Merge pull request #4073 from joostjager/anchor-sweep-itest

lntest/itest: select anchor commitment format and sweeping itests
This commit is contained in:
Olaoluwa Osuntokun 2020-03-27 13:23:02 -07:00 committed by GitHub
commit 0b59ded7ca
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 520 additions and 264 deletions

@ -842,8 +842,9 @@ func (c *ChannelArbitrator) stateStep(
// With the close transaction in hand, broadcast the
// transaction to the network, thereby entering the post
// channel resolution state.
log.Infof("Broadcasting force close transaction, "+
"ChannelPoint(%v): %v", c.cfg.ChanPoint,
log.Infof("Broadcasting force close transaction %v, "+
"ChannelPoint(%v): %v", closeTx.TxHash(),
c.cfg.ChanPoint,
newLogClosure(func() string {
return spew.Sdump(closeTx)
}))

@ -96,11 +96,18 @@ func testMultiHopHtlcLocalChainClaim(net *lntest.NetworkHarness, t *harnessTest,
// At this point, Bob decides that he wants to exit the channel
// immediately, so he force closes his commitment transaction.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
bobForceClose := closeChannelAndAssert(ctxt, t, net, bob,
aliceChanPoint, true)
bobForceClose := closeChannelAndAssertType(ctxt, t, net, bob,
aliceChanPoint, c == commitTypeAnchors, true)
// Alice will sweep her output immediately.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
// Alice will sweep her commitment output immediately. If there are
// anchors, Alice will also sweep hers.
expectedTxes := 1
if c == commitTypeAnchors {
expectedTxes = 2
}
_, err = waitForNTxsInMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("unable to find alice's sweep tx in miner mempool: %v",
err)
@ -135,8 +142,11 @@ func testMultiHopHtlcLocalChainClaim(net *lntest.NetworkHarness, t *harnessTest,
t.Fatalf("unable to generate blocks")
}
// Carol's commitment transaction should now be in the mempool.
txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
// Carol's commitment transaction should now be in the mempool. If there
// is an anchor, Carol will sweep that too.
_, err = waitForNTxsInMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
@ -149,53 +159,47 @@ func testMultiHopHtlcLocalChainClaim(net *lntest.NetworkHarness, t *harnessTest,
Index: bobChanPoint.OutputIndex,
}
// The tx should be spending from the funding transaction,
commitHash := txids[0]
tx1, err := net.Miner.Node.GetRawTransaction(commitHash)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx1.MsgTx().TxIn[0].PreviousOutPoint != carolFundingPoint {
t.Fatalf("commit transaction not spending fundingtx: %v",
spew.Sdump(tx1))
}
// Look up the closing transaction. It should be spending from the
// funding transaction,
closingTx := getSpendingTxInMempool(
t, net.Miner.Node, minerMempoolTimeout, carolFundingPoint,
)
closingTxid := closingTx.TxHash()
// Mine a block that should confirm the commit tx.
block := mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("expected 2 transactions in block, got %v",
len(block.Transactions))
// Mine a block that should confirm the commit tx, the anchor if present
// and the coinbase.
block := mineBlocks(t, net, 1, expectedTxes)[0]
if len(block.Transactions) != expectedTxes+1 {
t.Fatalf("expected %v transactions in block, got %v",
expectedTxes+1, len(block.Transactions))
}
assertTxInBlock(t, block, commitHash)
assertTxInBlock(t, block, &closingTxid)
// Restart bob again.
if err := restartBob(); err != nil {
t.Fatalf("unable to restart bob: %v", err)
}
// After the force close transacion is mined, Carol should broadcast
// her second level HTLC transacion. Bob will broadcast a sweep tx to
// sweep his output in the channel with Carol. He can do this
// immediately, as the output is not timelocked since Carol was the one
// force closing.
commitSpends, err := waitForNTxsInMempool(net.Miner.Node, 2,
minerMempoolTimeout)
// After the force close transacion is mined, Carol should broadcast her
// second level HTLC transacion. Bob will broadcast a sweep tx to sweep
// his output in the channel with Carol. He can do this immediately, as
// the output is not timelocked since Carol was the one force closing.
// If there are anchors on the commitment, Bob will also sweep his
// anchor.
expectedTxes = 2
if c == commitTypeAnchors {
expectedTxes = 3
}
txes, err := getNTxsFromMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// Both Carol's second level transaction and Bob's sweep should be
// spending from the commitment transaction.
for _, txid := range commitSpends {
tx, err := net.Miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("tx did not spend from commitment tx")
}
}
assertAllTxesSpendFrom(t, txes, closingTxid)
// At this point we suspend Alice to make sure she'll handle the
// on-chain settle after a restart.
@ -205,14 +209,11 @@ func testMultiHopHtlcLocalChainClaim(net *lntest.NetworkHarness, t *harnessTest,
}
// Mine a block to confirm the two transactions (+ the coinbase).
block = mineBlocks(t, net, 1, 2)[0]
if len(block.Transactions) != 3 {
block = mineBlocks(t, net, 1, expectedTxes)[0]
if len(block.Transactions) != expectedTxes+1 {
t.Fatalf("expected 3 transactions in block, got %v",
len(block.Transactions))
}
for _, txid := range commitSpends {
assertTxInBlock(t, block, txid)
}
// Keep track of the second level tx maturity.
carolSecondLevelCSV := uint32(defaultCSV)

@ -7,6 +7,7 @@ import (
"fmt"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/davecgh/go-spew/spew"
@ -106,24 +107,33 @@ func testMultiHopHtlcLocalTimeout(net *lntest.NetworkHarness, t *harnessTest,
t.Fatalf("unable to generate blocks: %v", err)
}
// Bob's force close transaction should now be found in the mempool.
