lntest: add resolver report assertions to force close test

This commit is contained in:
carla 2020-07-07 10:32:13 +02:00
parent 1d5d616da3
commit 177c314f06
No known key found for this signature in database
GPG Key ID: 4CA7FE54A6213C91

@ -50,6 +50,7 @@ import (
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing"
"github.com/stretchr/testify/require"
)
var (
@ -3512,6 +3513,13 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
t.Fatalf("all funds should still be in limbo")
}
// Create a map of outpoints to expected resolutions for alice and carol
// which we will add reports to as we sweep outputs.
var (
aliceReports = make(map[string]*lnrpc.Resolution)
carolReports = make(map[string]*lnrpc.Resolution)
)
// The several restarts in this test are intended to ensure that when a
// channel is force-closed, the UTXO nursery has persisted the state of
// the channel in the closure process and will recover the correct state
@ -3530,13 +3538,36 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
expectedTxes = 2
}
_, err = waitForNTxsInMempool(
sweepTxns, err := waitForNTxsInMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("failed to find commitment in miner mempool: %v", err)
}
// Find alice's commit sweep and anchor sweep (if present) in the
// mempool.
aliceCloseTx := waitingClose.Commitments.LocalTxid
_, aliceAnchor := findCommitAndAnchor(
t, net, sweepTxns, aliceCloseTx,
)
// If we expect anchors, add alice's anchor to our expected set of
// reports.
if channelType == commitTypeAnchors {
aliceReports[aliceAnchor.OutPoint.String()] = &lnrpc.Resolution{
ResolutionType: lnrpc.ResolutionType_ANCHOR,
Outcome: lnrpc.ResolutionOutcome_CLAIMED,
SweepTxid: aliceAnchor.SweepTx,
Outpoint: &lnrpc.OutPoint{
TxidBytes: aliceAnchor.OutPoint.Hash[:],
TxidStr: aliceAnchor.OutPoint.Hash.String(),
OutputIndex: aliceAnchor.OutPoint.Index,
},
AmountSat: uint64(anchorSize),
}
}
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
@ -3605,7 +3636,7 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
// Carol's sweep tx should be in the mempool already, as her output is
// not timelocked. If there are anchors, we also expect Carol's anchor
// sweep now.
_, err = waitForNTxsInMempool(
sweepTxns, err = waitForNTxsInMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
@ -3613,6 +3644,27 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
err)
}
// We look up the sweep txns we have found in mempool and create
// expected resolutions for carol.
carolCommit, carolAnchor := findCommitAndAnchor(
t, net, sweepTxns, aliceCloseTx,
)
// If we have anchors, add an anchor resolution for carol.
if channelType == commitTypeAnchors {
carolReports[carolAnchor.OutPoint.String()] = &lnrpc.Resolution{
ResolutionType: lnrpc.ResolutionType_ANCHOR,
Outcome: lnrpc.ResolutionOutcome_CLAIMED,
SweepTxid: carolAnchor.SweepTx,
AmountSat: anchorSize,
Outpoint: &lnrpc.OutPoint{
TxidBytes: carolAnchor.OutPoint.Hash[:],
TxidStr: carolAnchor.OutPoint.Hash.String(),
OutputIndex: carolAnchor.OutPoint.Index,
},
}
}
// Currently within the codebase, the default CSV is 4 relative blocks.
// For the persistence test, we generate two blocks, then trigger
// a restart and then generate the final block that should trigger
@ -3630,6 +3682,7 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
// Alice should see the channel in her set of pending force closed
// channels with her funds still in limbo.
var aliceBalance int64
err = wait.NoError(func() error {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := alice.PendingChannels(
@ -3652,6 +3705,9 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
return err
}
// Make a record of the balances we expect for alice and carol.
aliceBalance = forceClose.Channel.LocalBalance
// At this point, the nursery should show that the commitment
// output has 2 block left before its CSV delay expires. In
// total, we have mined exactly defaultCSV blocks, so the htlc
@ -3712,6 +3768,32 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
}
}
// We expect a resolution which spends our commit output.
