {
// node can be the source in the graph.
if source != nil {
return nil, errors.New("JSON is invalid " +
"multiple nodes are tagged as the source")
"multiple nodes are tagged as the " +
"source")
}
source = dbNode
@ -324,12 +357,35 @@ func parseTestGraph(path string) (*testGraphInstance, error) {
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
return nil, err
}
// We also store the channel IDs info for each of the node.
node1Vertex, err := route.NewVertexFromBytes(node1Bytes)
if err != nil {
return nil, err
}
node2Vertex, err := route.NewVertexFromBytes(node2Bytes)
if err != nil {
return nil, err
}
if _, ok := channelIDs[node1Vertex]; !ok {
channelIDs[node1Vertex] = map[route.Vertex]uint64{}
}
channelIDs[node1Vertex][node2Vertex] = edge.ChannelID
if _, ok := channelIDs[node2Vertex]; !ok {
channelIDs[node2Vertex] = map[route.Vertex]uint64{}
}
channelIDs[node2Vertex][node1Vertex] = edge.ChannelID
}
return &testGraphInstance{
graph: graph,
cleanUp: cleanUp,
aliasMap: aliasMap,
privKeyMap: privKeyMap,
channelIDs: channelIDs,
}, nil
}
@ -402,6 +458,9 @@ type testGraphInstance struct {
// privKeyMap maps a node alias to its private key. This is used to be
// able to mock a remote node's signing behaviour.
privKeyMap map[string]*btcec.PrivateKey
// channelIDs stores the channel ID for each node.
channelIDs map[route.Vertex]map[route.Vertex]uint64
}
// createTestGraphFromChannels returns a fully populated ChannelGraph based on a set of
@ -2052,10 +2111,9 @@ func TestPathFindSpecExample(t *testing.T) {
// we'll pass that in to ensure that the router uses 100 as the current
// height.
const startingHeight = 100
ctx, cleanUp, err := createTestCtxFromFile(startingHeight, specExampleFilePath)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxFromFile(
t, startingHeight, specExampleFilePath,
)
defer cleanUp()
// We'll first exercise the scenario of a direct payment from Bob to

@ -5,6 +5,7 @@ import (
"sync"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/davecgh/go-spew/spew"
sphinx "github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/channeldb"
@ -37,21 +38,53 @@ type paymentState struct {
numShardsInFlight int
remainingAmt lnwire.MilliSatoshi
remainingFees lnwire.MilliSatoshi
// terminate indicates the payment is in its final stage and no more
// shards should be launched. This value is true if we have an HTLC
// settled or the payment has an error.
terminate bool
}
// paymentState uses the passed payment to find the latest information we need
// to act on every iteration of the payment loop.
func (p *paymentLifecycle) paymentState(payment *channeldb.MPPayment) (
// terminated returns a bool to indicate there are no further actions needed
// and we should return what we have, either the payment preimage or the
// payment error.
func (ps paymentState) terminated() bool {
// If the payment is in final stage and we have no in flight shards to
// wait result for, we consider the whole action terminated.
return ps.terminate && ps.numShardsInFlight == 0
}
// needWaitForShards returns a bool to specify whether we need to wait for the
// outcome of the shanrdHandler.
func (ps paymentState) needWaitForShards() bool {
// If we have in flight shards and the payment is in final stage, we
// need to wait for the outcomes from the shards. Or if we have no more
// money to be sent, we need to wait for the already launched shards.
if ps.numShardsInFlight == 0 {
return false
}
return ps.terminate || ps.remainingAmt == 0
}
// updatePaymentState will fetch db for the payment to find the latest
// information we need to act on every iteration of the payment loop and update
// the paymentState.
func (p *paymentLifecycle) updatePaymentState() (*channeldb.MPPayment,
*paymentState, error) {
// Fetch the latest payment from db.
payment, err := p.router.cfg.Control.FetchPayment(p.identifier)
if err != nil {
return nil, nil, err
}
// Fetch the total amount and fees that has already been sent in
// settled and still in-flight shards.
sentAmt, fees := payment.SentAmt()
// Sanity check we haven't sent a value larger than the payment amount.
if sentAmt > p.totalAmount {
return nil, fmt.Errorf("amount sent %v exceeds "+
return nil, nil, fmt.Errorf("amount sent %v exceeds "+
"total amount %v", sentAmt, p.totalAmount)
}
@ -73,13 +106,15 @@ func (p *paymentLifecycle) paymentState(payment *channeldb.MPPayment) (
// have returned with a result.
terminate := settle != nil || failure != nil
activeShards := payment.InFlightHTLCs()
return &paymentState{
numShardsInFlight: len(activeShards),
// Update the payment state.
state := &paymentState{
numShardsInFlight: len(payment.InFlightHTLCs()),
remainingAmt: p.totalAmount - sentAmt,
remainingFees: feeBudget,
terminate: terminate,
}, nil
}
return payment, state, nil
}
// resumePayment resumes the paymentLifecycle from the current state.
@ -90,6 +125,7 @@ func (p *paymentLifecycle) resumePayment() ([32]byte, *route.Route, error) {
shardTracker: p.shardTracker,
shardErrors: make(chan error),
quit: make(chan struct{}),
paySession: p.paySession,
}
// When the payment lifecycle loop exits, we make sure to signal any
@ -100,9 +136,7 @@ func (p *paymentLifecycle) resumePayment() ([32]byte, *route.Route, error) {
// If we had any existing attempts outstanding, we'll start by spinning
// up goroutines that'll collect their results and deliver them to the
// lifecycle loop below.
payment, err := p.router.cfg.Control.FetchPayment(
p.identifier,
)
payment, _, err := p.updatePaymentState()
if err != nil {
return [32]byte{}, nil, err
}
@ -126,34 +160,30 @@ lifecycle:
return [32]byte{}, nil, err
}
// We start every iteration by fetching the lastest state of
// the payment from the ControlTower. This ensures that we will
// act on the latest available information, whether we are
// resuming an existing payment or just sent a new attempt.
payment, err := p.router.cfg.Control.FetchPayment(
p.identifier,
)
if err != nil {
return [32]byte{}, nil, err
}
// Using this latest state of the payment, calculate
// information about our active shards and terminal conditions.
state, err := p.paymentState(payment)
// We update the payment state on every iteration. Since the
// payment state is affected by multiple goroutines (ie,
// collectResultAsync), it is NOT guaranteed that we always
// have the latest state here. This is fine as long as the
// state is consistent as a whole.
payment, currentState, err := p.updatePaymentState()
if err != nil {
return [32]byte{}, nil, err
}
log.Debugf("Payment %v in state terminate=%v, "+
"active_shards=%v, rem_value=%v, fee_limit=%v",
p.identifier, state.terminate, state.numShardsInFlight,
state.remainingAmt, state.remainingFees)
p.identifier, currentState.terminate,
currentState.numShardsInFlight,
currentState.remainingAmt, currentState.remainingFees,
)
// TODO(yy): sanity check all the states to make sure
// everything is expected.
switch {
// We have a terminal condition and no active shards, we are
// ready to exit.
case state.terminate && state.numShardsInFlight == 0:
case currentState.terminated():
// Find the first successful shard and return
// the preimage and route.
for _, a := range payment.HTLCs {
@ -168,7 +198,7 @@ lifecycle:
// If we either reached a terminal error condition (but had
// active shards still) or there is no remaining value to send,
// we'll wait for a shard outcome.
case state.terminate || state.remainingAmt == 0:
case currentState.needWaitForShards():
// We still have outstanding shards, so wait for a new
// outcome to be available before re-evaluating our
// state.
@ -210,8 +240,9 @@ lifecycle:
// Create a new payment attempt from the given payment session.
rt, err := p.paySession.RequestRoute(
state.remainingAmt, state.remainingFees,
uint32(state.numShardsInFlight), uint32(p.currentHeight),
currentState.remainingAmt, currentState.remainingFees,
uint32(currentState.numShardsInFlight),
uint32(p.currentHeight),
)
if err != nil {
log.Warnf("Failed to find route for payment %v: %v",
@ -225,7 +256,7 @@ lifecycle:
// There is no route to try, and we have no active
// shards. This means that there is no way for us to
// send the payment, so mark it failed with no route.
if state.numShardsInFlight == 0 {
if currentState.numShardsInFlight == 0 {
failureCode := routeErr.FailureReason()
log.Debugf("Marking payment %v permanently "+
"failed with no route: %v",
@ -251,22 +282,11 @@ lifecycle:
// If this route will consume the last remeining amount to send
// to the receiver, this will be our last shard (for now).
lastShard := rt.ReceiverAmt() == state.remainingAmt
lastShard := rt.ReceiverAmt() == currentState.remainingAmt
// We found a route to try, launch a new shard.
attempt, outcome, err := shardHandler.launchShard(rt, lastShard)
switch {
// We may get a terminal error if we've processed a shard with
// a terminal state (settled or permanent failure), while we
// were pathfinding. We know we're in a terminal state here,
// so we can continue and wait for our last shards to return.
case err == channeldb.ErrPaymentTerminal:
log.Infof("Payment %v in terminal state, abandoning "+
"shard", p.identifier)
continue lifecycle
case err != nil:
if err != nil {
return [32]byte{}, nil, err
}
@ -295,6 +315,7 @@ lifecycle:
// Now that the shard was successfully sent, launch a go
// routine that will handle its result when its back.
shardHandler.collectResultAsync(attempt)
}
}
@ -304,6 +325,7 @@ type shardHandler struct {
identifier lntypes.Hash
router *ChannelRouter
shardTracker shards.ShardTracker
paySession PaymentSession
// shardErrors is a channel where errors collected by calling
// collectResultAsync will be delivered. These results are meant to be
@ -434,12 +456,30 @@ type shardResult struct {
}
// collectResultAsync launches a goroutine that will wait for the result of the
// given HTLC attempt to be available then handle its result. Note that it will
// fail the payment with the control tower if a terminal error is encountered.
// given HTLC attempt to be available then handle its result. It will fail the
// payment with the control tower if a terminal error is encountered.
func (p *shardHandler) collectResultAsync(attempt *channeldb.HTLCAttemptInfo) {
// errToSend is the error to be sent to sh.shardErrors.
var errToSend error
// handleResultErr is a function closure must be called using defer. It
// finishes collecting result by updating the payment state and send
// the error (or nil) to sh.shardErrors.
handleResultErr := func() {
// Send the error or quit.
select {
case p.shardErrors <- errToSend:
case <-p.router.quit:
case <-p.quit:
}
p.wg.Done()
}
p.wg.Add(1)
go func() {
defer p.wg.Done()
defer handleResultErr()
// Block until the result is available.
result, err := p.collectResult(attempt)
@ -453,33 +493,19 @@ func (p *shardHandler) collectResultAsync(attempt *channeldb.HTLCAttemptInfo) {
attempt.AttemptID, p.identifier, err)
}
select {
case p.shardErrors <- err:
case <-p.router.quit:
case <-p.quit:
}
// Overwrite errToSend and return.
errToSend = err
return
}
// If a non-critical error was encountered handle it and mark
// the payment failed if the failure was terminal.
if result.err != nil {
err := p.handleSendError(attempt, result.err)
if err != nil {
select {
case p.shardErrors <- err:
case <-p.router.quit:
case <-p.quit:
}
// Overwrite errToSend and return. Notice that the
// errToSend could be nil here.
errToSend = p.handleSendError(attempt, result.err)
return
}
}
select {
case p.shardErrors <- nil:
case <-p.router.quit:
case <-p.quit:
}
}()
}
@ -721,25 +747,175 @@ func (p *shardHandler) sendPaymentAttempt(
// handleSendError inspects the given error from the Switch and determines
// whether we should make another payment attempt, or if it should be
// considered a terminal error. Terminal errors will be recorded with the
// control tower.
// control tower. It analyzes the sendErr for the payment attempt received from
// the switch and updates mission control and/or channel policies. Depending on
// the error type, the error is either the final outcome of the payment or we
// need to continue with an alternative route. A final outcome is indicated by
// a non-nil reason value.
func (p *shardHandler) handleSendError(attempt *channeldb.HTLCAttemptInfo,
sendErr error) error {
reason := p.router.processSendError(
attempt.AttemptID, &attempt.Route, sendErr,
)
if reason == nil {
return nil
}
internalErrorReason := channeldb.FailureReasonError
// failPayment is a helper closure that fails the payment via the
// router's control tower, which marks the payment as failed in db.
failPayment := func(reason *channeldb.FailureReason,
sendErr error) error {
log.Infof("Payment %v failed: final_outcome=%v, raw_err=%v",
p.identifier, *reason, sendErr)
err := p.router.cfg.Control.Fail(p.identifier, *reason)
if err != nil {
// Fail the payment via control tower.
if err := p.router.cfg.Control.Fail(
p.identifier, *reason); err != nil {
return err
}
return *reason
}
// reportFail is a helper closure that reports the failure to the
// mission control, which helps us to decide whether we want to retry
// the payment or not. If a non nil reason is returned from mission
// control, it will further fail the payment via control tower.
reportFail := func(srcIdx *int, msg lnwire.FailureMessage) error {
// Report outcome to mission control.
reason, err := p.router.cfg.MissionControl.ReportPaymentFail(
attempt.AttemptID, &attempt.Route, srcIdx, msg,
)
if err != nil {
log.Errorf("Error reporting payment result to mc: %v",
err)
reason = &internalErrorReason
}
// Exit early if there's no reason.
if reason == nil {
return nil
}
return failPayment(reason, sendErr)
}
if sendErr == htlcswitch.ErrUnreadableFailureMessage {
log.Tracef("Unreadable failure when sending htlc")
return reportFail(nil, nil)
}
// If the error is a ClearTextError, we have received a valid wire
// failure message, either from our own outgoing link or from a node
// down the route. If the error is not related to the propagation of
// our payment, we can stop trying because an internal error has
// occurred.
rtErr, ok := sendErr.(htlcswitch.ClearTextError)
if !ok {
return failPayment(&internalErrorReason, sendErr)
}
// failureSourceIdx is the index of the node that the failure occurred
// at. If the ClearTextError received is not a ForwardingError the
// payment error occurred at our node, so we leave this value as 0
// to indicate that the failure occurred locally. If the error is a
// ForwardingError, it did not originate at our node, so we set
// failureSourceIdx to the index of the node where the failure occurred.
failureSourceIdx := 0
source, ok := rtErr.(*htlcswitch.ForwardingError)
if ok {
failureSourceIdx = source.FailureSourceIdx
}
// Extract the wire failure and apply channel update if it contains one.
// If we received an unknown failure message from a node along the
// route, the failure message will be nil.
failureMessage := rtErr.WireMessage()
err := p.handleFailureMessage(
&attempt.Route, failureSourceIdx, failureMessage,
)
if err != nil {
return failPayment(&internalErrorReason, sendErr)
}
log.Tracef("Node=%v reported failure when sending htlc",
failureSourceIdx)
return reportFail(&failureSourceIdx, failureMessage)
}
// handleFailureMessage tries to apply a channel update present in the failure
// message if any.
func (p *shardHandler) handleFailureMessage(rt *route.Route,
errorSourceIdx int, failure lnwire.FailureMessage) error {
if failure == nil {
return nil
}
// It makes no sense to apply our own channel updates.
if errorSourceIdx == 0 {
log.Errorf("Channel update of ourselves received")
return nil
}
// Extract channel update if the error contains one.
update := p.router.extractChannelUpdate(failure)
if update == nil {
return nil
}
// Parse pubkey to allow validation of the channel update. This should
// always succeed, otherwise there is something wrong in our
// implementation. Therefore return an error.
errVertex := rt.Hops[errorSourceIdx-1].PubKeyBytes
errSource, err := btcec.ParsePubKey(
errVertex[:], btcec.S256(),
)
if err != nil {
log.Errorf("Cannot parse pubkey: idx=%v, pubkey=%v",
errorSourceIdx, errVertex)
return err
}
var (
isAdditionalEdge bool
policy *channeldb.ChannelEdgePolicy
)
// Before we apply the channel update, we need to decide whether the
// update is for additional (ephemeral) edge or normal edge stored in
// db.