// Bob's force close transaction should now be found in the mempool. If
// there are anchors, we also expect Bob's anchor sweep.
expectedTxes := 1
if c == commitTypeAnchors {
expectedTxes = 2
}
bobFundingTxid, err := lnd.GetChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
closeTxid, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
_, err = waitForNTxsInMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("unable to find closing txid: %v", err)
}
assertSpendingTxInMempool(
closeTx := getSpendingTxInMempool(
t, net.Miner.Node, minerMempoolTimeout, wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
},
)
closeTxid := closeTx.TxHash()
// Mine a block to confirm the closing transaction.
mineBlocks(t, net, 1, 1)
mineBlocks(t, net, 1, expectedTxes)
// At this point, Bob should have canceled backwards the dust HTLC
// that we sent earlier. This means Alice should now only have a single
@ -143,20 +153,42 @@ func testMultiHopHtlcLocalTimeout(net *lntest.NetworkHarness, t *harnessTest,
// With the closing transaction confirmed, we should expect Bob's HTLC
// timeout transaction to be broadcast due to the expiry being reached.
htlcTimeout, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
// If there are anchors, we also expect Carol's anchor sweep now.
txes, err := getNTxsFromMempool(net.Miner.Node, expectedTxes, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find bob's htlc timeout tx: %v", err)
}
// Lookup the timeout transaction that is expected to spend from the
// closing tx. We distinguish it from a possibly anchor sweep by value.
var htlcTimeout *chainhash.Hash
for _, tx := range txes {
prevOp := tx.TxIn[0].PreviousOutPoint
if prevOp.Hash != closeTxid {
t.Fatalf("tx not spending from closing tx")
}
// Assume that the timeout tx doesn't spend an output of exactly
// the size of the anchor.
if closeTx.TxOut[prevOp.Index].Value != anchorSize {
hash := tx.TxHash()
htlcTimeout = &hash
}
}
if htlcTimeout == nil {
t.Fatalf("htlc timeout tx not found in mempool")
}
// We'll mine the remaining blocks in order to generate the sweep
// transaction of Bob's commitment output.
mineBlocks(t, net, defaultCSV, 1)
assertSpendingTxInMempool(
t, net.Miner.Node, minerMempoolTimeout, wire.OutPoint{
Hash: *closeTxid,
Index: 1,
},
)
mineBlocks(t, net, defaultCSV, expectedTxes)
// Check that the sweep spends from the mined commitment.
txes, err = getNTxsFromMempool(net.Miner.Node, 1, minerMempoolTimeout)
if err != nil {
t.Fatalf("sweep not found: %v", err)
}
assertAllTxesSpendFrom(t, txes, closeTxid)
// Bob's pending channel report should show that he has a commitment
// output awaiting sweeping, and also that there's an outgoing HTLC
@ -248,6 +280,10 @@ func testMultiHopHtlcLocalTimeout(net *lntest.NetworkHarness, t *harnessTest,
t.Fatalf(predErr.Error())
}
// Coop close channel, expect no anchors.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, alice, aliceChanPoint, false)
closeChannelAndAssertType(
ctxt, t, net, alice, aliceChanPoint, false,
false,
)
}

@ -7,7 +7,6 @@ import (
"fmt"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd"
@ -126,8 +125,15 @@ func testMultiHopReceiverChainClaim(net *lntest.NetworkHarness, t *harnessTest,
}
// At this point, Carol should broadcast her active commitment
// transaction in order to go to the chain and sweep her HTLC.
txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
// transaction in order to go to the chain and sweep her HTLC. If there
// are anchors, Carol also sweeps hers.
expectedTxes := 1
if c == commitTypeAnchors {
expectedTxes = 2
}
txes, err := getNTxsFromMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("expected transaction not found in mempool: %v", err)
}
@ -144,20 +150,13 @@ func testMultiHopReceiverChainClaim(net *lntest.NetworkHarness, t *harnessTest,
// The commitment transaction should be spending from the funding
// transaction.
commitHash := txids[0]
tx, err := net.Miner.Node.GetRawTransaction(commitHash)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
commitTx := tx.MsgTx()
if commitTx.TxIn[0].PreviousOutPoint != carolFundingPoint {
t.Fatalf("commit transaction not spending from expected "+
"outpoint: %v", spew.Sdump(commitTx))
}
closingTx := getSpendingTxInMempool(
t, net.Miner.Node, minerMempoolTimeout, carolFundingPoint,
)
closingTxid := closingTx.TxHash()
// Confirm the commitment.
mineBlocks(t, net, 1, 1)
mineBlocks(t, net, 1, expectedTxes)
// Restart bob again.
if err := restartBob(); err != nil {
@ -167,30 +166,21 @@ func testMultiHopReceiverChainClaim(net *lntest.NetworkHarness, t *harnessTest,
// After the force close transaction is mined, Carol should broadcast
// her second level HTLC transaction. Bob will broadcast a sweep tx to
// sweep his output in the channel with Carol. When Bob notices Carol's
// second level transaction in the mempool, he will extract the
// preimage and settle the HTLC back off-chain.
secondLevelHashes, err := waitForNTxsInMempool(net.Miner.Node, 2,
minerMempoolTimeout)
// second level transaction in the mempool, he will extract the preimage
// and settle the HTLC back off-chain. Bob will also sweep his anchor,
// if present.
expectedTxes = 2
if c == commitTypeAnchors {
expectedTxes = 3
}
txes, err = getNTxsFromMempool(net.Miner.Node,
expectedTxes, minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// Carol's second level transaction should be spending from
// the commitment transaction.
var secondLevelHash *chainhash.Hash
for _, txid := range secondLevelHashes {
tx, err := net.Miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash == *commitHash {
secondLevelHash = txid
}
}
if secondLevelHash == nil {
t.Fatalf("Carol's second level tx not found")
}
// All transactions should be spending from the commitment transaction.
assertAllTxesSpendFrom(t, txes, closingTxid)
// We'll now mine an additional block which should confirm both the
// second layer transactions.