output := sweepTx.MsgTx().TxIn[0].PreviousOutPoint
aliceReports[output.String()] = &lnrpc.Resolution{
ResolutionType: lnrpc.ResolutionType_COMMIT,
Outcome: lnrpc.ResolutionOutcome_CLAIMED,
SweepTxid: sweepingTXID.String(),
Outpoint: &lnrpc.OutPoint{
TxidBytes: output.Hash[:],
TxidStr: output.Hash.String(),
OutputIndex: output.Index,
},
AmountSat: uint64(aliceBalance),
}
carolReports[carolCommit.OutPoint.String()] = &lnrpc.Resolution{
ResolutionType: lnrpc.ResolutionType_COMMIT,
Outcome: lnrpc.ResolutionOutcome_CLAIMED,
Outpoint: &lnrpc.OutPoint{
TxidBytes: carolCommit.OutPoint.Hash[:],
TxidStr: carolCommit.OutPoint.Hash.String(),
OutputIndex: carolCommit.OutPoint.Index,
},
AmountSat: uint64(pushAmt),
SweepTxid: carolCommit.SweepTx,
}
// Check that we can find the commitment sweep in our set of known
// sweeps.
err = findSweep(ctxb, alice, sweepingTXID)
@ -3890,6 +3972,7 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
// the sweeper check for these timeout transactions because they are
// not swept by the sweeper; the nursery broadcasts the pre-signed
// transaction.
var htlcLessFees uint64
for _, htlcTxID := range htlcTxIDs {
// Fetch the sweep transaction, all input it's spending should
// be from the commitment transaction which was broadcast
@ -3899,18 +3982,62 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
t.Fatalf("unable to fetch sweep tx: %v", err)
}
// Ensure the htlc transaction only has one input.
if len(htlcTx.MsgTx().TxIn) != 1 {
inputs := htlcTx.MsgTx().TxIn
if len(inputs) != 1 {
t.Fatalf("htlc transaction should only have one txin, "+
"has %d", len(htlcTx.MsgTx().TxIn))
}
// Ensure the htlc transaction is spending from the commitment
// transaction.
txIn := htlcTx.MsgTx().TxIn[0]
txIn := inputs[0]
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
t.Fatalf("htlc transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
outputs := htlcTx.MsgTx().TxOut
if len(outputs) != 1 {
t.Fatalf("htlc transaction should only have one "+
"txout, has: %v", len(outputs))
}
// For each htlc timeout transaction, we expect a resolver
// report recording this on chain resolution for both alice and
// carol.
outpoint := txIn.PreviousOutPoint
resolutionOutpoint := &lnrpc.OutPoint{
TxidBytes: outpoint.Hash[:],
TxidStr: outpoint.Hash.String(),
OutputIndex: outpoint.Index,
}
// We expect alice to have a timeout tx resolution with an
// amount equal to the payment amount.
aliceReports[outpoint.String()] = &lnrpc.Resolution{
ResolutionType: lnrpc.ResolutionType_OUTGOING_HTLC,
Outcome: lnrpc.ResolutionOutcome_FIRST_STAGE,
SweepTxid: htlcTx.Hash().String(),
Outpoint: resolutionOutpoint,
AmountSat: uint64(paymentAmt),
}
// We expect carol to have a resolution with an incoming htlc
// timeout which reflects the full amount of the htlc. It has
// no spend tx, because carol stops monitoring the htlc once
// it has timed out.
carolReports[outpoint.String()] = &lnrpc.Resolution{
ResolutionType: lnrpc.ResolutionType_INCOMING_HTLC,
Outcome: lnrpc.ResolutionOutcome_TIMEOUT,
SweepTxid: "",
Outpoint: resolutionOutpoint,
AmountSat: uint64(paymentAmt),
}
// We record the htlc amount less fees here, so that we know
// what value to expect for the second stage of our htlc
// htlc resolution.
htlcLessFees = uint64(outputs[0].Value)
}
// With the htlc timeout txns still in the mempool, we restart Alice to
@ -4022,6 +4149,12 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
t.Fatalf("htlc transaction should have %d txin, "+
"has %d", numInvoices, len(htlcSweepTx.MsgTx().TxIn))
}
outputCount := len(htlcSweepTx.MsgTx().TxOut)
if outputCount != 1 {
t.Fatalf("htlc sweep transaction should have one output, has: "+
"%v", outputCount)
}
// Ensure that each output spends from exactly one htlc timeout txn.