//
// Note: the p.paySession might be nil here if it's called inside
// SendToRoute where there's no payment lifecycle.
if p.paySession != nil {
policy = p.paySession.GetAdditionalEdgePolicy(
errSource, update.ShortChannelID.ToUint64(),
)
if policy != nil {
isAdditionalEdge = true
}
}
// Apply channel update to additional edge policy.
if isAdditionalEdge {
if !p.paySession.UpdateAdditionalEdge(
update, errSource, policy) {
log.Debugf("Invalid channel update received: node=%v",
errVertex)
}
return nil
}
// Apply channel update to the channel edge policy in our db.
if !p.router.applyChannelUpdate(update, errSource) {
log.Debugf("Invalid channel update received: node=%v",
errVertex)
}
return nil
}

@ -2,6 +2,7 @@ package routing
import (
"crypto/rand"
"fmt"
"sync/atomic"
"testing"
"time"
@ -194,14 +195,6 @@ func TestRouterPaymentStateMachine(t *testing.T) {
t.Fatalf("unable to create route: %v", err)
}
halfShard, err := createTestRoute(paymentAmt/2, testGraph.aliasMap)
require.NoError(t, err, "unable to create half route")
shard, err := createTestRoute(paymentAmt/4, testGraph.aliasMap)
if err != nil {
t.Fatalf("unable to create route: %v", err)
}
tests := []paymentLifecycleTestCase{
{
// Tests a normal payment flow that succeeds.
@ -424,280 +417,6 @@ func TestRouterPaymentStateMachine(t *testing.T) {
routes: []*route.Route{rt},
paymentErr: channeldb.FailureReasonNoRoute,
},
// =====================================
// || MPP scenarios ||
// =====================================
{
// Tests a simple successful MP payment of 4 shards.
name: "MP success",
steps: []string{
routerInitPayment,
// shard 0
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 1
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 2
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 3
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// All shards succeed.
getPaymentResultSuccess,
getPaymentResultSuccess,
getPaymentResultSuccess,
getPaymentResultSuccess,
// Router should settle them all.
routerSettleAttempt,
routerSettleAttempt,
routerSettleAttempt,
routerSettleAttempt,
// And the final result is obviously
// successful.
paymentSuccess,
},
routes: []*route.Route{shard, shard, shard, shard},
},
{
// An MP payment scenario where we need several extra
// attempts before the payment finally settle.
name: "MP failed shards",
steps: []string{
routerInitPayment,
// shard 0
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 1
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 2
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 3
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// First two shards fail, two new ones are sent.
getPaymentResultTempFailure,
getPaymentResultTempFailure,
routerFailAttempt,
routerFailAttempt,
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// The four shards settle.
getPaymentResultSuccess,
getPaymentResultSuccess,
getPaymentResultSuccess,
getPaymentResultSuccess,
routerSettleAttempt,
routerSettleAttempt,
routerSettleAttempt,
routerSettleAttempt,
// Overall payment succeeds.
paymentSuccess,
},
routes: []*route.Route{
shard, shard, shard, shard, shard, shard,
},
},
{
// An MP payment scenario where one of the shards fails,
// but we still receive a single success shard.
name: "MP one shard success",
steps: []string{
routerInitPayment,
// shard 0
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 1
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 0 fails, and should be failed by the
// router.
getPaymentResultTempFailure,
routerFailAttempt,
// We will try one more shard because we haven't
// sent the full payment amount.
routeRelease,
// The second shard succeed against all odds,
// making the overall payment succeed.
getPaymentResultSuccess,
routerSettleAttempt,
paymentSuccess,
},
routes: []*route.Route{halfShard, halfShard},
},
{
// An MP payment scenario a shard fail with a terminal
// error, causing the router to stop attempting.
name: "MP terminal",
steps: []string{
routerInitPayment,
// shard 0
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 1
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 2
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 3
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// The first shard fail with a terminal error.
getPaymentResultTerminalFailure,
routerFailAttempt,
routerFailPayment,
// Remaining 3 shards fail.
getPaymentResultTempFailure,
getPaymentResultTempFailure,
getPaymentResultTempFailure,
routerFailAttempt,
routerFailAttempt,
routerFailAttempt,
// Payment fails.
paymentError,
},
routes: []*route.Route{
shard, shard, shard, shard, shard, shard,
},
paymentErr: channeldb.FailureReasonPaymentDetails,
},
{
// A MP payment scenario when our path finding returns
// after we've just received a terminal failure, and
// attempts to dispatch a new shard. Testing that we
// correctly abandon the shard and conclude the payment.
name: "MP path found after failure",
steps: []string{
routerInitPayment,
// shard 0
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// The first shard fail with a terminal error.
getPaymentResultTerminalFailure,
routerFailAttempt,
routerFailPayment,
// shard 1 fails because we've had a terminal
// failure.
routeRelease,
routerRegisterAttempt,
// Payment fails.
paymentError,
},
routes: []*route.Route{
shard, shard,
},
paymentErr: channeldb.FailureReasonPaymentDetails,
},
{
// A MP payment scenario when our path finding returns
// after we've just received a terminal failure, and
// we have another shard still in flight.
name: "MP shard in flight after terminal",
steps: []string{
routerInitPayment,
// shard 0
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 1
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// shard 2
routeRelease,
routerRegisterAttempt,
sendToSwitchSuccess,
// We find a path for another shard.
routeRelease,
// shard 0 fails with a terminal error.
getPaymentResultTerminalFailure,
routerFailAttempt,
routerFailPayment,
// We try to register our final shard after
// processing a terminal failure.
routerRegisterAttempt,
// Our in-flight shards fail.
getPaymentResultTempFailure,
getPaymentResultTempFailure,
routerFailAttempt,
routerFailAttempt,
// Payment fails.
paymentError,
},
routes: []*route.Route{
shard, shard, shard, shard,
},
paymentErr: channeldb.FailureReasonPaymentDetails,
},
}
for _, test := range tests {
@ -738,7 +457,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
sendResult := make(chan error)
paymentResult := make(chan *htlcswitch.PaymentResult)
payer := &mockPayer{
payer := &mockPayerOld{
sendResult: sendResult,
paymentResult: paymentResult,
}
@ -748,8 +467,8 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
Chain: chain,
ChainView: chainView,
Control: control,
SessionSource: &mockPaymentSessionSource{},
MissionControl: &mockMissionControl{},
SessionSource: &mockPaymentSessionSourceOld{},
MissionControl: &mockMissionControlOld{},
Payer: payer,
ChannelPruneExpiry: time.Hour * 24,
GraphPruneInterval: time.Hour * 2,
@ -821,12 +540,12 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
// Setup our payment session source to block on release of
// routes.
routeChan := make(chan struct{})
router.cfg.SessionSource = &mockPaymentSessionSource{
router.cfg.SessionSource = &mockPaymentSessionSourceOld{
routes: test.routes,
routeRelease: routeChan,
}
router.cfg.MissionControl = &mockMissionControl{}
router.cfg.MissionControl = &mockMissionControlOld{}
// Send the payment. Since this is new payment hash, the
// information should be registered with the ControlTower.
@ -839,7 +558,20 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
}()
var resendResult chan error
for _, step := range test.steps {
for i, step := range test.steps {
i, step := i, step
// fatal is a helper closure that wraps the step info.
fatal := func(err string, args ...interface{}) {
if args != nil {
err = fmt.Sprintf(err, args)
}
t.Fatalf(
"test case: %s failed on step [%v:%s], err: %s",
test.name, i, step, err,
)
}
switch step {
case routerInitPayment:
@ -847,19 +579,18 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
select {
case args = <-control.init:
case <-time.After(stepTimeout):
t.Fatalf("no init payment with control")
fatal("no init payment with control")
}
if args.c == nil {
t.Fatalf("expected non-nil CreationInfo")
fatal("expected non-nil CreationInfo")
}
case routeRelease:
select {
case <-routeChan:
case <-time.After(stepTimeout):
t.Fatalf("no route requested")
fatal("no route requested")
}
// In this step we expect the router to make a call to
@ -869,12 +600,11 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
select {
case args = <-control.registerAttempt:
case <-time.After(stepTimeout):
t.Fatalf("attempt not registered " +
"with control")
fatal("attempt not registered with control")
}
if args.a == nil {
t.Fatalf("expected non-nil AttemptInfo")
fatal("expected non-nil AttemptInfo")
}
// In this step we expect the router to call the
@ -883,7 +613,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
select {
case <-control.settleAttempt:
case <-time.After(stepTimeout):
t.Fatalf("attempt settle not " +
fatal("attempt settle not " +
"registered with control")
}
@ -894,7 +624,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
select {
case <-control.failAttempt:
case <-time.After(stepTimeout):
t.Fatalf("attempt fail not " +
fatal("attempt fail not " +
"registered with control")
}
@ -905,7 +635,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
select {
case <-control.failPayment:
case <-time.After(stepTimeout):
t.Fatalf("payment fail not " +
fatal("payment fail not " +
"registered with control")
}
@ -915,7 +645,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
select {
case sendResult <- nil:
case <-time.After(stepTimeout):
t.Fatalf("unable to send result")
fatal("unable to send result")
}
// In this step we expect the SendToSwitch method to be
@ -927,7 +657,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
1,
):
case <-time.After(stepTimeout):
t.Fatalf("unable to send result")
fatal("unable to send result")
}
// In this step we expect the GetPaymentResult method
@ -939,7 +669,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
Preimage: preImage,
}:
case <-time.After(stepTimeout):
t.Fatalf("unable to send result")
fatal("unable to send result")
}
// In this state we expect the GetPaymentResult method
@ -956,7 +686,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
Error: failure,
}:
case <-time.After(stepTimeout):
t.Fatalf("unable to get result")
fatal("unable to get result")
}
// In this state we expect the router to call the
@ -974,7 +704,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
Error: failure,
}:
case <-time.After(stepTimeout):
t.Fatalf("unable to get result")
fatal("unable to get result")
}
// In this step we manually try to resend the same
@ -994,7 +724,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
close(getPaymentResult)
if err := router.Stop(); err != nil {
t.Fatalf("unable to restart: %v", err)
fatal("unable to restart: %v", err)
}
// In this step we manually start the router.
@ -1012,7 +742,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
require.Equal(t, test.paymentErr, err)
case <-time.After(stepTimeout):
t.Fatalf("got no payment result")
fatal("got no payment result")
}
// In this state we expect the original payment to
@ -1028,7 +758,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
}
case <-time.After(stepTimeout):
t.Fatalf("got no payment result")
fatal("got no payment result")
}
// In this state we expect to receive an error for the
@ -1041,7 +771,7 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
}
case <-time.After(stepTimeout):
t.Fatalf("got no payment result")
fatal("got no payment result")
}
// In this state we expect the resent payment to
@ -1054,11 +784,11 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
}
case <-time.After(stepTimeout):
t.Fatalf("got no payment result")
fatal("got no payment result")
}
default:
t.Fatalf("unknown step %v", step)
fatal("unknown step %v", step)
}
}
@ -1068,3 +798,343 @@ func testPaymentLifecycle(t *testing.T, test paymentLifecycleTestCase,
t.Fatalf("SendPayment didn't exit")
}
}
// TestPaymentState tests that the logics implemented on paymentState struct
// are as expected. In particular, that the method terminated and
// needWaitForShards return the right values.
func TestPaymentState(t *testing.T) {
t.Parallel()
testCases := []struct {
name string
// Use the following three params, each is equivalent to a bool
// statement, to construct 8 test cases so that we can
// exhaustively catch all possible states.
numShardsInFlight int
remainingAmt lnwire.MilliSatoshi
terminate bool
expectedTerminated bool
expectedNeedWaitForShards bool
}{
{
// If we have active shards and terminate is marked
// false, the state is not terminated. Since the
// remaining amount is zero, we need to wait for shards
// to be finished and launch no more shards.
name: "state 100",
numShardsInFlight: 1,
remainingAmt: lnwire.MilliSatoshi(0),
terminate: false,
expectedTerminated: false,
expectedNeedWaitForShards: true,
},
{
// If we have active shards while terminate is marked
// true, the state is not terminated, and we need to
// wait for shards to be finished and launch no more
// shards.
name: "state 101",
numShardsInFlight: 1,
remainingAmt: lnwire.MilliSatoshi(0),
terminate: true,
expectedTerminated: false,
expectedNeedWaitForShards: true,
},
{
// If we have active shards and terminate is marked
// false, the state is not terminated. Since the
// remaining amount is not zero, we don't need to wait
// for shards outcomes and should launch more shards.
name: "state 110",
numShardsInFlight: 1,
remainingAmt: lnwire.MilliSatoshi(1),
terminate: false,
expectedTerminated: false,
expectedNeedWaitForShards: false,
},
{
// If we have active shards and terminate is marked
// true, the state is not terminated. Even the
// remaining amount is not zero, we need to wait for
// shards outcomes because state is terminated.
name: "state 111",
numShardsInFlight: 1,
remainingAmt: lnwire.MilliSatoshi(1),
terminate: true,
expectedTerminated: false,
expectedNeedWaitForShards: true,
},
{
// If we have no active shards while terminate is marked
// false, the state is not terminated, and we don't
// need to wait for more shard outcomes because there
// are no active shards.
name: "state 000",
numShardsInFlight: 0,
remainingAmt: lnwire.MilliSatoshi(0),
terminate: false,
expectedTerminated: false,
expectedNeedWaitForShards: false,
},
{
// If we have no active shards while terminate is marked
// true, the state is terminated, and we don't need to
// wait for shards to be finished.
name: "state 001",
numShardsInFlight: 0,
remainingAmt: lnwire.MilliSatoshi(0),
terminate: true,
expectedTerminated: true,
expectedNeedWaitForShards: false,
},
{
// If we have no active shards while terminate is marked
// false, the state is not terminated. Since the
// remaining amount is not zero, we don't need to wait
// for shards outcomes and should launch more shards.
name: "state 010",
numShardsInFlight: 0,
remainingAmt: lnwire.MilliSatoshi(1),
terminate: false,
expectedTerminated: false,
expectedNeedWaitForShards: false,
},
{
// If we have no active shards while terminate is marked
// true, the state is terminated, and we don't need to
// wait for shards outcomes.
name: "state 011",
numShardsInFlight: 0,
remainingAmt: lnwire.MilliSatoshi(1),
terminate: true,
expectedTerminated: true,
expectedNeedWaitForShards: false,
},
}
for _, tc := range testCases {
tc := tc
t.Run(tc.name, func(t *testing.T) {
t.Parallel()
ps := &paymentState{
numShardsInFlight: tc.numShardsInFlight,
remainingAmt: tc.remainingAmt,
terminate: tc.terminate,
}
require.Equal(
t, tc.expectedTerminated, ps.terminated(),
"terminated returned wrong value",
)
require.Equal(
t, tc.expectedNeedWaitForShards,
ps.needWaitForShards(),
"needWaitForShards returned wrong value",
)
})
}
}
// TestUpdatePaymentState checks that the method updatePaymentState updates the
// paymentState as expected.
func TestUpdatePaymentState(t *testing.T) {
t.Parallel()
// paymentHash is the identifier on paymentLifecycle.
paymentHash := lntypes.Hash{}
// TODO(yy): make MPPayment into an interface so we can mock it. The
// current design implicitly tests the methods SendAmt, TerminalInfo,
// and InFlightHTLCs on channeldb.MPPayment, which is not good. Once
// MPPayment becomes an interface, we can then mock these methods here.