@ -314,5 +304,8 @@ func testMultiHopReceiverChainClaim(net *lntest.NetworkHarness, t *harnessTest,
// We'll close out the channel between Alice and Bob, then shutdown
// carol to conclude the test.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, alice, aliceChanPoint, false)
closeChannelAndAssertType(
ctxt, t, net, alice, aliceChanPoint,
false, false,
)
}

@ -97,8 +97,8 @@ func testMultiHopHtlcRemoteChainClaim(net *lntest.NetworkHarness, t *harnessTest
// immediately force close the channel by broadcast her commitment
// transaction.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
aliceForceClose := closeChannelAndAssert(ctxt, t, net, alice,
aliceChanPoint, true)
aliceForceClose := closeChannelAndAssertType(ctxt, t, net, alice,
aliceChanPoint, c == commitTypeAnchors, true)
// Wait for the channel to be marked pending force close.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
@ -114,8 +114,13 @@ func testMultiHopHtlcRemoteChainClaim(net *lntest.NetworkHarness, t *harnessTest
t.Fatalf("unable to generate blocks: %v", err)
}
// Alice should now sweep her funds.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
// Alice should now sweep her funds. If there are anchors, Alice should
// also sweep hers.
expectedTxes := 1
if c == commitTypeAnchors {
expectedTxes = 2
}
_, err = waitForNTxsInMempool(net.Miner.Node, expectedTxes, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find sweeping tx in mempool: %v", err)
}
@ -149,10 +154,13 @@ func testMultiHopHtlcRemoteChainClaim(net *lntest.NetworkHarness, t *harnessTest
t.Fatalf("unable to generate blocks")
}
// Carol's commitment transaction should now be in the mempool.
txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
// Carol's commitment transaction should now be in the mempool. If there
// are anchors, Carol also sweeps her anchor.
_, err = waitForNTxsInMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
t.Fatalf("unable to find carol's txes: %v", err)
}
bobFundingTxid, err := lnd.GetChanPointFundingTxid(bobChanPoint)
if err != nil {
@ -163,63 +171,51 @@ func testMultiHopHtlcRemoteChainClaim(net *lntest.NetworkHarness, t *harnessTest
Index: bobChanPoint.OutputIndex,
}
// The transaction should be spending from the funding transaction
commitHash := txids[0]
tx1, err := net.Miner.Node.GetRawTransaction(commitHash)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx1.MsgTx().TxIn[0].PreviousOutPoint != carolFundingPoint {
t.Fatalf("commit transaction not spending fundingtx: %v",
spew.Sdump(tx1))
}
// The closing transaction should be spending from the funding
// transaction.
closingTx := getSpendingTxInMempool(
t, net.Miner.Node, minerMempoolTimeout, carolFundingPoint,
)
closingTxid := closingTx.TxHash()
// Mine a block, which should contain the commitment.
block := mineBlocks(t, net, 1, 1)[0]
if len(block.Transactions) != 2 {
t.Fatalf("expected 2 transactions in block, got %v",
len(block.Transactions))
// Mine a block, which should contain: the commitment, possibly an
// anchor sweep and the coinbase tx.
block := mineBlocks(t, net, 1, expectedTxes)[0]
if len(block.Transactions) != expectedTxes+1 {
t.Fatalf("expected %v transactions in block, got %v",
expectedTxes, len(block.Transactions))
}
assertTxInBlock(t, block, commitHash)
assertTxInBlock(t, block, &closingTxid)
// Restart bob again.
if err := restartBob(); err != nil {
t.Fatalf("unable to restart bob: %v", err)
}
// After the force close transacion is mined, Carol should broadcast
// her second level HTLC transacion. Bob will broadcast a sweep tx to
// sweep his output in the channel with Carol. He can do this
// immediately, as the output is not timelocked since Carol was the one
// force closing.
commitSpends, err := waitForNTxsInMempool(net.Miner.Node, 2,
// After the force close transacion is mined, Carol should broadcast her
// second level HTLC transacion. Bob will broadcast a sweep tx to sweep
// his output in the channel with Carol. He can do this immediately, as
// the output is not timelocked since Carol was the one force closing.
// If there are anchors, Bob should also sweep his.
expectedTxes = 2
if c == commitTypeAnchors {
expectedTxes = 3
}
txes, err := getNTxsFromMempool(net.Miner.Node, expectedTxes,
minerMempoolTimeout)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
// Both Carol's second level transaction and Bob's sweep should be
// spending from the commitment transaction.
for _, txid := range commitSpends {
tx, err := net.Miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("tx did not spend from commitment tx")
}
}
// All transactions should be pending from the commitment transaction.
assertAllTxesSpendFrom(t, txes, closingTxid)
// Mine a block to confirm the two transactions (+ coinbase).
block = mineBlocks(t, net, 1, 2)[0]
if len(block.Transactions) != 3 {
block = mineBlocks(t, net, 1, expectedTxes)[0]
if len(block.Transactions) != expectedTxes+1 {
t.Fatalf("expected 3 transactions in block, got %v",
len(block.Transactions))
}
for _, txid := range commitSpends {
assertTxInBlock(t, block, txid)
}
// Keep track of the second level tx maturity.
carolSecondLevelCSV := uint32(defaultCSV)

@ -82,7 +82,9 @@ func testMultiHopLocalForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
// force close the Bob -> Carol channel. This should trigger contract
// resolution mode for both of them.