for _, txIn := range htlcSweepTx.MsgTx().TxIn {
outpoint := txIn.PreviousOutPoint.Hash
@ -4038,6 +4171,21 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
t.Fatalf("htlc sweep tx has multiple spends from "+
"outpoint %v", outpoint)
}
// Since we have now swept our htlc timeout tx, we expect to
// have timeout resolutions for each of our htlcs.
output := txIn.PreviousOutPoint
aliceReports[output.String()] = &lnrpc.Resolution{
ResolutionType: lnrpc.ResolutionType_OUTGOING_HTLC,
Outcome: lnrpc.ResolutionOutcome_TIMEOUT,
SweepTxid: htlcSweepTx.Hash().String(),
Outpoint: &lnrpc.OutPoint{
TxidBytes: output.Hash[:],
TxidStr: output.Hash.String(),
OutputIndex: output.Index,
},
AmountSat: uint64(htlcLessFees),
}
}
// Check that we can find the htlc sweep in our set of sweeps.
@ -4150,6 +4298,96 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
carolExpectedBalance,
carolBalResp.ConfirmedBalance)
}
// Finally, we check that alice and carol have the set of resolutions
// we expect.
assertReports(ctxb, t, alice, op, aliceReports)
assertReports(ctxb, t, carol, op, carolReports)
}
type sweptOutput struct {
OutPoint wire.OutPoint
SweepTx string
}
// findCommitAndAnchor looks for a commitment sweep and anchor sweep in the
// mempool. Our anchor output is identified by having multiple inputs, because
// we have to bring another input to add fees to the anchor. Note that the
// anchor swept output may be nil if the channel did not have anchors.
func findCommitAndAnchor(t *harnessTest, net *lntest.NetworkHarness,
sweepTxns []*chainhash.Hash, closeTx string) (*sweptOutput, *sweptOutput) {
var commitSweep, anchorSweep *sweptOutput
for _, tx := range sweepTxns {
sweepTx, err := net.Miner.Node.GetRawTransaction(tx)
require.NoError(t.t, err)
// We expect our commitment sweep to have a single input, and,
// our anchor sweep to have more inputs (because the wallet
// needs to add balance to the anchor amount). We find their
// sweep txids here to setup appropriate resolutions. We also
// need to find the outpoint for our resolution, which we do by
// matching the inputs to the sweep to the close transaction.
inputs := sweepTx.MsgTx().TxIn
if len(inputs) == 1 {
commitSweep = &sweptOutput{
OutPoint: inputs[0].PreviousOutPoint,
SweepTx: tx.String(),
}
} else {
// Since we have more than one input, we run through
// them to find the outpoint that spends from the close
// tx. This will be our anchor output.
for _, txin := range inputs {
outpointStr := txin.PreviousOutPoint.Hash.String()
if outpointStr == closeTx {
anchorSweep = &sweptOutput{
OutPoint: txin.PreviousOutPoint,
SweepTx: tx.String(),
}
}
}
}
}
return commitSweep, anchorSweep
}
// assertReports checks that the count of resolutions we have present per
// type matches a set of expected resolutions.
func assertReports(ctxb context.Context, t *harnessTest,
node *lntest.HarnessNode, channelPoint wire.OutPoint,
expected map[string]*lnrpc.Resolution) {
// Get our node's closed channels.
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
closed, err := node.ClosedChannels(
ctxt, &lnrpc.ClosedChannelsRequest{},
)
require.NoError(t.t, err)
var resolutions []*lnrpc.Resolution
for _, close := range closed.Channels {
if close.ChannelPoint == channelPoint.String() {
resolutions = close.Resolutions
break
}
}
require.NotNil(t.t, resolutions)
require.Equal(t.t, len(expected), len(resolutions))
for _, res := range resolutions {
outPointStr := fmt.Sprintf("%v:%v", res.Outpoint.TxidStr,
res.Outpoint.OutputIndex)
expected, ok := expected[outPointStr]
require.True(t.t, ok)
require.Equal(t.t, expected, res)
}
}
// findSweep looks up a sweep in a nodes list of broadcast sweeps.