// SentAmt returns 90, 10
// TerminalInfo returns non-nil, nil
// InFlightHTLCs returns 0
var preimage lntypes.Preimage
paymentSettled := &channeldb.MPPayment{
HTLCs: []channeldb.HTLCAttempt{
makeSettledAttempt(100, 10, preimage),
},
}
// SentAmt returns 0, 0
// TerminalInfo returns nil, non-nil
// InFlightHTLCs returns 0
reason := channeldb.FailureReasonError
paymentFailed := &channeldb.MPPayment{
FailureReason: &reason,
}
// SentAmt returns 90, 10
// TerminalInfo returns nil, nil
// InFlightHTLCs returns 1
paymentActive := &channeldb.MPPayment{
HTLCs: []channeldb.HTLCAttempt{
makeActiveAttempt(100, 10),
makeFailedAttempt(100, 10),
},
}
testCases := []struct {
name string
payment *channeldb.MPPayment
totalAmt int
feeLimit int
expectedState *paymentState
shouldReturnError bool
}{
{
// Test that the error returned from FetchPayment is
// handled properly. We use a nil payment to indicate
// we want to return an error.
name: "fetch payment error",
payment: nil,
shouldReturnError: true,
},
{
// Test that when the sentAmt exceeds totalAmount, the
// error is returned.
name: "amount exceeded error",
payment: paymentSettled,
totalAmt: 1,
shouldReturnError: true,
},
{
// Test that when the fee budget is reached, the
// remaining fee should be zero.
name: "fee budget reached",
payment: paymentActive,
totalAmt: 1000,
feeLimit: 1,
expectedState: &paymentState{
numShardsInFlight: 1,
remainingAmt: 1000 - 90,
remainingFees: 0,
terminate: false,
},
},
{
// Test when the payment is settled, the state should
// be marked as terminated.
name: "payment settled",
payment: paymentSettled,
totalAmt: 1000,
feeLimit: 100,
expectedState: &paymentState{
numShardsInFlight: 0,
remainingAmt: 1000 - 90,
remainingFees: 100 - 10,
terminate: true,
},
},
{
// Test when the payment is failed, the state should be
// marked as terminated.
name: "payment failed",
payment: paymentFailed,
totalAmt: 1000,
feeLimit: 100,
expectedState: &paymentState{
numShardsInFlight: 0,
remainingAmt: 1000,
remainingFees: 100,
terminate: true,
},
},
}
for _, tc := range testCases {
tc := tc
t.Run(tc.name, func(t *testing.T) {
t.Parallel()
// Create mock control tower and assign it to router.
// We will then use the router and the paymentHash
// above to create our paymentLifecycle for this test.
ct := &mockControlTower{}
rt := &ChannelRouter{cfg: &Config{Control: ct}}
pl := &paymentLifecycle{
router: rt,
identifier: paymentHash,
totalAmount: lnwire.MilliSatoshi(tc.totalAmt),
feeLimit: lnwire.MilliSatoshi(tc.feeLimit),
}
if tc.payment == nil {
// A nil payment indicates we want to test an
// error returned from FetchPayment.
dummyErr := errors.New("dummy")
ct.On("FetchPayment", paymentHash).Return(
nil, dummyErr,
)
} else {
// Otherwise we will return the payment.
ct.On("FetchPayment", paymentHash).Return(
tc.payment, nil,
)
}
// Call the method that updates the payment state.
_, state, err := pl.updatePaymentState()
// Assert that the mock method is called as
// intended.
ct.AssertExpectations(t)
if tc.shouldReturnError {
require.Error(t, err, "expect an error")
return
}
require.NoError(t, err, "unexpected error")
require.Equal(
t, tc.expectedState, state,
"state not updated as expected",
)
})
}
}
func makeActiveAttempt(total, fee int) channeldb.HTLCAttempt {
return channeldb.HTLCAttempt{
HTLCAttemptInfo: makeAttemptInfo(total, total-fee),
}
}
func makeSettledAttempt(total, fee int,
preimage lntypes.Preimage) channeldb.HTLCAttempt {
return channeldb.HTLCAttempt{
HTLCAttemptInfo: makeAttemptInfo(total, total-fee),
Settle: &channeldb.HTLCSettleInfo{Preimage: preimage},
}
}
func makeFailedAttempt(total, fee int) channeldb.HTLCAttempt {
return channeldb.HTLCAttempt{
HTLCAttemptInfo: makeAttemptInfo(total, total-fee),
Failure: &channeldb.HTLCFailInfo{
Reason: channeldb.HTLCFailInternal,
},
}
}
func makeAttemptInfo(total, amtForwarded int) channeldb.HTLCAttemptInfo {
hop := &route.Hop{AmtToForward: lnwire.MilliSatoshi(amtForwarded)}
return channeldb.HTLCAttemptInfo{
Route: route.Route{
TotalAmount: lnwire.MilliSatoshi(total),
Hops: []*route.Hop{hop},
},
}
}

@ -3,7 +3,9 @@ package routing
import (
"fmt"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btclog"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/build"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnwire"
@ -136,6 +138,19 @@ type PaymentSession interface {
// during path finding.
RequestRoute(maxAmt, feeLimit lnwire.MilliSatoshi,
activeShards, height uint32) (*route.Route, error)
// UpdateAdditionalEdge takes an additional channel edge policy
// (private channels) and applies the update from the message. Returns
// a boolean to indicate whether the update has been applied without
// error.
UpdateAdditionalEdge(msg *lnwire.ChannelUpdate, pubKey *btcec.PublicKey,
policy *channeldb.ChannelEdgePolicy) bool
// GetAdditionalEdgePolicy uses the public key and channel ID to query
// the ephemeral channel edge policy for additional edges. Returns a nil
// if nothing found.
GetAdditionalEdgePolicy(pubKey *btcec.PublicKey,
channelID uint64) *channeldb.ChannelEdgePolicy
}
// paymentSession is used during an HTLC routings session to prune the local
@ -382,3 +397,53 @@ func (p *paymentSession) RequestRoute(maxAmt, feeLimit lnwire.MilliSatoshi,
return route, err
}
}
// UpdateAdditionalEdge updates the channel edge policy for a private edge. It
// validates the message signature and checks it's up to date, then applies the
// updates to the supplied policy. It returns a boolean to indicate whether
// there's an error when applying the updates.
func (p *paymentSession) UpdateAdditionalEdge(msg *lnwire.ChannelUpdate,
pubKey *btcec.PublicKey, policy *channeldb.ChannelEdgePolicy) bool {
// Validate the message signature.
if err := VerifyChannelUpdateSignature(msg, pubKey); err != nil {
log.Errorf(
"Unable to validate channel update signature: %v", err,
)
return false
}
// Update channel policy for the additional edge.
policy.TimeLockDelta = msg.TimeLockDelta
policy.FeeBaseMSat = lnwire.MilliSatoshi(msg.BaseFee)
policy.FeeProportionalMillionths = lnwire.MilliSatoshi(msg.FeeRate)
log.Debugf("New private channel update applied: %v",
newLogClosure(func() string { return spew.Sdump(msg) }))
return true
}
// GetAdditionalEdgePolicy uses the public key and channel ID to query the
// ephemeral channel edge policy for additional edges. Returns a nil if nothing
// found.
func (p *paymentSession) GetAdditionalEdgePolicy(pubKey *btcec.PublicKey,
channelID uint64) *channeldb.ChannelEdgePolicy {
target := route.NewVertex(pubKey)
edges, ok := p.additionalEdges[target]
if !ok {
return nil
}
for _, edge := range edges {
if edge.ChannelID != channelID {
continue
}
return edge
}
return nil
}

@ -2,10 +2,13 @@ package routing
import (
"testing"
"time"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/zpay32"
"github.com/stretchr/testify/require"
)
@ -70,6 +73,109 @@ func TestValidateCLTVLimit(t *testing.T) {
}
}
// TestUpdateAdditionalEdge checks that we can update the additional edges as
// expected.
func TestUpdateAdditionalEdge(t *testing.T) {
var (
testChannelID = uint64(12345)
oldFeeBaseMSat = uint32(1000)
newFeeBaseMSat = uint32(1100)
oldExpiryDelta = uint16(100)
newExpiryDelta = uint16(120)
payHash lntypes.Hash
)
// Create a minimal test node using the private key priv1.
pub := priv1.PubKey().SerializeCompressed()
testNode := &channeldb.LightningNode{}
copy(testNode.PubKeyBytes[:], pub)
nodeID, err := testNode.PubKey()
require.NoError(t, err, "failed to get node id")
// Create a payment with a route hint.
payment := &LightningPayment{
Target: testNode.PubKeyBytes,
Amount: 1000,
RouteHints: [][]zpay32.HopHint{{
zpay32.HopHint{
// The nodeID is actually the target itself. It
// doesn't matter as we are not doing routing
// in this test.
NodeID: nodeID,
ChannelID: testChannelID,
FeeBaseMSat: oldFeeBaseMSat,
CLTVExpiryDelta: oldExpiryDelta,
},
}},
paymentHash: &payHash,
}
// Create the paymentsession.
session, err := newPaymentSession(
payment,
func() (map[uint64]lnwire.MilliSatoshi,
error) {
return nil, nil
},
func() (routingGraph, func(), error) {
return &sessionGraph{}, func() {}, nil
},
&MissionControl{},
PathFindingConfig{},
)
require.NoError(t, err, "failed to create payment session")
// We should have 1 additional edge.
require.Equal(t, 1, len(session.additionalEdges))
// The edge should use nodeID as key, and its value should have 1 edge
// policy.
vertex := route.NewVertex(nodeID)
policies, ok := session.additionalEdges[vertex]
require.True(t, ok, "cannot find policy")
require.Equal(t, 1, len(policies), "should have 1 edge policy")
// Check that the policy has been created as expected.
policy := policies[0]
require.Equal(t, testChannelID, policy.ChannelID, "channel ID mismatch")
require.Equal(t,
oldExpiryDelta, policy.TimeLockDelta, "timelock delta mismatch",
)
require.Equal(t,
lnwire.MilliSatoshi(oldFeeBaseMSat),
policy.FeeBaseMSat, "fee base msat mismatch",
)
// Create the channel update message and sign.
msg := &lnwire.ChannelUpdate{
ShortChannelID: lnwire.NewShortChanIDFromInt(testChannelID),
Timestamp: uint32(time.Now().Unix()),
BaseFee: newFeeBaseMSat,
TimeLockDelta: newExpiryDelta,
}
signErrChanUpdate(t, priv1, msg)
// Apply the update.
require.True(t,
session.UpdateAdditionalEdge(msg, nodeID, policy),
"failed to update additional edge",
)
// Check that the policy has been updated as expected.
require.Equal(t, testChannelID, policy.ChannelID, "channel ID mismatch")
require.Equal(t,
newExpiryDelta, policy.TimeLockDelta, "timelock delta mismatch",
)
require.Equal(t,
lnwire.MilliSatoshi(newFeeBaseMSat),
policy.FeeBaseMSat, "fee base msat mismatch",
)
}
func TestRequestRoute(t *testing.T) {
const (
height = 10

@ -2163,15 +2163,13 @@ func (r *ChannelRouter) SendToRoute(htlcHash lntypes.Hash, rt *route.Route) (
// mark the payment failed with the control tower immediately. Process
// the error to check if it maps into a terminal error code, if not use
// a generic NO_ROUTE error.
reason := r.processSendError(
attempt.AttemptID, &attempt.Route, shardError,
)
if reason == nil {
r := channeldb.FailureReasonNoRoute
reason = &r
if err := sh.handleSendError(attempt, shardError); err != nil {
return nil, err
}
err = r.cfg.Control.Fail(paymentIdentifier, *reason)
err = r.cfg.Control.Fail(
paymentIdentifier, channeldb.FailureReasonNoRoute,
)
if err != nil {
return nil, err
}
@ -2230,121 +2228,6 @@ func (r *ChannelRouter) sendPayment(
}
// tryApplyChannelUpdate tries to apply a channel update present in the failure
// message if any.
func (r *ChannelRouter) tryApplyChannelUpdate(rt *route.Route,
errorSourceIdx int, failure lnwire.FailureMessage) error {
// It makes no sense to apply our own channel updates.
if errorSourceIdx == 0 {
log.Errorf("Channel update of ourselves received")
return nil
}
// Extract channel update if the error contains one.
update := r.extractChannelUpdate(failure)
if update == nil {
return nil
}
// Parse pubkey to allow validation of the channel update. This should
// always succeed, otherwise there is something wrong in our
// implementation. Therefore return an error.
errVertex := rt.Hops[errorSourceIdx-1].PubKeyBytes
errSource, err := btcec.ParsePubKey(
errVertex[:], btcec.S256(),
)
if err != nil {
log.Errorf("Cannot parse pubkey: idx=%v, pubkey=%v",
errorSourceIdx, errVertex)
return err
}
// Apply channel update.
if !r.applyChannelUpdate(update, errSource) {
log.Debugf("Invalid channel update received: node=%v",
errVertex)
}
return nil
}
// processSendError analyzes the error for the payment attempt received from the
// switch and updates mission control and/or channel policies. Depending on the
// error type, this error is either the final outcome of the payment or we need
// to continue with an alternative route. A final outcome is indicated by a
// non-nil return value.
func (r *ChannelRouter) processSendError(attemptID uint64, rt *route.Route,
sendErr error) *channeldb.FailureReason {
internalErrorReason := channeldb.FailureReasonError
reportFail := func(srcIdx *int,
msg lnwire.FailureMessage) *channeldb.FailureReason {
// Report outcome to mission control.
reason, err := r.cfg.MissionControl.ReportPaymentFail(
attemptID, rt, srcIdx, msg,
)
if err != nil {
log.Errorf("Error reporting payment result to mc: %v",
err)
return &internalErrorReason
}
return reason
}
if sendErr == htlcswitch.ErrUnreadableFailureMessage {
log.Tracef("Unreadable failure when sending htlc")
return reportFail(nil, nil)
}
// If the error is a ClearTextError, we have received a valid wire
// failure message, either from our own outgoing link or from a node
// down the route. If the error is not related to the propagation of
// our payment, we can stop trying because an internal error has
// occurred.
rtErr, ok := sendErr.(htlcswitch.ClearTextError)
if !ok {
return &internalErrorReason
}
// failureSourceIdx is the index of the node that the failure occurred
// at. If the ClearTextError received is not a ForwardingError the
// payment error occurred at our node, so we leave this value as 0
// to indicate that the failure occurred locally. If the error is a
// ForwardingError, it did not originate at our node, so we set
// failureSourceIdx to the index of the node where the failure occurred.
failureSourceIdx := 0
source, ok := rtErr.(*htlcswitch.ForwardingError)
if ok {
failureSourceIdx = source.FailureSourceIdx
}
// Extract the wire failure and apply channel update if it contains one.