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, bob, bobChanPoint, true)
closeChannelAndAssertType(
ctxt, t, net, bob, bobChanPoint, c == commitTypeAnchors, true,
)
// At this point, Bob should have a pending force close channel as he
// just went to chain.
@ -116,8 +118,16 @@ func testMultiHopLocalForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
t.Fatalf(predErr.Error())
}
// We'll mine defaultCSV blocks in order to generate the sweep transaction
// of Bob's funding output.
// We'll mine defaultCSV blocks in order to generate the sweep
// transaction of Bob's funding output. If there are anchors, mine
// Carol's anchor sweep too.
if c == commitTypeAnchors {
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
if err != nil {
t.Fatalf("unable to find carol's anchor sweep tx: %v", err)
}
}
if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
@ -275,6 +285,9 @@ func testMultiHopLocalForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
t.Fatalf(predErr.Error())
}
// Coop close, no anchors.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, alice, aliceChanPoint, false)
closeChannelAndAssertType(
ctxt, t, net, alice, aliceChanPoint, false, false,
)
}

@ -81,9 +81,13 @@ func testMultiHopRemoteForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
// At this point, we'll now instruct Carol to force close the
// transaction. This will let us exercise that Bob is able to sweep the
// expired HTLC on Carol's version of the commitment transaction.
// expired HTLC on Carol's version of the commitment transaction. If
// Carol has an anchor, it will be swept too.
ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, bobChanPoint, true)
closeChannelAndAssertType(
ctxt, t, net, carol, bobChanPoint, c == commitTypeAnchors,
true,
)
// At this point, Bob should have a pending force close channel as
// Carol has gone directly to chain.
@ -110,11 +114,18 @@ func testMultiHopRemoteForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
t.Fatalf(predErr.Error())
}
// Bob can sweep his output immediately.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
// Bob can sweep his output immediately. If there is an anchor, Bob will
// sweep that as well.
expectedTxes := 1
if c == commitTypeAnchors {
expectedTxes = 2
}
_, err = waitForNTxsInMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("unable to find bob's funding output sweep tx: %v",
err)
t.Fatalf("failed to find txes in miner mempool: %v", err)
}
// Next, we'll mine enough blocks for the HTLC to expire. At this
@ -232,7 +243,10 @@ func testMultiHopRemoteForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
// We'll close out the test by closing the channel from Alice to Bob,
// and then shutting down the new node we created as its no longer
// needed.
// needed. Coop close, no anchors.
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, alice, aliceChanPoint, false)
closeChannelAndAssertType(
ctxt, t, net, alice, aliceChanPoint, false,
false,
)
}

@ -7,6 +7,8 @@ import (
"fmt"
"testing"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/invoicesrpc"
@ -65,6 +67,7 @@ func testMultiHopHtlcClaims(net *lntest.NetworkHarness, t *harnessTest) {
commitTypes := []commitType{
commitTypeLegacy,
commitTypeAnchors,
}
for _, commitType := range commitTypes {
@ -204,16 +207,19 @@ func createThreeHopNetwork(t *harnessTest, net *lntest.NetworkHarness,
t.Fatalf("unable to connect peers: %v", err)
}
ctxt, _ = context.WithTimeout(context.Background(), defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, alice)
if err != nil {
t.Fatalf("unable to send coins to Alice: %v", err)
}
// Make sure there are enough utxos for anchoring.
for i := 0; i < 2; i++ {
ctxt, _ = context.WithTimeout(context.Background(), defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, alice)
if err != nil {
t.Fatalf("unable to send coins to Alice: %v", err)
}
ctxt, _ = context.WithTimeout(context.Background(), defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, bob)
if err != nil {
t.Fatalf("unable to send coins to Bob: %v", err)
ctxt, _ = context.WithTimeout(context.Background(), defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, bob)
if err != nil {
t.Fatalf("unable to send coins to Bob: %v", err)
}
}
// We'll start the test by creating a channel between Alice and Bob,
@ -255,6 +261,18 @@ func createThreeHopNetwork(t *harnessTest, net *lntest.NetworkHarness,
t.Fatalf("unable to connect bob to carol: %v", err)
}
// Make sure Carol has enough utxos for anchoring. Because the anchor by
// itself often doesn't meet the dust limit, a utxo from the wallet
// needs to be attached as an additional input. This can still lead to a
// positively-yielding transaction.
for i := 0; i < 2; i++ {
ctxt, _ = context.WithTimeout(context.Background(), defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to Alice: %v", err)
}
}
// We'll then create a channel from Bob to Carol. After this channel is
// open, our topology looks like: A -> B -> C.
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
@ -282,3 +300,16 @@ func createThreeHopNetwork(t *harnessTest, net *lntest.NetworkHarness,
return aliceChanPoint, bobChanPoint, carol
}
// assertAllTxesSpendFrom asserts that all txes in the list spend from the given
// tx.
func assertAllTxesSpendFrom(t *harnessTest, txes []*wire.MsgTx,
prevTxid chainhash.Hash) {
for _, tx := range txes {
if tx.TxIn[0].PreviousOutPoint.Hash != prevTxid {
t.Fatalf("tx %v did not spend from %v",
tx.TxHash(), prevTxid)
}
}
}

@ -43,6 +43,7 @@ import (
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing"
)
@ -59,6 +60,7 @@ const (
channelOpenTimeout = lntest.ChannelOpenTimeout
channelCloseTimeout = lntest.ChannelCloseTimeout
itestLndBinary = "../../lnd-itest"
anchorSize = 330
)
// harnessTest wraps a regular testing.T providing enhanced error detection
@ -266,6 +268,13 @@ func closeChannelAndAssert(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, node *lntest.HarnessNode,
fundingChanPoint *lnrpc.ChannelPoint, force bool) *chainhash.Hash {
return closeChannelAndAssertType(ctx, t, net, node, fundingChanPoint, false, force)
}
func closeChannelAndAssertType(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, node *lntest.HarnessNode,
fundingChanPoint *lnrpc.ChannelPoint, anchors, force bool) *chainhash.Hash {
// Fetch the current channel policy. If the channel is currently
// enabled, we will register for graph notifications before closing to
// assert that the node sends out a disabling update as a result of the
@ -299,7 +308,9 @@ func closeChannelAndAssert(ctx context.Context, t *harnessTest,
)
}
return assertChannelClosed(ctx, t, net, node, fundingChanPoint, closeUpdates)
return assertChannelClosed(
ctx, t, net, node, fundingChanPoint, anchors, closeUpdates,
)
}
// closeReorgedChannelAndAssert attempts to close a channel identified by the
@ -320,14 +331,16 @@ func closeReorgedChannelAndAssert(ctx context.Context, t *harnessTest,
t.Fatalf("unable to close channel: %v", err)
}
return assertChannelClosed(ctx, t, net, node, fundingChanPoint, closeUpdates)
return assertChannelClosed(
ctx, t, net, node, fundingChanPoint, false, closeUpdates,
)
}
// assertChannelClosed asserts that the channel is properly cleaned up after
// initiating a cooperative or local close.
func assertChannelClosed(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, node *lntest.HarnessNode,
fundingChanPoint *lnrpc.ChannelPoint,
fundingChanPoint *lnrpc.ChannelPoint, anchors bool,
closeUpdates lnrpc.Lightning_CloseChannelClient) *chainhash.Hash {
txid, err := lnd.GetChanPointFundingTxid(fundingChanPoint)
@ -379,8 +392,13 @@ func assertChannelClosed(ctx context.Context, t *harnessTest,
// We'll now, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1, 1)[0]
// block. If there are anchors, we also expect an anchor sweep.
expectedTxes := 1
if anchors {
expectedTxes = 2
}
block := mineBlocks(t, net, 1, expectedTxes)[0]
closingTxid, err := net.WaitForChannelClose(ctx, closeUpdates)
if err != nil {
@ -600,22 +618,6 @@ func shutdownAndAssert(net *lntest.NetworkHarness, t *harnessTest,
}
}
// calcStaticFee calculates appropriate fees for commitment transactions. This
// function provides a simple way to allow test balance assertions to take fee
// calculations into account.
//
// TODO(bvu): Refactor when dynamic fee estimation is added.
// TODO(conner) remove code duplication
func calcStaticFee(numHTLCs int) btcutil.Amount {
const (
commitWeight = btcutil.Amount(724)
htlcWeight = 172
feePerKw = btcutil.Amount(50 * 1000 / 4)
)
return feePerKw * (commitWeight +
btcutil.Amount(htlcWeight*numHTLCs)) / 1000
}
// completePaymentRequests sends payments from a lightning node to complete all
// payment requests. If the awaitResponse parameter is true, this function
// does not return until all payments successfully complete without errors.
@ -998,6 +1000,66 @@ func (c commitType) Args() []string {
return nil
}
// calcStaticFee calculates appropriate fees for commitment transactions. This
// function provides a simple way to allow test balance assertions to take fee
// calculations into account.
func (c commitType) calcStaticFee(numHTLCs int) btcutil.Amount {
const htlcWeight = input.HTLCWeight
var (
feePerKw = chainfee.SatPerKVByte(50000).FeePerKWeight()
commitWeight = input.CommitWeight
anchors = btcutil.Amount(0)
)
// The anchor commitment type is slightly heavier, and we must also add
// the value of the two anchors to the resulting fee the initiator
// pays.
if c == commitTypeAnchors {
commitWeight = input.AnchorCommitWeight
anchors = 2 * anchorSize
}
return feePerKw.FeeForWeight(int64(commitWeight+htlcWeight*numHTLCs)) +
anchors
}
// channelCommitType retrieves the active channel commitment type for the given
// chan point.
func channelCommitType(node *lntest.HarnessNode,
chanPoint *lnrpc.ChannelPoint) (commitType, error) {
ctxb := context.Background()
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
req := &lnrpc.ListChannelsRequest{}
channels, err := node.ListChannels(ctxt, req)
if err != nil {
return 0, fmt.Errorf("listchannels failed: %v", err)
}
for _, c := range channels.Channels {
if c.ChannelPoint == txStr(chanPoint) {
switch c.CommitmentType {
// If the anchor output size is non-zero, we are
// dealing with the anchor type.
case lnrpc.CommitmentType_ANCHORS:
return commitTypeAnchors, nil
// StaticRemoteKey means it is tweakless,
case lnrpc.CommitmentType_STATIC_REMOTE_KEY:
return commitTypeTweakless, nil
// Otherwise legacy.