// If we received an unknown failure message from a node along the
// route, the failure message will be nil.
failureMessage := rtErr.WireMessage()
if failureMessage != nil {
err := r.tryApplyChannelUpdate(
rt, failureSourceIdx, failureMessage,
)
if err != nil {
return &internalErrorReason
}
}
log.Tracef("Node=%v reported failure when sending htlc",
failureSourceIdx)
return reportFail(&failureSourceIdx, failureMessage)
}
// extractChannelUpdate examines the error and extracts the channel update.
func (r *ChannelRouter) extractChannelUpdate(
failure lnwire.FailureMessage) *lnwire.ChannelUpdate {

@ -15,6 +15,7 @@ import (
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/davecgh/go-spew/spew"
"github.com/stretchr/testify/mock"
"github.com/stretchr/testify/require"
"github.com/lightningnetwork/lnd/channeldb"
@ -24,6 +25,7 @@ import (
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/record"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/zpay32"
)
var uniquePaymentID uint64 = 1 // to be used atomically
@ -35,12 +37,32 @@ type testCtx struct {
aliases map[string]route.Vertex
privKeys map[string]*btcec.PrivateKey
channelIDs map[route.Vertex]map[route.Vertex]uint64
chain *mockChain
chainView *mockChainView
}
func (c *testCtx) RestartRouter() error {
func (c *testCtx) getChannelIDFromAlias(t *testing.T, a, b string) uint64 {
vertexA, ok := c.aliases[a]
require.True(t, ok, "cannot find aliases for %s", a)
vertexB, ok := c.aliases[b]
require.True(t, ok, "cannot find aliases for %s", b)
channelIDMap, ok := c.channelIDs[vertexA]
require.True(t, ok, "cannot find channelID map %s(%s)", vertexA, a)
channelID, ok := channelIDMap[vertexB]
require.True(t, ok, "cannot find channelID using %s(%s)", vertexB, b)
return channelID
}
func (c *testCtx) RestartRouter(t *testing.T) {
// First, we'll reset the chainView's state as it doesn't persist the
// filter between restarts.
c.chainView.Reset()
@ -51,35 +73,31 @@ func (c *testCtx) RestartRouter() error {
Graph: c.graph,
Chain: c.chain,
ChainView: c.chainView,
Payer: &mockPaymentAttemptDispatcher{},
Payer: &mockPaymentAttemptDispatcherOld{},
Control: makeMockControlTower(),
ChannelPruneExpiry: time.Hour * 24,
GraphPruneInterval: time.Hour * 2,
})
if err != nil {
return fmt.Errorf("unable to create router %v", err)
}
if err := router.Start(); err != nil {
return fmt.Errorf("unable to start router: %v", err)
}
require.NoError(t, err, "unable to create router")
require.NoError(t, router.Start(), "unable to start router")
// Finally, we'll swap out the pointer in the testCtx with this fresh
// instance of the router.
c.router = router
return nil
}
func createTestCtxFromGraphInstance(startingHeight uint32, graphInstance *testGraphInstance,
strictPruning bool) (*testCtx, func(), error) {
func createTestCtxFromGraphInstance(t *testing.T,
startingHeight uint32, graphInstance *testGraphInstance,
strictPruning bool) (*testCtx, func()) {
return createTestCtxFromGraphInstanceAssumeValid(
startingHeight, graphInstance, false, strictPruning,
t, startingHeight, graphInstance, false, strictPruning,
)
}
func createTestCtxFromGraphInstanceAssumeValid(startingHeight uint32,
graphInstance *testGraphInstance, assumeValid bool,
strictPruning bool) (*testCtx, func(), error) {
func createTestCtxFromGraphInstanceAssumeValid(t *testing.T,
startingHeight uint32, graphInstance *testGraphInstance,
assumeValid bool, strictPruning bool) (*testCtx, func()) {
// We'll initialize an instance of the channel router with mock
// versions of the chain and channel notifier. As we don't need to test
@ -105,13 +123,13 @@ func createTestCtxFromGraphInstanceAssumeValid(startingHeight uint32,
graphInstance.graph.Database(), route.Vertex{},
mcConfig,
)
if err != nil {
return nil, nil, err
}
require.NoError(t, err, "failed to create missioncontrol")
sessionSource := &SessionSource{
Graph: graphInstance.graph,
QueryBandwidth: func(e *channeldb.ChannelEdgeInfo) lnwire.MilliSatoshi {
QueryBandwidth: func(
e *channeldb.ChannelEdgeInfo) lnwire.MilliSatoshi {
return lnwire.NewMSatFromSatoshis(e.Capacity)
},
PathFindingConfig: pathFindingConfig,
@ -122,13 +140,15 @@ func createTestCtxFromGraphInstanceAssumeValid(startingHeight uint32,
Graph: graphInstance.graph,
Chain: chain,
ChainView: chainView,
Payer: &mockPaymentAttemptDispatcher{},
Payer: &mockPaymentAttemptDispatcherOld{},
Control: makeMockControlTower(),
MissionControl: mc,
SessionSource: sessionSource,
ChannelPruneExpiry: time.Hour * 24,
GraphPruneInterval: time.Hour * 2,
QueryBandwidth: func(e *channeldb.ChannelEdgeInfo) lnwire.MilliSatoshi {
QueryBandwidth: func(
e *channeldb.ChannelEdgeInfo) lnwire.MilliSatoshi {
return lnwire.NewMSatFromSatoshis(e.Capacity)
},
NextPaymentID: func() (uint64, error) {
@ -140,17 +160,15 @@ func createTestCtxFromGraphInstanceAssumeValid(startingHeight uint32,
AssumeChannelValid: assumeValid,
StrictZombiePruning: strictPruning,
})
if err != nil {
return nil, nil, fmt.Errorf("unable to create router %v", err)
}
if err := router.Start(); err != nil {
return nil, nil, fmt.Errorf("unable to start router: %v", err)
}
require.NoError(t, err, "unable to create router")
require.NoError(t, router.Start(), "unable to start router")
ctx := &testCtx{
router: router,
graph: graphInstance.graph,
aliases: graphInstance.aliasMap,
privKeys: graphInstance.privKeyMap,
channelIDs: graphInstance.channelIDs,
chain: chain,
chainView: chainView,
}
@ -160,10 +178,12 @@ func createTestCtxFromGraphInstanceAssumeValid(startingHeight uint32,
graphInstance.cleanUp()
}
return ctx, cleanUp, nil
return ctx, cleanUp
}
func createTestCtxSingleNode(startingHeight uint32) (*testCtx, func(), error) {
func createTestCtxSingleNode(t *testing.T,
startingHeight uint32) (*testCtx, func()) {
var (
graph *channeldb.ChannelGraph
sourceNode *channeldb.LightningNode
@ -172,35 +192,52 @@ func createTestCtxSingleNode(startingHeight uint32) (*testCtx, func(), error) {
)
graph, cleanup, err = makeTestGraph()
if err != nil {
return nil, nil, fmt.Errorf("unable to create test graph: %v", err)
}
require.NoError(t, err, "failed to make test graph")
sourceNode, err = createTestNode()
if err != nil {
return nil, nil, fmt.Errorf("unable to create source node: %v", err)
}
if err = graph.SetSourceNode(sourceNode); err != nil {
return nil, nil, fmt.Errorf("unable to set source node: %v", err)
}
require.NoError(t, err, "failed to create test node")
require.NoError(t,
graph.SetSourceNode(sourceNode), "failed to set source node",
)
graphInstance := &testGraphInstance{
graph: graph,
cleanUp: cleanup,
}
return createTestCtxFromGraphInstance(startingHeight, graphInstance, false)
return createTestCtxFromGraphInstance(
t, startingHeight, graphInstance, false,
)
}
func createTestCtxFromFile(startingHeight uint32, testGraph string) (*testCtx, func(), error) {
func createTestCtxFromFile(t *testing.T,
startingHeight uint32, testGraph string) (*testCtx, func()) {
// We'll attempt to locate and parse out the file
// that encodes the graph that our tests should be run against.
graphInstance, err := parseTestGraph(testGraph)
if err != nil {
return nil, nil, fmt.Errorf("unable to create test graph: %v", err)
}
require.NoError(t, err, "unable to create test graph")
return createTestCtxFromGraphInstance(startingHeight, graphInstance, false)
return createTestCtxFromGraphInstance(
t, startingHeight, graphInstance, false,
)
}
// Add valid signature to channel update simulated as error received from the
// network.
func signErrChanUpdate(t *testing.T, key *btcec.PrivateKey,
errChanUpdate *lnwire.ChannelUpdate) {
chanUpdateMsg, err := errChanUpdate.DataToSign()
require.NoError(t, err, "failed to retrieve data to sign")
digest := chainhash.DoubleHashB(chanUpdateMsg)
sig, err := key.Sign(digest)
require.NoError(t, err, "failed to sign msg")
errChanUpdate.Signature, err = lnwire.NewSigFromSignature(sig)
require.NoError(t, err, "failed to create new signature")
}
// TestFindRoutesWithFeeLimit asserts that routes found by the FindRoutes method
@ -210,12 +247,9 @@ func TestFindRoutesWithFeeLimit(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromFile(
startingBlockHeight, basicGraphFilePath,
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
defer cleanUp()
// This test will attempt to find routes from roasbeef to sophon for 100
@ -238,25 +272,21 @@ func TestFindRoutesWithFeeLimit(t *testing.T) {
target, paymentAmt, restrictions, nil, nil,
MinCLTVDelta,
)
if err != nil {
t.Fatalf("unable to find any routes: %v", err)
}
require.NoError(t, err, "unable to find any routes")
if route.TotalFees() > restrictions.FeeLimit {
t.Fatalf("route exceeded fee limit: %v", spew.Sdump(route))
}
require.Falsef(t,
route.TotalFees() > restrictions.FeeLimit,
"route exceeded fee limit: %v", spew.Sdump(route),
)
hops := route.Hops
if len(hops) != 2 {
t.Fatalf("expected 2 hops, got %d", len(hops))
}
require.Equal(t, 2, len(hops), "expected 2 hops")
if hops[0].PubKeyBytes != ctx.aliases["songoku"] {
t.Fatalf("expected first hop through songoku, got %s",
getAliasFromPubKey(hops[0].PubKeyBytes,
ctx.aliases))
}
require.Equalf(t,
ctx.aliases["songoku"], hops[0].PubKeyBytes,
"expected first hop through songoku, got %s",
getAliasFromPubKey(hops[0].PubKeyBytes, ctx.aliases),
)
}
// TestSendPaymentRouteFailureFallback tests that when sending a payment, if
@ -267,10 +297,9 @@ func TestSendPaymentRouteFailureFallback(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
defer cleanUp()
// Craft a LightningPayment struct that'll send a payment from roasbeef
@ -287,14 +316,18 @@ func TestSendPaymentRouteFailureFallback(t *testing.T) {
var preImage [32]byte
copy(preImage[:], bytes.Repeat([]byte{9}, 32))
// Get the channel ID.
roasbeefSongoku := lnwire.NewShortChanIDFromInt(
ctx.getChannelIDFromAlias(t, "roasbeef", "songoku"),
)
// We'll modify the SendToSwitch method that's been set within the
// router's configuration to ignore the path that has son goku as the
// first hop. This should force the router to instead take the
// the more costly path (through pham nuwen).
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
roasbeefSongoku := lnwire.NewShortChanIDFromInt(12345)
if firstHop == roasbeefSongoku {
return [32]byte{}, htlcswitch.NewForwardingError(
// TODO(roasbeef): temp node failure
@ -310,15 +343,10 @@ func TestSendPaymentRouteFailureFallback(t *testing.T) {
// Send off the payment request to the router, route through pham nuwen
// should've been selected as a fall back and succeeded correctly.
paymentPreImage, route, err := ctx.router.SendPayment(&payment)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
require.NoError(t, err, "unable to send payment")
// The route selected should have two hops
if len(route.Hops) != 2 {
t.Fatalf("incorrect route length: expected %v got %v", 2,
len(route.Hops))
}
require.Equal(t, 2, len(route.Hops), "incorrect route length")
// The preimage should match up with the once created above.
if !bytes.Equal(paymentPreImage[:], preImage[:]) {
@ -327,13 +355,12 @@ func TestSendPaymentRouteFailureFallback(t *testing.T) {
}
// The route should have pham nuwen as the first hop.
if route.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] {
t.Fatalf("route should go through phamnuwen as first hop, "+
"instead passes through: %v",
getAliasFromPubKey(route.Hops[0].PubKeyBytes,
ctx.aliases))
}
require.Equalf(t,
ctx.aliases["phamnuwen"], route.Hops[0].PubKeyBytes,
"route should go through phamnuwen as first hop, instead "+
"passes through: %v",
getAliasFromPubKey(route.Hops[0].PubKeyBytes, ctx.aliases),
)
}
// TestChannelUpdateValidation tests that a failed payment with an associated
@ -344,55 +371,46 @@ func TestChannelUpdateValidation(t *testing.T) {
// Setup a three node network.
chanCapSat := btcutil.Amount(100000)
feeRate := lnwire.MilliSatoshi(400)
testChannels := []*testChannel{
symmetricTestChannel("a", "b", chanCapSat, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
FeeRate: feeRate,
MinHTLC: 1,
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
}, 1),
symmetricTestChannel("b", "c", chanCapSat, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
FeeRate: feeRate,
MinHTLC: 1,
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
}, 2),
}
testGraph, err := createTestGraphFromChannels(testChannels, "a")
require.NoError(t, err, "unable to create graph")
defer testGraph.cleanUp()
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromGraphInstance(
startingBlockHeight, testGraph, true,
ctx, cleanUp := createTestCtxFromGraphInstance(
t, startingBlockHeight, testGraph, true,
)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
// Assert that the initially configured fee is retrieved correctly.
_, policy, _, err := ctx.router.GetChannelByID(
lnwire.NewShortChanIDFromInt(1))
if err != nil {
t.Fatalf("cannot retrieve channel")
}
require.NoError(t, err, "cannot retrieve channel")
if policy.FeeProportionalMillionths != 400 {
t.Fatalf("invalid fee")
}
require.Equal(t,
feeRate, policy.FeeProportionalMillionths, "invalid fee",
)
// Setup a route from source a to destination c. The route will be used
// in a call to SendToRoute. SendToRoute also applies channel updates,
// but it saves us from including RequestRoute in the test scope too.
hop1 := ctx.aliases["b"]
hop2 := ctx.aliases["c"]
hops := []*route.Hop{
{
ChannelID: 1,
@ -410,9 +428,7 @@ func TestChannelUpdateValidation(t *testing.T) {
lnwire.MilliSatoshi(10000), 100,
ctx.aliases["a"], hops,
)
if err != nil {
t.Fatalf("unable to create route: %v", err)
}
require.NoError(t, err, "unable to create route")
// Set up a channel update message with an invalid signature to be
// returned to the sender.
@ -427,7 +443,7 @@ func TestChannelUpdateValidation(t *testing.T) {
// We'll modify the SendToSwitch method so that it simulates a failed
// payment with an error originating from the first hop of the route.
// The unsigned channel update is attached to the failure message.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
return [32]byte{}, htlcswitch.NewForwardingError(
&lnwire.FailFeeInsufficient{
@ -445,36 +461,19 @@ func TestChannelUpdateValidation(t *testing.T) {
// should be attempted and the channel update should be received by
// router and ignored because it is missing a valid signature.