default:
return commitTypeLegacy, nil
}
}
}
return 0, fmt.Errorf("channel point %v not found", chanPoint)
}
// basicChannelFundingTest is a sub-test of the main testBasicChannelFunding
// test. Given two nodes: Alice and Bob, it'll assert proper channel creation,
// then return a function closure that should be called to assert proper
@ -1038,6 +1100,12 @@ func basicChannelFundingTest(t *harnessTest, net *lntest.NetworkHarness,
"channel: %v", err)
}
cType, err := channelCommitType(alice, chanPoint)
if err != nil {
return nil, nil, nil, fmt.Errorf("unable to get channel "+
"type: %v", err)
}
// With the channel open, ensure that the amount specified above has
// properly been pushed to Bob.
balReq := &lnrpc.ChannelBalanceRequest{}
@ -1054,7 +1122,7 @@ func basicChannelFundingTest(t *harnessTest, net *lntest.NetworkHarness,
"balance: %v", err)
}
expBalanceAlice := chanAmt - pushAmt - calcStaticFee(0)
expBalanceAlice := chanAmt - pushAmt - cType.calcStaticFee(0)
aliceBalance := btcutil.Amount(aliceBal.Balance)
if aliceBalance != expBalanceAlice {
return nil, nil, nil, fmt.Errorf("alice's balance is "+
@ -1104,6 +1172,7 @@ func testBasicChannelFunding(net *lntest.NetworkHarness, t *harnessTest) {
allTypes := []commitType{
commitTypeLegacy,
commitTypeTweakless,
commitTypeAnchors,
}
test:
@ -1156,27 +1225,58 @@ test:
t.Fatalf("failed funding flow: %v", err)
}
carolTweakless := carolCommitType == commitTypeTweakless
// Both nodes should report the same commitment
// type.
chansCommitType := carolChannel.CommitmentType
if daveChannel.CommitmentType != chansCommitType {
t.Fatalf("commit types don't match, "+
"carol got %v, dave got %v",
carolChannel.CommitmentType,
daveChannel.CommitmentType,
)
}
daveTweakless := daveCommitType == commitTypeTweakless
// Now check that the commitment type reported
// by both nodes is what we expect. It will be
// the minimum of the two nodes' preference, in
// the order Legacy, Tweakless, Anchors.
expType := carolCommitType
tweaklessSignalled := carolTweakless && daveTweakless
tweaklessChans := (carolChannel.StaticRemoteKey &&
daveChannel.StaticRemoteKey)
switch daveCommitType {
// Dave supports anchors, type will be what
// Carol supports.
case commitTypeAnchors:
// Dave only supports tweakless, channel will
// be downgraded to this type if Carol supports
// anchors.
case commitTypeTweakless:
if expType == commitTypeAnchors {
expType = commitTypeTweakless
}
// Dave only supoprts legacy type, channel will
// be downgraded to this type.
case commitTypeLegacy:
expType = commitTypeLegacy
default:
t.Fatalf("invalid commit type %v",
daveCommitType)
}
// Check that the signalled type matches what we
// expect.
switch {
// If both sides signalled a tweakless channel, and the
// resulting channel doesn't reflect this, then this
// is a failed case.
case tweaklessSignalled && !tweaklessChans:
t.Fatalf("expected tweakless channnel, got " +
"non-tweaked channel")
case expType == commitTypeAnchors && chansCommitType == lnrpc.CommitmentType_ANCHORS:
case expType == commitTypeTweakless && chansCommitType == lnrpc.CommitmentType_STATIC_REMOTE_KEY:
case expType == commitTypeLegacy && chansCommitType == lnrpc.CommitmentType_LEGACY:
// If both sides didn't signal a tweakless
// channel, and the resulting channel is
// tweakless, and this is also a failed case.
case !tweaklessSignalled && tweaklessChans:
t.Fatalf("expected non-tweaked channel, got " +
"tweakless channel")
default:
t.Fatalf("expected nodes to signal "+
"commit type %v, instead got "+
"%v", expType, chansCommitType)
}
// As we've concluded this sub-test case we'll
@ -1275,6 +1375,11 @@ func testUnconfirmedChannelFunding(net *lntest.NetworkHarness, t *harnessTest) {
t.Fatalf("error while waiting for channel open: %v", err)
}
cType, err := channelCommitType(net.Alice, chanPoint)
if err != nil {
t.Fatalf("unable to get channel type: %v", err)
}
// With the channel open, we'll check the balances on each side of the
// channel as a sanity check to ensure things worked out as intended.
balReq := &lnrpc.ChannelBalanceRequest{}
@ -1288,9 +1393,9 @@ func testUnconfirmedChannelFunding(net *lntest.NetworkHarness, t *harnessTest) {
if err != nil {
t.Fatalf("unable to get alice's balance: %v", err)
}
if carolBal.Balance != int64(chanAmt-pushAmt-calcStaticFee(0)) {
if carolBal.Balance != int64(chanAmt-pushAmt-cType.calcStaticFee(0)) {
t.Fatalf("carol's balance is incorrect: expected %v got %v",
chanAmt-pushAmt-calcStaticFee(0), carolBal)
chanAmt-pushAmt-cType.calcStaticFee(0), carolBal)
}
if aliceBal.Balance != int64(pushAmt) {
t.Fatalf("alice's balance is incorrect: expected %v got %v",
@ -2708,9 +2813,14 @@ func testChannelBalance(net *lntest.NetworkHarness, t *harnessTest) {
"timeout: %v", err)
}
cType, err := channelCommitType(net.Alice, chanPoint)
if err != nil {
t.Fatalf("unable to get channel type: %v", err)
}
// As this is a single funder channel, Alice's balance should be
// exactly 0.5 BTC since now state transitions have taken place yet.
checkChannelBalance(net.Alice, amount-calcStaticFee(0))
checkChannelBalance(net.Alice, amount-cType.calcStaticFee(0))
// Ensure Bob currently has no available balance within the channel.
checkChannelBalance(net.Bob, 0)
@ -2987,6 +3097,7 @@ func testChannelForceClosure(net *lntest.NetworkHarness, t *harnessTest) {
// outputs can be swept.
commitTypes := []commitType{
commitTypeLegacy,
commitTypeAnchors,
}
for _, channelType := range commitTypes {
@ -3026,7 +3137,19 @@ func testChannelForceClosure(net *lntest.NetworkHarness, t *harnessTest) {
err)
}
channelForceClosureTest(net, ht, alice, carol)
// Also give Carol some coins to allow her to sweep her
// anchor.
err = net.SendCoins(
ctxt, btcutil.SatoshiPerBitcoin, carol,
)
if err != nil {
t.Fatalf("unable to send coins to Alice: %v",
err)
}
channelForceClosureTest(
net, ht, alice, carol, channelType,
)
})
if !success {
return
@ -3035,7 +3158,7 @@ func testChannelForceClosure(net *lntest.NetworkHarness, t *harnessTest) {
}
func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
alice, carol *lntest.HarnessNode) {
alice, carol *lntest.HarnessNode, channelType commitType) {
ctxb := context.Background()
@ -3211,8 +3334,16 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
}
// Mine a block which should confirm the commitment transaction
// broadcast as a result of the force closure.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
// broadcast as a result of the force closure. If there are anchors, we
// also expect the anchor sweep tx to be in the mempool.
expectedTxes := 1
if channelType == commitTypeAnchors {
expectedTxes = 2
}
_, err = waitForNTxsInMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("failed to find commitment in miner mempool: %v", err)
}
@ -3223,52 +3354,52 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
// Now that the commitment has been confirmed, the channel should be
// marked as force closed.
err = wait.Predicate(func() bool {
err = wait.NoError(func() error {
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
pendingChanResp, err := alice.PendingChannels(
ctxt, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
return fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
predErr = checkNumForceClosedChannels(pendingChanResp, 1)
if predErr != nil {
return false
err = checkNumForceClosedChannels(pendingChanResp, 1)
if err != nil {
return err
}
forceClose, predErr := findForceClosedChannel(
pendingChanResp, &op,
)
if predErr != nil {
return false
forceClose, err := findForceClosedChannel(pendingChanResp, &op)
if err != nil {
return err
}
// Now that the channel has been force closed, it should now
// have the height and number of blocks to confirm populated.
predErr = checkCommitmentMaturity(
err = checkCommitmentMaturity(
forceClose, commCsvMaturityHeight, int32(defaultCSV),
)
if predErr != nil {
return false
if err != nil {
return err
}
// None of our outputs have been swept, so they should all be in
// limbo.
// limbo. For anchors, we expect the anchor amount to be
// recovered.
if forceClose.LimboBalance == 0 {
predErr = errors.New("all funds should still be in " +
return errors.New("all funds should still be in " +
"limbo")
return false
}
if forceClose.RecoveredBalance != 0 {
predErr = errors.New("no funds should yet be shown " +
expectedRecoveredBalance := int64(0)
if channelType == commitTypeAnchors {
expectedRecoveredBalance = anchorSize
}
if forceClose.RecoveredBalance != expectedRecoveredBalance {
return errors.New("no funds should yet be shown " +
"as recovered")
return false
}
return true
return nil
}, 15*time.Second)
if err != nil {
t.Fatalf(predErr.Error())
@ -3283,8 +3414,11 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
}
// Carol's sweep tx should be in the mempool already, as her output is
// not timelocked.
_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
// not timelocked. If there are anchors, we also expect Carol's anchor
// sweep now.
_, err = waitForNTxsInMempool(
net.Miner.Node, expectedTxes, minerMempoolTimeout,
)
if err != nil {
t.Fatalf("failed to find Carol's sweep in miner mempool: %v",
err)
@ -3346,7 +3480,11 @@ func channelForceClosureTest(net *lntest.NetworkHarness, t *harnessTest,
return errors.New("all funds should still be in " +
"limbo")
}
if forceClose.RecoveredBalance != 0 {
expectedRecoveredBalance := int64(0)
if channelType == commitTypeAnchors {
expectedRecoveredBalance = anchorSize
}
if forceClose.RecoveredBalance != expectedRecoveredBalance {
return errors.New("no funds should yet be shown " +
"as recovered")
}
@ -6855,6 +6993,27 @@ func waitForNTxsInMempool(miner *rpcclient.Client, n int,
}
}
// getNTxsFromMempool polls until finding the desired number of transactions in
// the provided miner's mempool and returns the full transactions to the caller.
func getNTxsFromMempool(miner *rpcclient.Client, n int,
timeout time.Duration) ([]*wire.MsgTx, error) {
txids, err := waitForNTxsInMempool(miner, n, timeout)
if err != nil {
return nil, err
}
var txes []*wire.MsgTx
for _, txid := range txids {
tx, err := miner.GetRawTransaction(txid)
if err != nil {
return nil, err
}
txes = append(txes, tx.MsgTx())
}
return txes, nil
}
// testFailingChannel tests that we will fail the channel by force closing ii
// in the case where a counterparty tries to settle an HTLC with the wrong
// preimage.