_, err = ctx.router.SendToRoute(payment, rt)
if err == nil {
t.Fatalf("expected route to fail with channel update")
}
require.Error(t, err, "expected route to fail with channel update")
_, policy, _, err = ctx.router.GetChannelByID(
lnwire.NewShortChanIDFromInt(1))
if err != nil {
t.Fatalf("cannot retrieve channel")
}
require.NoError(t, err, "cannot retrieve channel")
if policy.FeeProportionalMillionths != 400 {
t.Fatalf("fee updated without valid signature")
}
require.Equal(t,
feeRate, policy.FeeProportionalMillionths,
"fee updated without valid signature",
)
// Next, add a signature to the channel update.
chanUpdateMsg, err := errChanUpdate.DataToSign()
if err != nil {
t.Fatal(err)
}
digest := chainhash.DoubleHashB(chanUpdateMsg)
sig, err := testGraph.privKeyMap["b"].Sign(digest)
if err != nil {
t.Fatal(err)
}
errChanUpdate.Signature, err = lnwire.NewSigFromSignature(sig)
if err != nil {
t.Fatal(err)
}
signErrChanUpdate(t, testGraph.privKeyMap["b"], &errChanUpdate)
// Retry the payment using the same route as before.
_, err = ctx.router.SendToRoute(payment, rt)
@ -486,13 +485,12 @@ func TestChannelUpdateValidation(t *testing.T) {
// have been applied to the graph.
_, policy, _, err = ctx.router.GetChannelByID(
lnwire.NewShortChanIDFromInt(1))
if err != nil {
t.Fatalf("cannot retrieve channel")
}
require.NoError(t, err, "cannot retrieve channel")
if policy.FeeProportionalMillionths != 500 {
t.Fatalf("fee not updated even though signature is valid")
}
require.Equal(t,
lnwire.MilliSatoshi(500), policy.FeeProportionalMillionths,
"fee not updated even though signature is valid",
)
}
// TestSendPaymentErrorRepeatedFeeInsufficient tests that if we receive
@ -502,14 +500,21 @@ func TestSendPaymentErrorRepeatedFeeInsufficient(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
defer cleanUp()
// Get the channel ID.
roasbeefSongokuChanID := ctx.getChannelIDFromAlias(
t, "roasbeef", "songoku",
)
songokuSophonChanID := ctx.getChannelIDFromAlias(
t, "songoku", "sophon",
)
// Craft a LightningPayment struct that'll send a payment from roasbeef
// to luo ji for 100 satoshis.
// to sophon for 1000 satoshis.
var payHash lntypes.Hash
amt := lnwire.NewMSatFromSatoshis(1000)
payment := LightningPayment{
@ -522,17 +527,18 @@ func TestSendPaymentErrorRepeatedFeeInsufficient(t *testing.T) {
var preImage [32]byte
copy(preImage[:], bytes.Repeat([]byte{9}, 32))
// We'll also fetch the first outgoing channel edge from roasbeef to
// son goku. We'll obtain this as we'll need to to generate the
// We'll also fetch the first outgoing channel edge from son goku
// to sophon. We'll obtain this as we'll need to to generate the
// FeeInsufficient error that we'll send back.
chanID := uint64(12345)
_, _, edgeUpdateToFail, err := ctx.graph.FetchChannelEdgesByID(chanID)
if err != nil {
t.Fatalf("unable to fetch chan id: %v", err)
}
_, _, edgeUpdateToFail, err := ctx.graph.FetchChannelEdgesByID(
songokuSophonChanID,
)
require.NoError(t, err, "unable to fetch chan id")
errChanUpdate := lnwire.ChannelUpdate{
ShortChannelID: lnwire.NewShortChanIDFromInt(chanID),
ShortChannelID: lnwire.NewShortChanIDFromInt(
songokuSophonChanID,
),
Timestamp: uint32(edgeUpdateToFail.LastUpdate.Unix()),
MessageFlags: edgeUpdateToFail.MessageFlags,
ChannelFlags: edgeUpdateToFail.ChannelFlags,
@ -543,13 +549,17 @@ func TestSendPaymentErrorRepeatedFeeInsufficient(t *testing.T) {
FeeRate: uint32(edgeUpdateToFail.FeeProportionalMillionths),
}
signErrChanUpdate(t, ctx.privKeys["songoku"], &errChanUpdate)
// We'll now modify the SendToSwitch method to return an error for the
// outgoing channel to Son goku. This will be a fee related error, so
// it should only cause the edge to be pruned after the second attempt.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
roasbeefSongoku := lnwire.NewShortChanIDFromInt(chanID)
roasbeefSongoku := lnwire.NewShortChanIDFromInt(
roasbeefSongokuChanID,
)
if firstHop == roasbeefSongoku {
return [32]byte{}, htlcswitch.NewForwardingError(
// Within our error, we'll add a
@ -565,33 +575,285 @@ func TestSendPaymentErrorRepeatedFeeInsufficient(t *testing.T) {
return preImage, nil
})
// Send off the payment request to the router, route through satoshi
// Send off the payment request to the router, route through phamnuwen
// should've been selected as a fall back and succeeded correctly.
paymentPreImage, route, err := ctx.router.SendPayment(&payment)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
require.NoError(t, err, "unable to send payment")
// The route selected should have two hops
if len(route.Hops) != 2 {
t.Fatalf("incorrect route length: expected %v got %v", 2,
len(route.Hops))
}
require.Equal(t, 2, len(route.Hops), "incorrect route length")
// The preimage should match up with the once created above.
if !bytes.Equal(paymentPreImage[:], preImage[:]) {
t.Fatalf("incorrect preimage used: expected %x got %x",
preImage[:], paymentPreImage[:])
}
require.Equal(t, preImage[:], paymentPreImage[:], "incorrect preimage")
// The route should have pham nuwen as the first hop.
if route.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] {
t.Fatalf("route should go through satoshi as first hop, "+
require.Equalf(t,
ctx.aliases["phamnuwen"], route.Hops[0].PubKeyBytes,
"route should go through pham nuwen as first hop, "+
"instead passes through: %v",
getAliasFromPubKey(route.Hops[0].PubKeyBytes,
ctx.aliases))
getAliasFromPubKey(route.Hops[0].PubKeyBytes, ctx.aliases),
)
}
// TestSendPaymentErrorFeeInsufficientPrivateEdge tests that if we receive
// a fee related error from a private channel that we're attempting to route
// through, then we'll update the fees in the route hints and successfully
// route through the private channel in the second attempt.
//
// The test will send a payment from roasbeef to elst, available paths are,
// path1: roasbeef -> songoku -> sophon -> elst, total fee: 210k
// path2: roasbeef -> phamnuwen -> sophon -> elst, total fee: 220k
// path3: roasbeef -> songoku ->(private channel) elst
// We will setup the path3 to have the lowest fee so it's always the preferred
// path.
func TestSendPaymentErrorFeeInsufficientPrivateEdge(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
defer cleanUp()
// Get the channel ID.
roasbeefSongoku := lnwire.NewShortChanIDFromInt(
ctx.getChannelIDFromAlias(t, "roasbeef", "songoku"),
)
var (
payHash lntypes.Hash
preImage [32]byte
amt = lnwire.NewMSatFromSatoshis(1000)
privateChannelID = uint64(55555)
feeBaseMSat = uint32(15)
expiryDelta = uint16(32)
sgNode = ctx.aliases["songoku"]
)
sgNodeID, err := btcec.ParsePubKey(sgNode[:], btcec.S256())
require.NoError(t, err)
// Craft a LightningPayment struct that'll send a payment from roasbeef
// to elst, through a private channel between songoku and elst for
// 1000 satoshis. This route has lowest fees compared with the rest.
// This also holds when the private channel fee is updated to a higher
// value.
payment := LightningPayment{
Target: ctx.aliases["elst"],
Amount: amt,
FeeLimit: noFeeLimit,
paymentHash: &payHash,
RouteHints: [][]zpay32.HopHint{{
// Add a private channel between songoku and elst.
zpay32.HopHint{
NodeID: sgNodeID,
ChannelID: privateChannelID,
FeeBaseMSat: feeBaseMSat,
CLTVExpiryDelta: expiryDelta,
},
}},
}
// Prepare an error update for the private channel, with twice the
// original fee.
updatedFeeBaseMSat := feeBaseMSat * 2
errChanUpdate := lnwire.ChannelUpdate{
ShortChannelID: lnwire.NewShortChanIDFromInt(privateChannelID),
Timestamp: uint32(testTime.Add(time.Minute).Unix()),
BaseFee: updatedFeeBaseMSat,
TimeLockDelta: expiryDelta,
}
signErrChanUpdate(t, ctx.privKeys["songoku"], &errChanUpdate)
// We'll now modify the SendHTLC method to return an error for the
// outgoing channel to songoku.
errorReturned := false
copy(preImage[:], bytes.Repeat([]byte{9}, 32))
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
if firstHop != roasbeefSongoku || errorReturned {
return preImage, nil
}
errorReturned = true
return [32]byte{}, htlcswitch.NewForwardingError(
// Within our error, we'll add a
// channel update which is meant to
// reflect the new fee schedule for the
// node/channel.
&lnwire.FailFeeInsufficient{
Update: errChanUpdate,
}, 1,
)
})
// Send off the payment request to the router, route through son
// goku and then across the private channel to elst.
paymentPreImage, route, err := ctx.router.SendPayment(&payment)
require.NoError(t, err, "unable to send payment")
require.True(t, errorReturned,
"failed to simulate error in the first payment attempt",
)
// The route selected should have two hops. Make sure that,
// path: roasbeef -> son goku -> sophon -> elst
// path: roasbeef -> pham nuwen -> sophon -> elst
// are not selected instead.
require.Equal(t, 2, len(route.Hops), "incorrect route length")
// The preimage should match up with the one created above.
require.Equal(t,
paymentPreImage[:], preImage[:], "incorrect preimage used",
)
// The route should have son goku as the first hop.
require.Equal(t, route.Hops[0].PubKeyBytes, ctx.aliases["songoku"],
"route should go through son goku as first hop",
)
// The route should pass via the private channel.
require.Equal(t,
privateChannelID, route.FinalHop().ChannelID,
"route did not pass through private channel "+
"between pham nuwen and elst",
)
// The route should have the updated fee.
require.Equal(t,
lnwire.MilliSatoshi(updatedFeeBaseMSat).String(),
route.HopFee(0).String(),
"fee to forward to the private channel not matched",
)
}
// TestSendPaymentPrivateEdgeUpdateFeeExceedsLimit tests that upon receiving a
// ChannelUpdate in a fee related error from the private channel, we won't
// choose the route in our second attempt if the updated fee exceeds our fee
// limit specified in the payment.
//
// The test will send a payment from roasbeef to elst, available paths are,
// path1: roasbeef -> songoku -> sophon -> elst, total fee: 210k
// path2: roasbeef -> phamnuwen -> sophon -> elst, total fee: 220k
// path3: roasbeef -> songoku ->(private channel) elst
// We will setup the path3 to have the lowest fee and then update it with a fee
// exceeds our fee limit, thus this route won't be chosen.
func TestSendPaymentPrivateEdgeUpdateFeeExceedsLimit(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
defer cleanUp()
// Get the channel ID.
roasbeefSongoku := lnwire.NewShortChanIDFromInt(
ctx.getChannelIDFromAlias(t, "roasbeef", "songoku"),
)
var (
payHash lntypes.Hash
preImage [32]byte
amt = lnwire.NewMSatFromSatoshis(1000)
privateChannelID = uint64(55555)
feeBaseMSat = uint32(15)
expiryDelta = uint16(32)
sgNode = ctx.aliases["songoku"]
feeLimit = lnwire.MilliSatoshi(500000)
)
sgNodeID, err := btcec.ParsePubKey(sgNode[:], btcec.S256())
require.NoError(t, err)
// Craft a LightningPayment struct that'll send a payment from roasbeef
// to elst, through a private channel between songoku and elst for
// 1000 satoshis. This route has lowest fees compared with the rest.
payment := LightningPayment{
Target: ctx.aliases["elst"],
Amount: amt,
FeeLimit: feeLimit,
paymentHash: &payHash,
RouteHints: [][]zpay32.HopHint{{
// Add a private channel between songoku and elst.
zpay32.HopHint{
NodeID: sgNodeID,
ChannelID: privateChannelID,
FeeBaseMSat: feeBaseMSat,
CLTVExpiryDelta: expiryDelta,
},
}},
}
// Prepare an error update for the private channel. The updated fee
// will exceeds the feeLimit.
updatedFeeBaseMSat := feeBaseMSat + uint32(feeLimit)
errChanUpdate := lnwire.ChannelUpdate{
ShortChannelID: lnwire.NewShortChanIDFromInt(privateChannelID),
Timestamp: uint32(testTime.Add(time.Minute).Unix()),
BaseFee: updatedFeeBaseMSat,
TimeLockDelta: expiryDelta,
}
signErrChanUpdate(t, ctx.privKeys["songoku"], &errChanUpdate)
// We'll now modify the SendHTLC method to return an error for the
// outgoing channel to songoku.
errorReturned := false
copy(preImage[:], bytes.Repeat([]byte{9}, 32))
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
if firstHop != roasbeefSongoku || errorReturned {
return preImage, nil
}
errorReturned = true
return [32]byte{}, htlcswitch.NewForwardingError(
// Within our error, we'll add a
// channel update which is meant to
// reflect the new fee schedule for the
// node/channel.
&lnwire.FailFeeInsufficient{
Update: errChanUpdate,
}, 1,
)
})
// Send off the payment request to the router, route through son
// goku and then across the private channel to elst.
paymentPreImage, route, err := ctx.router.SendPayment(&payment)
require.NoError(t, err, "unable to send payment")
require.True(t, errorReturned,
"failed to simulate error in the first payment attempt",
)
// The route selected should have three hops. Make sure that,
// path1: roasbeef -> son goku -> sophon -> elst
// path2: roasbeef -> pham nuwen -> sophon -> elst
// path3: roasbeef -> sophon -> (private channel) else
// path1 is selected.
require.Equal(t, 3, len(route.Hops), "incorrect route length")
// The preimage should match up with the one created above.
require.Equal(t,
paymentPreImage[:], preImage[:], "incorrect preimage used",
)
// The route should have son goku as the first hop.
require.Equal(t, route.Hops[0].PubKeyBytes, ctx.aliases["songoku"],
"route should go through son goku as the first hop",
)
// The route should have sophon as the first hop.
require.Equal(t, route.Hops[1].PubKeyBytes, ctx.aliases["sophon"],
"route should go through sophon as the second hop",
)
// The route should pass via the public channel.
require.Equal(t, route.FinalHop().PubKeyBytes, ctx.aliases["elst"],
"route should go through elst as the final hop",
)
}
// TestSendPaymentErrorNonFinalTimeLockErrors tests that if we receive either
@ -603,10 +865,9 @@ func TestSendPaymentErrorNonFinalTimeLockErrors(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
defer cleanUp()
// Craft a LightningPayment struct that'll send a payment from roasbeef
@ -627,12 +888,11 @@ func TestSendPaymentErrorNonFinalTimeLockErrors(t *testing.T) {
// son goku. This edge will be included in the time lock related expiry
// errors that we'll get back due to disagrements in what the current
// block height is.
chanID := uint64(12345)
chanID := ctx.getChannelIDFromAlias(t, "roasbeef", "songoku")
roasbeefSongoku := lnwire.NewShortChanIDFromInt(chanID)
_, _, edgeUpdateToFail, err := ctx.graph.FetchChannelEdgesByID(chanID)
if err != nil {
t.Fatalf("unable to fetch chan id: %v", err)
}
require.NoError(t, err, "unable to fetch chan id")
errChanUpdate := lnwire.ChannelUpdate{
ShortChannelID: lnwire.NewShortChanIDFromInt(chanID),
@ -650,7 +910,7 @@ func TestSendPaymentErrorNonFinalTimeLockErrors(t *testing.T) {
// outgoing channel to son goku. Since this is a time lock related
// error, we should fail the payment flow all together, as Goku is the
// only channel to Sophon.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
if firstHop == roasbeefSongoku {
@ -669,41 +929,36 @@ func TestSendPaymentErrorNonFinalTimeLockErrors(t *testing.T) {
// graph.