@ -9156,7 +9315,12 @@ func testHtlcErrorPropagation(net *lntest.NetworkHarness, t *harnessTest) {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
commitFee := calcStaticFee(0)
cType, err := channelCommitType(net.Alice, chanPointAlice)
if err != nil {
t.Fatalf("unable to get channel type: %v", err)
}
commitFee := cType.calcStaticFee(0)
assertBaseBalance := func() {
balReq := &lnrpc.ChannelBalanceRequest{}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
@ -10573,7 +10737,16 @@ func assertNumActiveHtlcs(nodes []*lntest.HarnessNode, numHtlcs int) error {
}
func assertSpendingTxInMempool(t *harnessTest, miner *rpcclient.Client,
timeout time.Duration, chanPoint wire.OutPoint) {
timeout time.Duration, chanPoint wire.OutPoint) chainhash.Hash {
tx := getSpendingTxInMempool(t, miner, timeout, chanPoint)
return tx.TxHash()
}
// getSpendingTxInMempool waits for a transaction spending the given outpoint to
// appear in the mempool and returns that tx in full.
func getSpendingTxInMempool(t *harnessTest, miner *rpcclient.Client,
timeout time.Duration, chanPoint wire.OutPoint) *wire.MsgTx {
breakTimeout := time.After(timeout)
ticker := time.NewTicker(50 * time.Millisecond)
@ -10599,9 +10772,10 @@ func assertSpendingTxInMempool(t *harnessTest, miner *rpcclient.Client,
t.Fatalf("unable to fetch tx: %v", err)
}
for _, txIn := range tx.MsgTx().TxIn {
msgTx := tx.MsgTx()
for _, txIn := range msgTx.TxIn {
if txIn.PreviousOutPoint == chanPoint {
return
return msgTx
}
}
}

@ -138,10 +138,6 @@ func createSweepTx(inputs []input.Input, outputPkScript []byte,
txFee := feePerKw.FeeForWeight(txWeight)
log.Infof("Creating sweep transaction for %v inputs (%s) "+
"using %v sat/kw, tx_fee=%v", len(inputs),
inputTypeSummary(inputs), int64(feePerKw), txFee)
// Sum up the total value contained in the inputs.
var totalSum btcutil.Amount
for _, o := range inputs {
@ -211,6 +207,10 @@ func createSweepTx(inputs []input.Input, outputPkScript []byte,
}
}
log.Infof("Creating sweep transaction %v for %v inputs (%s) "+
"using %v sat/kw, tx_fee=%v", sweepTx.TxHash(), len(inputs),
inputTypeSummary(inputs), int64(feePerKw), txFee)
return sweepTx, nil
}
@ -254,27 +254,19 @@ func getWeightEstimate(inputs []input.Input) ([]input.Input, int64) {
// inputSummary returns a string containing a human readable summary about the
// witness types of a list of inputs.
func inputTypeSummary(inputs []input.Input) string {
// Count each input by the string representation of its witness type.
// We also keep track of the keys so we can later sort by them to get
// a stable output.
counts := make(map[string]uint32)
keys := make([]string, 0, len(inputs))
for _, i := range inputs {
key := i.WitnessType().String()
_, ok := counts[key]
if !ok {
counts[key] = 0
keys = append(keys, key)
}
counts[key]++
}
sort.Strings(keys)
// Sort inputs by witness type.
sortedInputs := make([]input.Input, len(inputs))
copy(sortedInputs, inputs)
sort.Slice(sortedInputs, func(i, j int) bool {
return sortedInputs[i].WitnessType().String() <
sortedInputs[j].WitnessType().String()
})
// Return a nice string representation of the counts by comma joining a
// slice.
var parts []string
for _, witnessType := range keys {
part := fmt.Sprintf("%d %s", counts[witnessType], witnessType)
for _, i := range sortedInputs {
part := fmt.Sprintf("%v (%v)",
*i.OutPoint(), i.WitnessType())
parts = append(parts, part)
}
return strings.Join(parts, ", ")

@ -3,6 +3,7 @@ package sweep
import (
"testing"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/input"
)
@ -15,9 +16,10 @@ var (
input.WitnessKeyHash,
}
expectedWeight = int64(1462)
expectedSummary = "1 CommitmentTimeLock, 1 " +
"HtlcAcceptedSuccessSecondLevel, 1 HtlcOfferedRemoteTimeout, " +
"1 WitnessKeyHash"
expectedSummary = "0000000000000000000000000000000000000000000000000000000000000000:10 (CommitmentTimeLock), " +
"0000000000000000000000000000000000000000000000000000000000000001:11 (HtlcAcceptedSuccessSecondLevel), " +
"0000000000000000000000000000000000000000000000000000000000000002:12 (HtlcOfferedRemoteTimeout), " +
"0000000000000000000000000000000000000000000000000000000000000003:13 (WitnessKeyHash)"
)
// TestWeightEstimate tests that the estimated weight and number of CSVs/CLTVs
@ -27,9 +29,12 @@ func TestWeightEstimate(t *testing.T) {
t.Parallel()
var inputs []input.Input
for _, witnessType := range witnessTypes {
for i, witnessType := range witnessTypes {
inputs = append(inputs, input.NewBaseInput(
&wire.OutPoint{}, witnessType,
&wire.OutPoint{
Hash: chainhash.Hash{byte(i)},
Index: uint32(i) + 10,
}, witnessType,
&input.SignDescriptor{}, 0,
))
}