assertExpectedPath := func(retPreImage [32]byte, route *route.Route) {
// The route selected should have two hops
if len(route.Hops) != 2 {
t.Fatalf("incorrect route length: expected %v got %v", 2,
len(route.Hops))
}
require.Equal(t, 2, len(route.Hops), "incorrect route length")
// The preimage should match up with the once created above.
if !bytes.Equal(retPreImage[:], preImage[:]) {
t.Fatalf("incorrect preimage used: expected %x got %x",
preImage[:], retPreImage[:])
}
require.Equal(t,
preImage[:], retPreImage[:], "incorrect preimage used",
)
// The route should have satoshi as the first hop.
if route.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] {
t.Fatalf("route should go through phamnuwen as first hop, "+
require.Equalf(t,
ctx.aliases["phamnuwen"], route.Hops[0].PubKeyBytes,
"route should go through phamnuwen as first hop, "+
"instead passes through: %v",
getAliasFromPubKey(route.Hops[0].PubKeyBytes,
ctx.aliases))
}
getAliasFromPubKey(
route.Hops[0].PubKeyBytes, ctx.aliases,
),
)
}
// Send off the payment request to the router, this payment should
// succeed as we should actually go through Pham Nuwen in order to get
// to Sophon, even though he has higher fees.
paymentPreImage, rt, err := ctx.router.SendPayment(&payment)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
require.NoError(t, err, "unable to send payment")
assertExpectedPath(paymentPreImage, rt)
// We'll now modify the error return an IncorrectCltvExpiry error
// instead, this should result in the same behavior of roasbeef routing
// around the faulty Son Goku node.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
if firstHop == roasbeefSongoku {
@ -722,9 +977,7 @@ func TestSendPaymentErrorNonFinalTimeLockErrors(t *testing.T) {
// flip a bit in the payment hash to allow resending this payment.
payment.paymentHash[1] ^= 1
paymentPreImage, rt, err = ctx.router.SendPayment(&payment)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
require.NoError(t, err, "unable to send payment")
assertExpectedPath(paymentPreImage, rt)
}
@ -736,10 +989,9 @@ func TestSendPaymentErrorPathPruning(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
defer cleanUp()
// Craft a LightningPayment struct that'll send a payment from roasbeef
@ -756,13 +1008,17 @@ func TestSendPaymentErrorPathPruning(t *testing.T) {
var preImage [32]byte
copy(preImage[:], bytes.Repeat([]byte{9}, 32))
roasbeefSongoku := lnwire.NewShortChanIDFromInt(12345)
roasbeefPhanNuwen := lnwire.NewShortChanIDFromInt(999991)
roasbeefSongoku := lnwire.NewShortChanIDFromInt(
ctx.getChannelIDFromAlias(t, "roasbeef", "songoku"),
)
roasbeefPhanNuwen := lnwire.NewShortChanIDFromInt(
ctx.getChannelIDFromAlias(t, "roasbeef", "phamnuwen"),
)
// First, we'll modify the SendToSwitch method to return an error
// indicating that the channel from roasbeef to son goku is not operable
// with an UnknownNextPeer.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
if firstHop == roasbeefSongoku {
@ -791,44 +1047,35 @@ func TestSendPaymentErrorPathPruning(t *testing.T) {
// When we try to dispatch that payment, we should receive an error as
// both attempts should fail and cause both routes to be pruned.
_, _, err = ctx.router.SendPayment(&payment)
if err == nil {
t.Fatalf("payment didn't return error")
}
_, _, err := ctx.router.SendPayment(&payment)
require.Error(t, err, "payment didn't return error")
// The final error returned should also indicate that the peer wasn't
// online (the last error we returned).
if err != channeldb.FailureReasonNoRoute {
t.Fatalf("expected no route instead got: %v", err)
}
require.Equal(t, channeldb.FailureReasonNoRoute, err)
// Inspect the two attempts that were made before the payment failed.
p, err := ctx.router.cfg.Control.FetchPayment(payHash)
if err != nil {
t.Fatal(err)
}
require.NoError(t, err)
if len(p.HTLCs) != 2 {
t.Fatalf("expected two attempts got %v", len(p.HTLCs))
}
require.Equal(t, 2, len(p.HTLCs), "expected two attempts")
// We expect the first attempt to have failed with a
// TemporaryChannelFailure, the second with UnknownNextPeer.
msg := p.HTLCs[0].Failure.Message
if _, ok := msg.(*lnwire.FailTemporaryChannelFailure); !ok {
t.Fatalf("unexpected fail message: %T", msg)
}
_, ok := msg.(*lnwire.FailTemporaryChannelFailure)
require.True(t, ok, "unexpected fail message")
msg = p.HTLCs[1].Failure.Message
if _, ok := msg.(*lnwire.FailUnknownNextPeer); !ok {
t.Fatalf("unexpected fail message: %T", msg)
}
_, ok = msg.(*lnwire.FailUnknownNextPeer)
require.True(t, ok, "unexpected fail message")
ctx.router.cfg.MissionControl.(*MissionControl).ResetHistory()
err = ctx.router.cfg.MissionControl.(*MissionControl).ResetHistory()
require.NoError(t, err, "reset history failed")
// Next, we'll modify the SendToSwitch method to indicate that the
// connection between songoku and isn't up.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
if firstHop == roasbeefSongoku {
@ -845,33 +1092,24 @@ func TestSendPaymentErrorPathPruning(t *testing.T) {
// the pham nuwen channel based on the assumption that there might be an
// intermittent issue with the songoku <-> sophon channel.
paymentPreImage, rt, err := ctx.router.SendPayment(&payment)
if err != nil {
t.Fatalf("unable send payment: %v", err)
}
require.NoError(t, err, "unable send payment")
// This path should go: roasbeef -> pham nuwen -> sophon
if len(rt.Hops) != 2 {
t.Fatalf("incorrect route length: expected %v got %v", 2,
len(rt.Hops))
}
if !bytes.Equal(paymentPreImage[:], preImage[:]) {
t.Fatalf("incorrect preimage used: expected %x got %x",
preImage[:], paymentPreImage[:])
}
if rt.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] {
t.Fatalf("route should go through phamnuwen as first hop, "+
require.Equal(t, 2, len(rt.Hops), "incorrect route length")
require.Equal(t, preImage[:], paymentPreImage[:], "incorrect preimage")
require.Equalf(t,
ctx.aliases["phamnuwen"], rt.Hops[0].PubKeyBytes,
"route should go through phamnuwen as first hop, "+
"instead passes through: %v",
getAliasFromPubKey(rt.Hops[0].PubKeyBytes,
ctx.aliases))
}
getAliasFromPubKey(rt.Hops[0].PubKeyBytes, ctx.aliases),
)
ctx.router.cfg.MissionControl.(*MissionControl).ResetHistory()
// Finally, we'll modify the SendToSwitch function to indicate that the
// roasbeef -> luoji channel has insufficient capacity. This should
// again cause us to instead go via the satoshi route.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
if firstHop == roasbeefSongoku {
@ -889,31 +1127,22 @@ func TestSendPaymentErrorPathPruning(t *testing.T) {
// We flip a bit in the payment hash to allow resending this payment.
payment.paymentHash[1] ^= 1
paymentPreImage, rt, err = ctx.router.SendPayment(&payment)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
require.NoError(t, err, "unable send payment")
// This should succeed finally. The route selected should have two
// hops.
if len(rt.Hops) != 2 {
t.Fatalf("incorrect route length: expected %v got %v", 2,
len(rt.Hops))
}
require.Equal(t, 2, len(rt.Hops), "incorrect route length")
// The preimage should match up with the once created above.
if !bytes.Equal(paymentPreImage[:], preImage[:]) {
t.Fatalf("incorrect preimage used: expected %x got %x",
preImage[:], paymentPreImage[:])
}
require.Equal(t, preImage[:], paymentPreImage[:], "incorrect preimage")
// The route should have satoshi as the first hop.
if rt.Hops[0].PubKeyBytes != ctx.aliases["phamnuwen"] {
t.Fatalf("route should go through phamnuwen as first hop, "+
require.Equalf(t,
ctx.aliases["phamnuwen"], rt.Hops[0].PubKeyBytes,
"route should go through phamnuwen as first hop, "+
"instead passes through: %v",
getAliasFromPubKey(rt.Hops[0].PubKeyBytes,
ctx.aliases))
}
getAliasFromPubKey(rt.Hops[0].PubKeyBytes, ctx.aliases),
)
}
// TestAddProof checks that we can update the channel proof after channel
@ -921,10 +1150,7 @@ func TestSendPaymentErrorPathPruning(t *testing.T) {
func TestAddProof(t *testing.T) {
t.Parallel()
ctx, cleanup, err := createTestCtxSingleNode(0)
if err != nil {
t.Fatal(err)
}
ctx, cleanup := createTestCtxSingleNode(t, 0)
defer cleanup()
// Before creating out edge, we'll create two new nodes within the
@ -987,11 +1213,9 @@ func TestIgnoreNodeAnnouncement(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight,
basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
defer cleanUp()
pub := priv1.PubKey()
@ -1006,7 +1230,7 @@ func TestIgnoreNodeAnnouncement(t *testing.T) {
}
copy(node.PubKeyBytes[:], pub.SerializeCompressed())
err = ctx.router.AddNode(node)
err := ctx.router.AddNode(node)
if !IsError(err, ErrIgnored) {
t.Fatalf("expected to get ErrIgnore, instead got: %v", err)
}
@ -1029,12 +1253,9 @@ func TestIgnoreChannelEdgePolicyForUnknownChannel(t *testing.T) {
}
defer testGraph.cleanUp()
ctx, cleanUp, err := createTestCtxFromGraphInstance(
startingBlockHeight, testGraph, false,
ctx, cleanUp := createTestCtxFromGraphInstance(
t, startingBlockHeight, testGraph, false,
)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
defer cleanUp()
var pub1 [33]byte
@ -1102,12 +1323,9 @@ func TestAddEdgeUnknownVertexes(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromFile(
startingBlockHeight, basicGraphFilePath,
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
defer cleanUp()
var pub1 [33]byte
@ -1373,10 +1591,7 @@ func TestWakeUpOnStaleBranch(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxSingleNode(t, startingBlockHeight)
defer cleanUp()
const chanValue = 10000
@ -1539,7 +1754,7 @@ func TestWakeUpOnStaleBranch(t *testing.T) {
Graph: ctx.graph,
Chain: ctx.chain,
ChainView: ctx.chainView,
Payer: &mockPaymentAttemptDispatcher{},
Payer: &mockPaymentAttemptDispatcherOld{},
Control: makeMockControlTower(),
ChannelPruneExpiry: time.Hour * 24,
GraphPruneInterval: time.Hour * 2,
@ -1588,10 +1803,7 @@ func TestDisconnectedBlocks(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxSingleNode(t, startingBlockHeight)
defer cleanUp()
const chanValue = 10000
@ -1789,10 +2001,7 @@ func TestRouterChansClosedOfflinePruneGraph(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxSingleNode(t, startingBlockHeight)
defer cleanUp()
const chanValue = 10000
@ -1924,7 +2133,7 @@ func TestRouterChansClosedOfflinePruneGraph(t *testing.T) {
// Now we'll re-start the ChannelRouter. It should recognize that it's
// behind the main chain and prune all the blocks that it missed while
// it was down.
ctx.RestartRouter()
ctx.RestartRouter(t)
// At this point, the channel that was pruned should no longer be known
// by the router.
@ -2040,12 +2249,9 @@ func TestPruneChannelGraphStaleEdges(t *testing.T) {
defer testGraph.cleanUp()
const startingHeight = 100
ctx, cleanUp, err := createTestCtxFromGraphInstance(
startingHeight, testGraph, strictPruning,
ctx, cleanUp := createTestCtxFromGraphInstance(
t, startingHeight, testGraph, strictPruning,
)
if err != nil {
t.Fatalf("unable to create test context: %v", err)
}
defer cleanUp()
// All of the channels should exist before pruning them.
@ -2173,12 +2379,9 @@ func testPruneChannelGraphDoubleDisabled(t *testing.T, assumeValid bool) {
defer testGraph.cleanUp()
const startingHeight = 100
ctx, cleanUp, err := createTestCtxFromGraphInstanceAssumeValid(
startingHeight, testGraph, assumeValid, false,
ctx, cleanUp := createTestCtxFromGraphInstanceAssumeValid(
t, startingHeight, testGraph, assumeValid, false,
)
if err != nil {
t.Fatalf("unable to create test context: %v", err)
}
defer cleanUp()
// All the channels should exist within the graph before pruning them
@ -2217,10 +2420,9 @@ func TestFindPathFeeWeighting(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight, basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
defer cleanUp()
var preImage [32]byte
@ -2264,10 +2466,7 @@ func TestIsStaleNode(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxSingleNode(t, startingBlockHeight)
defer cleanUp()
// Before we can insert a node in to the database, we need to create a
@ -2346,10 +2545,7 @@ func TestIsKnownEdge(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxSingleNode(startingBlockHeight)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxSingleNode(t, startingBlockHeight)
defer cleanUp()
// First, we'll create a new channel edge (just the info) and insert it
@ -2398,11 +2594,9 @@ func TestIsStaleEdgePolicy(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromFile(startingBlockHeight,
basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
ctx, cleanUp := createTestCtxFromFile(
t, startingBlockHeight, basicGraphFilePath,
)
defer cleanUp()
// First, we'll create a new channel edge (just the info) and insert it
@ -2555,14 +2749,10 @@ func TestUnknownErrorSource(t *testing.T) {
}
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromGraphInstance(
startingBlockHeight, testGraph, false,
ctx, cleanUp := createTestCtxFromGraphInstance(
t, startingBlockHeight, testGraph, false,
)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
// Create a payment to node c.
var payHash lntypes.Hash
@ -2576,7 +2766,7 @@ func TestUnknownErrorSource(t *testing.T) {
// We'll modify the SendToSwitch method so that it simulates hop b as a
// node that returns an unparsable failure if approached via the a->b
// channel.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
// If channel a->b is used, return an error without
@ -2601,7 +2791,7 @@ func TestUnknownErrorSource(t *testing.T) {
}
// Next we modify payment result to return an unknown failure.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
// If channel a->b is used, simulate that the failure
@ -2695,19 +2885,15 @@ func TestSendToRouteStructuredError(t *testing.T) {
defer testGraph.cleanUp()
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromGraphInstance(
startingBlockHeight, testGraph, false,
ctx, cleanUp := createTestCtxFromGraphInstance(
t, startingBlockHeight, testGraph, false,
)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
defer cleanUp()
// Set up an init channel for the control tower, such that we can make
// sure the payment is initiated correctly.
init := make(chan initArgs, 1)
ctx.router.cfg.Control.(*mockControlTower).init = init
ctx.router.cfg.Control.(*mockControlTowerOld).init = init
// Setup a route from source a to destination c. The route will be used
// in a call to SendToRoute. SendToRoute also applies channel updates,
@ -2738,7 +2924,7 @@ func TestSendToRouteStructuredError(t *testing.T) {
// We'll modify the SendToSwitch method so that it simulates a failed
// payment with an error originating from the first hop of the route.
// The unsigned channel update is attached to the failure message.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
return [32]byte{}, htlcswitch.NewForwardingError(
&lnwire.FailFeeInsufficient{
@ -2781,10 +2967,7 @@ func TestSendToRouteStructuredError(t *testing.T) {
func TestSendToRouteMultiShardSend(t *testing.T) {
t.Parallel()
ctx, cleanup, err := createTestCtxSingleNode(0)
if err != nil {
t.Fatal(err)
}
ctx, cleanup := createTestCtxSingleNode(t, 0)
defer cleanup()
const numShards = 3
@ -2818,7 +3001,7 @@ func TestSendToRouteMultiShardSend(t *testing.T) {
// The first shard we send we'll fail immediately, to check that we are
// still allowed to retry with other shards after a failed one.
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
return [32]byte{}, htlcswitch.NewForwardingError(
&lnwire.FailFeeInsufficient{
@ -2845,7 +3028,7 @@ func TestSendToRouteMultiShardSend(t *testing.T) {
waitForResultSignal := make(chan struct{}, numShards)
results := make(chan lntypes.Preimage, numShards)
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcher).setPaymentResult(
ctx.router.cfg.Payer.(*mockPaymentAttemptDispatcherOld).setPaymentResult(
func(firstHop lnwire.ShortChannelID) ([32]byte, error) {
// Signal that the shard has been initiated and is
@ -2932,12 +3115,9 @@ func TestSendToRouteMaxHops(t *testing.T) {
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromGraphInstance(
startingBlockHeight, testGraph, false,
ctx, cleanUp := createTestCtxFromGraphInstance(
t, startingBlockHeight, testGraph, false,
)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
defer cleanUp()
// Create a 30 hop route that exceeds the maximum hop limit.
@ -3046,12 +3226,9 @@ func TestBuildRoute(t *testing.T) {
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtxFromGraphInstance(
startingBlockHeight, testGraph, false,
ctx, cleanUp := createTestCtxFromGraphInstance(
t, startingBlockHeight, testGraph, false,
)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
defer cleanUp()
checkHops := func(rt *route.Route, expected []uint64,
@ -3233,10 +3410,7 @@ func assertChanChainRejection(t *testing.T, ctx *testCtx,
func TestChannelOnChainRejectionZombie(t *testing.T) {
t.Parallel()
ctx, cleanup, err := createTestCtxSingleNode(0)
if err != nil {
t.Fatal(err)
}
ctx, cleanup := createTestCtxSingleNode(t, 0)
defer cleanup()
// To start, we'll make an edge for the channel, but we won't add the
@ -3264,3 +3438,796 @@ func TestChannelOnChainRejectionZombie(t *testing.T) {
require.Nil(t, err)
assertChanChainRejection(t, ctx, edge, ErrInvalidFundingOutput)
}
func createDummyTestGraph(t *testing.T) *testGraphInstance {
// Setup two simple channels such that we can mock sending along this
// route.
chanCapSat := btcutil.Amount(100000)
testChannels := []*testChannel{
symmetricTestChannel("a", "b", chanCapSat, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
}, 1),
symmetricTestChannel("b", "c", chanCapSat, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: lnwire.NewMSatFromSatoshis(chanCapSat),
}, 2),
}
testGraph, err := createTestGraphFromChannels(testChannels, "a")
require.NoError(t, err, "failed to create graph")
return testGraph
}
func createDummyLightningPayment(t *testing.T,
target route.Vertex, amt lnwire.MilliSatoshi) *LightningPayment {
var preImage lntypes.Preimage
_, err := rand.Read(preImage[:])
require.NoError(t, err, "unable to generate preimage")
payHash := preImage.Hash()
return &LightningPayment{
Target: target,
Amount: amt,
FeeLimit: noFeeLimit,
paymentHash: &payHash,
}
}
// TestSendMPPaymentSucceed tests that we can successfully send a MPPayment via
// router.SendPayment. This test mainly focuses on testing the logic of the
// method resumePayment is implemented as expected.
func TestSendMPPaymentSucceed(t *testing.T) {
const startingBlockHeight = 101
// Create mockers to initialize the router.
controlTower := &mockControlTower{}
sessionSource := &mockPaymentSessionSource{}
missionControl := &mockMissionControl{}
payer := &mockPaymentAttemptDispatcher{}
chain := newMockChain(startingBlockHeight)
chainView := newMockChainView(chain)
testGraph := createDummyTestGraph(t)
// Define the behavior of the mockers to the point where we can
// successfully start the router.
controlTower.On("FetchInFlightPayments").Return(
[]*channeldb.MPPayment{}, nil,
)
payer.On("CleanStore", mock.Anything).Return(nil)
// Create and start the router.
router, err := New(Config{
Control: controlTower,
SessionSource: sessionSource,
MissionControl: missionControl,
Payer: payer,
// TODO(yy): create new mocks for the chain and chainview.
Chain: chain,
ChainView: chainView,
// TODO(yy): mock the graph once it's changed into interface.
Graph: testGraph.graph,
Clock: clock.NewTestClock(time.Unix(1, 0)),
GraphPruneInterval: time.Hour * 2,
NextPaymentID: func() (uint64, error) {
next := atomic.AddUint64(&uniquePaymentID, 1)
return next, nil
},
})
require.NoError(t, err, "failed to create router")
// Make sure the router can start and stop without error.
require.NoError(t, router.Start(), "router failed to start")
defer func() {
require.NoError(t, router.Stop(), "router failed to stop")
}()
// Once the router is started, check that the mocked methods are called
// as expected.
controlTower.AssertExpectations(t)
payer.AssertExpectations(t)
// Mock the methods to the point where we are inside the function
// resumePayment.
paymentAmt := lnwire.MilliSatoshi(10000)
req := createDummyLightningPayment(
t, testGraph.aliasMap["c"], paymentAmt,
)
identifier := lntypes.Hash(req.Identifier())
session := &mockPaymentSession{}
sessionSource.On("NewPaymentSession", req).Return(session, nil)
controlTower.On("InitPayment", identifier, mock.Anything).Return(nil)
// The following mocked methods are called inside resumePayment. Note
// that the payment object below will determine the state of the
// paymentLifecycle.
payment := &channeldb.MPPayment{}
controlTower.On("FetchPayment", identifier).Return(payment, nil)
// Create a route that can send 1/4 of the total amount. This value
// will be returned by calling RequestRoute.
shard, err := createTestRoute(paymentAmt/4, testGraph.aliasMap)
require.NoError(t, err, "failed to create route")
session.On("RequestRoute",
mock.Anything, mock.Anything, mock.Anything, mock.Anything,
).Return(shard, nil)
// Make a new htlc attempt with zero fee and append it to the payment's
// HTLCs when calling RegisterAttempt.
activeAttempt := makeActiveAttempt(int(paymentAmt/4), 0)
controlTower.On("RegisterAttempt",
identifier, mock.Anything,
).Return(nil).Run(func(args mock.Arguments) {
payment.HTLCs = append(payment.HTLCs, activeAttempt)
})
// Create a buffered chan and it will be returned by GetPaymentResult.
payer.resultChan = make(chan *htlcswitch.PaymentResult, 10)
payer.On("GetPaymentResult",
mock.Anything, identifier, mock.Anything,
).Run(func(args mock.Arguments) {
// Before the mock method is returned, we send the result to
// the read-only chan.
payer.resultChan <- &htlcswitch.PaymentResult{}
})
// Simple mocking the rest.
payer.On("SendHTLC",
mock.Anything, mock.Anything, mock.Anything,
).Return(nil)
missionControl.On("ReportPaymentSuccess",
mock.Anything, mock.Anything,
).Return(nil)
// Mock SettleAttempt by changing one of the HTLCs to be settled.
preimage := lntypes.Preimage{1, 2, 3}
settledAttempt := makeSettledAttempt(
int(paymentAmt/4), 0, preimage,
)
controlTower.On("SettleAttempt",
identifier, mock.Anything, mock.Anything,
).Return(&settledAttempt, nil).Run(func(args mock.Arguments) {
// Whenever this method is invoked, we will mark the first
// active attempt settled and exit.
for i, attempt := range payment.HTLCs {
if attempt.Settle == nil {
attempt.Settle = &channeldb.HTLCSettleInfo{
Preimage: preimage,
}
payment.HTLCs[i] = attempt
return
}
}
})
// Call the actual method SendPayment on router. This is place inside a
// goroutine so we can set a timeout for the whole test, in case
// anything goes wrong and the test never finishes.
done := make(chan struct{})
var p lntypes.Hash
go func() {
p, _, err = router.SendPayment(req)
close(done)
}()
select {
case <-done:
case <-time.After(testTimeout):
t.Fatalf("SendPayment didn't exit")
}
// Finally, validate the returned values and check that the mock
// methods are called as expected.
require.NoError(t, err, "send payment failed")
require.EqualValues(t, preimage, p, "preimage not match")
// Note that we also implicitly check the methods such as FailAttempt,
// ReportPaymentFail, etc, are not called because we never mocked them
// in this test. If any of the unexpected methods was called, the test
// would fail.
controlTower.AssertExpectations(t)
payer.AssertExpectations(t)
sessionSource.AssertExpectations(t)
session.AssertExpectations(t)
missionControl.AssertExpectations(t)
}
// TestSendMPPaymentSucceedOnExtraShards tests that we need extra attempts if
// there are failed ones,so that a payment is successfully sent. This test
// mainly focuses on testing the logic of the method resumePayment is
// implemented as expected.
func TestSendMPPaymentSucceedOnExtraShards(t *testing.T) {
const startingBlockHeight = 101
// Create mockers to initialize the router.
controlTower := &mockControlTower{}
sessionSource := &mockPaymentSessionSource{}
missionControl := &mockMissionControl{}
payer := &mockPaymentAttemptDispatcher{}
chain := newMockChain(startingBlockHeight)
chainView := newMockChainView(chain)
testGraph := createDummyTestGraph(t)
// Define the behavior of the mockers to the point where we can
// successfully start the router.
controlTower.On("FetchInFlightPayments").Return(
[]*channeldb.MPPayment{}, nil,
)
payer.On("CleanStore", mock.Anything).Return(nil)
// Create and start the router.
router, err := New(Config{
Control: controlTower,
SessionSource: sessionSource,
MissionControl: missionControl,
Payer: payer,
// TODO(yy): create new mocks for the chain and chainview.
Chain: chain,
ChainView: chainView,
// TODO(yy): mock the graph once it's changed into interface.
Graph: testGraph.graph,
Clock: clock.NewTestClock(time.Unix(1, 0)),
GraphPruneInterval: time.Hour * 2,
NextPaymentID: func() (uint64, error) {
next := atomic.AddUint64(&uniquePaymentID, 1)
return next, nil
},
})
require.NoError(t, err, "failed to create router")
// Make sure the router can start and stop without error.
require.NoError(t, router.Start(), "router failed to start")
defer func() {
require.NoError(t, router.Stop(), "router failed to stop")
}()
// Once the router is started, check that the mocked methods are called
// as expected.
controlTower.AssertExpectations(t)
payer.AssertExpectations(t)
// Mock the methods to the point where we are inside the function
// resumePayment.
paymentAmt := lnwire.MilliSatoshi(20000)
req := createDummyLightningPayment(
t, testGraph.aliasMap["c"], paymentAmt,
)
identifier := lntypes.Hash(req.Identifier())
session := &mockPaymentSession{}
sessionSource.On("NewPaymentSession", req).Return(session, nil)
controlTower.On("InitPayment", identifier, mock.Anything).Return(nil)
// The following mocked methods are called inside resumePayment. Note
// that the payment object below will determine the state of the
// paymentLifecycle.
payment := &channeldb.MPPayment{}
controlTower.On("FetchPayment", identifier).Return(payment, nil)
// Create a route that can send 1/4 of the total amount. This value
// will be returned by calling RequestRoute.
shard, err := createTestRoute(paymentAmt/4, testGraph.aliasMap)
require.NoError(t, err, "failed to create route")
session.On("RequestRoute",
mock.Anything, mock.Anything, mock.Anything, mock.Anything,
).Return(shard, nil)
// Make a new htlc attempt with zero fee and append it to the payment's
// HTLCs when calling RegisterAttempt.
activeAttempt := makeActiveAttempt(int(paymentAmt/4), 0)
controlTower.On("RegisterAttempt",
identifier, mock.Anything,
).Return(nil).Run(func(args mock.Arguments) {
payment.HTLCs = append(payment.HTLCs, activeAttempt)
})
// Create a buffered chan and it will be returned by GetPaymentResult.
payer.resultChan = make(chan *htlcswitch.PaymentResult, 10)
// We use the failAttemptCount to track how many attempts we want to
// fail. Each time the following mock method is called, the count gets
// updated.
failAttemptCount := 0
payer.On("GetPaymentResult",
mock.Anything, identifier, mock.Anything,
).Run(func(args mock.Arguments) {
// Before the mock method is returned, we send the result to
// the read-only chan.
// Update the counter.
failAttemptCount++
// We will make the first two attempts failed with temporary
// error.
if failAttemptCount <= 2 {
payer.resultChan <- &htlcswitch.PaymentResult{
Error: htlcswitch.NewForwardingError(
&lnwire.FailTemporaryChannelFailure{},
1,
),
}
return
}
// Otherwise we will mark the attempt succeeded.
payer.resultChan <- &htlcswitch.PaymentResult{}
})
// Mock the FailAttempt method to fail one of the attempts.
var failedAttempt channeldb.HTLCAttempt
controlTower.On("FailAttempt",
identifier, mock.Anything, mock.Anything,
).Return(&failedAttempt, nil).Run(func(args mock.Arguments) {
// Whenever this method is invoked, we will mark the first
// active attempt as failed and exit.
for i, attempt := range payment.HTLCs {
if attempt.Settle != nil || attempt.Failure != nil {
continue
}
attempt.Failure = &channeldb.HTLCFailInfo{}
failedAttempt = attempt
payment.HTLCs[i] = attempt
return
}
})
// Setup ReportPaymentFail to return nil reason and error so the
// payment won't fail.
missionControl.On("ReportPaymentFail",
mock.Anything, mock.Anything, mock.Anything, mock.Anything,
).Return(nil, nil)
// Simple mocking the rest.
payer.On("SendHTLC",
mock.Anything, mock.Anything, mock.Anything,
).Return(nil)
missionControl.On("ReportPaymentSuccess",
mock.Anything, mock.Anything,
).Return(nil)
// Mock SettleAttempt by changing one of the HTLCs to be settled.
preimage := lntypes.Preimage{1, 2, 3}
settledAttempt := makeSettledAttempt(
int(paymentAmt/4), 0, preimage,
)
controlTower.On("SettleAttempt",
identifier, mock.Anything, mock.Anything,
).Return(&settledAttempt, nil).Run(func(args mock.Arguments) {
// Whenever this method is invoked, we will mark the first
// active attempt settled and exit.
for i, attempt := range payment.HTLCs {
if attempt.Settle != nil || attempt.Failure != nil {
continue
}
attempt.Settle = &channeldb.HTLCSettleInfo{
Preimage: preimage,
}
payment.HTLCs[i] = attempt
return
}
})
// Call the actual method SendPayment on router. This is place inside a
// goroutine so we can set a timeout for the whole test, in case
// anything goes wrong and the test never finishes.
done := make(chan struct{})
var p lntypes.Hash
go func() {
p, _, err = router.SendPayment(req)
close(done)
}()
select {
case <-done:
case <-time.After(testTimeout):
t.Fatalf("SendPayment didn't exit")
}
// Finally, validate the returned values and check that the mock
// methods are called as expected.
require.NoError(t, err, "send payment failed")
require.EqualValues(t, preimage, p, "preimage not match")
controlTower.AssertExpectations(t)
payer.AssertExpectations(t)
sessionSource.AssertExpectations(t)
session.AssertExpectations(t)
missionControl.AssertExpectations(t)
}
// TestSendMPPaymentFailed tests that when one of the shard fails with a
// terminal error, the router will stop attempting and the payment will fail.
// This test mainly focuses on testing the logic of the method resumePayment
// is implemented as expected.
func TestSendMPPaymentFailed(t *testing.T) {
const startingBlockHeight = 101
// Create mockers to initialize the router.
controlTower := &mockControlTower{}
sessionSource := &mockPaymentSessionSource{}
missionControl := &mockMissionControl{}
payer := &mockPaymentAttemptDispatcher{}
chain := newMockChain(startingBlockHeight)
chainView := newMockChainView(chain)
testGraph := createDummyTestGraph(t)
// Define the behavior of the mockers to the point where we can
// successfully start the router.
controlTower.On("FetchInFlightPayments").Return(
[]*channeldb.MPPayment{}, nil,
)
payer.On("CleanStore", mock.Anything).Return(nil)
// Create and start the router.
router, err := New(Config{
Control: controlTower,
SessionSource: sessionSource,
MissionControl: missionControl,
Payer: payer,
// TODO(yy): create new mocks for the chain and chainview.
Chain: chain,
ChainView: chainView,
// TODO(yy): mock the graph once it's changed into interface.
Graph: testGraph.graph,
Clock: clock.NewTestClock(time.Unix(1, 0)),
GraphPruneInterval: time.Hour * 2,
NextPaymentID: func() (uint64, error) {
next := atomic.AddUint64(&uniquePaymentID, 1)
return next, nil
},
})
require.NoError(t, err, "failed to create router")
// Make sure the router can start and stop without error.
require.NoError(t, router.Start(), "router failed to start")
defer func() {
require.NoError(t, router.Stop(), "router failed to stop")
}()
// Once the router is started, check that the mocked methods are called
// as expected.
controlTower.AssertExpectations(t)
payer.AssertExpectations(t)
// Mock the methods to the point where we are inside the function
// resumePayment.
paymentAmt := lnwire.MilliSatoshi(10000)
req := createDummyLightningPayment(
t, testGraph.aliasMap["c"], paymentAmt,
)
identifier := lntypes.Hash(req.Identifier())
session := &mockPaymentSession{}
sessionSource.On("NewPaymentSession", req).Return(session, nil)
controlTower.On("InitPayment", identifier, mock.Anything).Return(nil)
// The following mocked methods are called inside resumePayment. Note
// that the payment object below will determine the state of the
// paymentLifecycle.
payment := &channeldb.MPPayment{}
controlTower.On("FetchPayment", identifier).Return(payment, nil)
// Create a route that can send 1/4 of the total amount. This value
// will be returned by calling RequestRoute.
shard, err := createTestRoute(paymentAmt/4, testGraph.aliasMap)
require.NoError(t, err, "failed to create route")
session.On("RequestRoute",
mock.Anything, mock.Anything, mock.Anything, mock.Anything,
).Return(shard, nil)
// Make a new htlc attempt with zero fee and append it to the payment's
// HTLCs when calling RegisterAttempt.
activeAttempt := makeActiveAttempt(int(paymentAmt/4), 0)
controlTower.On("RegisterAttempt",
identifier, mock.Anything,
).Return(nil).Run(func(args mock.Arguments) {
payment.HTLCs = append(payment.HTLCs, activeAttempt)
})
// Create a buffered chan and it will be returned by GetPaymentResult.
payer.resultChan = make(chan *htlcswitch.PaymentResult, 10)
// We use the failAttemptCount to track how many attempts we want to
// fail. Each time the following mock method is called, the count gets
// updated.
failAttemptCount := 0
payer.On("GetPaymentResult",
mock.Anything, identifier, mock.Anything,
).Run(func(args mock.Arguments) {
// Before the mock method is returned, we send the result to
// the read-only chan.
// Update the counter.
failAttemptCount++
// We fail the first attempt with terminal error.
if failAttemptCount == 1 {
payer.resultChan <- &htlcswitch.PaymentResult{
Error: htlcswitch.NewForwardingError(
&lnwire.FailIncorrectDetails{},
1,
),
}
return
}
// We will make the rest attempts failed with temporary error.
payer.resultChan <- &htlcswitch.PaymentResult{
Error: htlcswitch.NewForwardingError(
&lnwire.FailTemporaryChannelFailure{},
1,
),
}
})
// Mock the FailAttempt method to fail one of the attempts.
var failedAttempt channeldb.HTLCAttempt
controlTower.On("FailAttempt",
identifier, mock.Anything, mock.Anything,
).Return(&failedAttempt, nil).Run(func(args mock.Arguments) {
// Whenever this method is invoked, we will mark the first
// active attempt as failed and exit.
for i, attempt := range payment.HTLCs {
if attempt.Settle != nil || attempt.Failure != nil {
continue
}
attempt.Failure = &channeldb.HTLCFailInfo{}
failedAttempt = attempt
payment.HTLCs[i] = attempt
return
}
})
// Setup ReportPaymentFail to return nil reason and error so the
// payment won't fail.
var called bool
failureReason := channeldb.FailureReasonPaymentDetails
missionControl.On("ReportPaymentFail",
mock.Anything, mock.Anything, mock.Anything, mock.Anything,
).Return(nil, nil).Run(func(args mock.Arguments) {
// We only return the terminal error once, thus when the method
// is called, we will return it with a nil error.
if called {
missionControl.failReason = nil
return
}
// If it's the first time calling this method, we will return a
// terminal error.
missionControl.failReason = &failureReason
payment.FailureReason = &failureReason
called = true
})
// Simple mocking the rest.
controlTower.On("Fail", identifier, failureReason).Return(nil)
payer.On("SendHTLC",
mock.Anything, mock.Anything, mock.Anything,
).Return(nil)
// Call the actual method SendPayment on router. This is place inside a
// goroutine so we can set a timeout for the whole test, in case
// anything goes wrong and the test never finishes.
done := make(chan struct{})
var p lntypes.Hash
go func() {
p, _, err = router.SendPayment(req)
close(done)
}()
select {
case <-done:
case <-time.After(testTimeout):
t.Fatalf("SendPayment didn't exit")
}
// Finally, validate the returned values and check that the mock
// methods are called as expected.
require.Error(t, err, "expected send payment error")
require.EqualValues(t, [32]byte{}, p, "preimage not match")
controlTower.AssertExpectations(t)
payer.AssertExpectations(t)
sessionSource.AssertExpectations(t)
session.AssertExpectations(t)
missionControl.AssertExpectations(t)
}
// TestSendMPPaymentFailedWithShardsInFlight tests that when the payment is in
// terminal state, even if we have shards in flight, we still fail the payment
// and exit. This test mainly focuses on testing the logic of the method
// resumePayment is implemented as expected.
func TestSendMPPaymentFailedWithShardsInFlight(t *testing.T) {
const startingBlockHeight = 101
// Create mockers to initialize the router.
controlTower := &mockControlTower{}
sessionSource := &mockPaymentSessionSource{}
missionControl := &mockMissionControl{}
payer := &mockPaymentAttemptDispatcher{}
chain := newMockChain(startingBlockHeight)
chainView := newMockChainView(chain)
testGraph := createDummyTestGraph(t)
// Define the behavior of the mockers to the point where we can
// successfully start the router.
controlTower.On("FetchInFlightPayments").Return(
[]*channeldb.MPPayment{}, nil,
)
payer.On("CleanStore", mock.Anything).Return(nil)
// Create and start the router.
router, err := New(Config{
Control: controlTower,
SessionSource: sessionSource,
MissionControl: missionControl,
Payer: payer,
// TODO(yy): create new mocks for the chain and chainview.
Chain: chain,
ChainView: chainView,
// TODO(yy): mock the graph once it's changed into interface.
Graph: testGraph.graph,
Clock: clock.NewTestClock(time.Unix(1, 0)),
GraphPruneInterval: time.Hour * 2,
NextPaymentID: func() (uint64, error) {
next := atomic.AddUint64(&uniquePaymentID, 1)
return next, nil
},
})
require.NoError(t, err, "failed to create router")
// Make sure the router can start and stop without error.
require.NoError(t, router.Start(), "router failed to start")
defer func() {
require.NoError(t, router.Stop(), "router failed to stop")
}()
// Once the router is started, check that the mocked methods are called
// as expected.
controlTower.AssertExpectations(t)
payer.AssertExpectations(t)
// Mock the methods to the point where we are inside the function
// resumePayment.
paymentAmt := lnwire.MilliSatoshi(10000)
req := createDummyLightningPayment(
t, testGraph.aliasMap["c"], paymentAmt,
)
identifier := lntypes.Hash(req.Identifier())
session := &mockPaymentSession{}
sessionSource.On("NewPaymentSession", req).Return(session, nil)
controlTower.On("InitPayment", identifier, mock.Anything).Return(nil)
// The following mocked methods are called inside resumePayment. Note
// that the payment object below will determine the state of the
// paymentLifecycle.
payment := &channeldb.MPPayment{}
controlTower.On("FetchPayment", identifier).Return(payment, nil)
// Create a route that can send 1/4 of the total amount. This value
// will be returned by calling RequestRoute.
shard, err := createTestRoute(paymentAmt/4, testGraph.aliasMap)
require.NoError(t, err, "failed to create route")
session.On("RequestRoute",
mock.Anything, mock.Anything, mock.Anything, mock.Anything,
).Return(shard, nil)
// Make a new htlc attempt with zero fee and append it to the payment's
// HTLCs when calling RegisterAttempt.
activeAttempt := makeActiveAttempt(int(paymentAmt/4), 0)
controlTower.On("RegisterAttempt",
identifier, mock.Anything,
).Return(nil).Run(func(args mock.Arguments) {
payment.HTLCs = append(payment.HTLCs, activeAttempt)
})
// Create a buffered chan and it will be returned by GetPaymentResult.
payer.resultChan = make(chan *htlcswitch.PaymentResult, 10)
// We use the failAttemptCount to track how many attempts we want to
// fail. Each time the following mock method is called, the count gets
// updated.
failAttemptCount := 0
payer.On("GetPaymentResult",
mock.Anything, identifier, mock.Anything,
).Run(func(args mock.Arguments) {
// Before the mock method is returned, we send the result to
// the read-only chan.
// Update the counter.
failAttemptCount++
// We fail the first attempt with terminal error.
if failAttemptCount == 1 {
payer.resultChan <- &htlcswitch.PaymentResult{
Error: htlcswitch.NewForwardingError(
&lnwire.FailIncorrectDetails{},
1,
),
}
return
}
// For the rest attempts we will NOT send anything to the
// resultChan, thus making all the shards in active state,
// neither settled or failed.
})
// Mock the FailAttempt method to fail EXACTLY once.
var failedAttempt channeldb.HTLCAttempt
controlTower.On("FailAttempt",
identifier, mock.Anything, mock.Anything,
).Return(&failedAttempt, nil).Run(func(args mock.Arguments) {
// Whenever this method is invoked, we will mark the first
// active attempt as failed and exit.
failedAttempt = payment.HTLCs[0]
failedAttempt.Failure = &channeldb.HTLCFailInfo{}
payment.HTLCs[0] = failedAttempt
}).Once()
// Setup ReportPaymentFail to return nil reason and error so the
// payment won't fail.
failureReason := channeldb.FailureReasonPaymentDetails
missionControl.On("ReportPaymentFail",
mock.Anything, mock.Anything, mock.Anything, mock.Anything,
).Return(failureReason, nil).Run(func(args mock.Arguments) {
missionControl.failReason = &failureReason
payment.FailureReason = &failureReason
}).Once()
// Simple mocking the rest.
controlTower.On("Fail", identifier, failureReason).Return(nil).Once()
payer.On("SendHTLC",
mock.Anything, mock.Anything, mock.Anything,
).Return(nil)
// Call the actual method SendPayment on router. This is place inside a
// goroutine so we can set a timeout for the whole test, in case
// anything goes wrong and the test never finishes.
done := make(chan struct{})
var p lntypes.Hash
go func() {
p, _, err = router.SendPayment(req)
close(done)
}()
select {
case <-done:
case <-time.After(testTimeout):
t.Fatalf("SendPayment didn't exit")
}
// Finally, validate the returned values and check that the mock
// methods are called as expected.
require.Error(t, err, "expected send payment error")
require.EqualValues(t, [32]byte{}, p, "preimage not match")
controlTower.AssertExpectations(t)
payer.AssertExpectations(t)
sessionSource.AssertExpectations(t)
session.AssertExpectations(t)
missionControl.AssertExpectations(t)
}

@ -39,7 +39,8 @@
},
{
"source": false,
"pubkey": "032b480de5d002f1a8fd1fe1bbf0a0f1b07760f65f052e66d56f15d71097c01add",
"pubkey": "026c43a8ac1cd8519985766e90748e1e06871dab0ff6b8af27e8c1a61640481318",
"privkey": "82b266f659bd83a976bac11b2cc442baec5508e84e61085d7ec2b0fc52156c87",
"alias": "songoku"
},
{
@ -154,7 +155,7 @@
"capacity": 120000
},
{
"node_1": "032b480de5d002f1a8fd1fe1bbf0a0f1b07760f65f052e66d56f15d71097c01add",
"node_1": "026c43a8ac1cd8519985766e90748e1e06871dab0ff6b8af27e8c1a61640481318",
"node_2": "0367cec75158a4129177bfb8b269cb586efe93d751b43800d456485e81c2620ca6",
"channel_id": 12345,
"channel_point": "89dc56859c6a082d15ba1a7f6cb6be3fea62e1746e2cb8497b1189155c21a233:0",
@ -168,7 +169,7 @@
"capacity": 100000
},
{
"node_1": "032b480de5d002f1a8fd1fe1bbf0a0f1b07760f65f052e66d56f15d71097c01add",
"node_1": "026c43a8ac1cd8519985766e90748e1e06871dab0ff6b8af27e8c1a61640481318",
"node_2": "0367cec75158a4129177bfb8b269cb586efe93d751b43800d456485e81c2620ca6",
"channel_id": 12345,
"channel_point": "89dc56859c6a082d15ba1a7f6cb6be3fea62e1746e2cb8497b1189155c21a233:0",
@ -182,7 +183,7 @@
"capacity": 100000
},
{
"node_1": "032b480de5d002f1a8fd1fe1bbf0a0f1b07760f65f052e66d56f15d71097c01add",
"node_1": "026c43a8ac1cd8519985766e90748e1e06871dab0ff6b8af27e8c1a61640481318",
"node_2": "036264734b40c9e91d3d990a8cdfbbe23b5b0b7ad3cd0e080a25dcd05d39eeb7eb",
"channel_id": 3495345,
"channel_point": "9f155756b33a0a6827713965babbd561b55f9520444ac5db0cf7cb2eb0deb5bc:0",
@ -196,7 +197,7 @@
"capacity": 110000
},
{
"node_1": "032b480de5d002f1a8fd1fe1bbf0a0f1b07760f65f052e66d56f15d71097c01add",
"node_1": "026c43a8ac1cd8519985766e90748e1e06871dab0ff6b8af27e8c1a61640481318",
"node_2": "036264734b40c9e91d3d990a8cdfbbe23b5b0b7ad3cd0e080a25dcd05d39eeb7eb",
"channel_id": 3495345,
"channel_point": "9f155756b33a0a6827713965babbd561b55f9520444ac5db0cf7cb2eb0deb5bc:0",