rever to older netio

This commit is contained in:
Tadge Dryja 2016-01-16 11:07:20 -08:00
parent 8469b4fd9f
commit 04b83d024e
4 changed files with 582 additions and 757 deletions

@ -1,368 +0,0 @@
package lndc
import (
"bytes"
"crypto/cipher"
"encoding/binary"
"fmt"
"net"
"time"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/fastsha256"
"github.com/codahale/chacha20poly1305"
"github.com/btcsuite/btcd/btcec"
)
// Conn...
type LNDConn struct {
longTermPriv *btcec.PrivateKey
remotePub *btcec.PublicKey
remoteLNId [16]byte
myNonceInt uint64
remoteNonceInt uint64
// If Authed == false, the remotePub is the EPHEMERAL key.
// once authed == true, remotePub is who you're actually talking to.
authed bool
// chachaStream saves some time as you don't have to init it with
// the session key every time. Make SessionKey redundant; remove later.
chachaStream cipher.AEAD
// ViaPbx specifies whether this is a direct TCP connection or an
// encapsulated PBX connection.
// If going ViaPbx, Cn isn't used channels are used for Read() and
// Write(), which are filled by the PBXhandler.
viaPbx bool
pbxIncoming chan []byte
pbxOutgoing chan []byte
version uint8
readBuf bytes.Buffer
conn net.Conn
}
// NewConn...
func NewConn(connPrivKey *btcec.PrivateKey, conn net.Conn) *LNDConn {
return &LNDConn{longTermPriv: connPrivKey, conn: conn}
}
// Dial...
func (c *LNDConn) Dial(address string, remoteId []byte) error {
var err error
if c.conn != nil {
return fmt.Errorf("connection already established")
}
// Before dialing out to the remote host, verify that `remoteId` is either
// a pubkey or a pubkey hash.
if len(remoteId) != 33 && len(remoteId) != 20 {
return fmt.Errorf("must supply either remote pubkey or " +
"pubkey hash")
}
// First, open the TCP connection itself.
c.conn, err = net.Dial("tcp", address)
if err != nil {
return err
}
// Calc remote LNId; need this for creating pbx connections just because
// LNid is in the struct does not mean it's authed!
if len(remoteId) == 20 {
copy(c.remoteLNId[:], remoteId[:16])
} else {
theirAdr := btcutil.Hash160(remoteId)
copy(c.remoteLNId[:], theirAdr[:16])
}
// Make up an ephemeral keypair for this session.
ourEphemeralPriv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return err
}
ourEphemeralPub := ourEphemeralPriv.PubKey()
// Sned 1. Send my ephemeral pubkey. Can add version bits.
if _, err = writeClear(c.conn, ourEphemeralPub.SerializeCompressed()); err != nil {
return err
}
// Read, then deserialize their ephemeral public key.
theirEphPubBytes, err := readClear(c.conn)
if err != nil {
return err
}
theirEphPub, err := btcec.ParsePubKey(theirEphPubBytes, btcec.S256())
if err != nil {
return err
}
// Do non-interactive diffie with ephemeral pubkeys. Sha256 for good
// luck.
sessionKey := fastsha256.Sum256(
btcec.GenerateSharedSecret(ourEphemeralPriv, theirEphPub),
)
// Now that we've derive the session key, we can initialize the
// chacha20poly1305 AEAD instance which will be used for the remainder of
// the session.
c.chachaStream, err = chacha20poly1305.New(sessionKey[:])
if err != nil {
return err
}
// display private key for debug only
fmt.Printf("made session key %x\n", sessionKey)
c.myNonceInt = 1 << 63
c.remoteNonceInt = 0
c.remotePub = theirEphPub
c.authed = false
// Session is now open and confidential but not yet authenticated...
// So auth!
if len(remoteId) == 20 {
// Only know pubkey hash (20 bytes).
err = c.authPKH(remoteId, ourEphemeralPub.SerializeCompressed())
} else {
// Must be 33 byte pubkey.
err = c.authPubKey(remoteId, ourEphemeralPub.SerializeCompressed())
}
if err != nil {
return err
}
return nil
}
// authPubKey...
func (c *LNDConn) authPubKey(remotePubBytes, localEphPubBytes []byte) error {
if c.authed {
return fmt.Errorf("%s already authed", c.remotePub)
}
// Since we already know their public key, we can immediately generate
// the DH proof without an additional round-trip.
theirPub, err := btcec.ParsePubKey(remotePubBytes, btcec.S256())
if err != nil {
return err
}
theirPKH := btcutil.Hash160(remotePubBytes)
idDH := fastsha256.Sum256(btcec.GenerateSharedSecret(c.longTermPriv, theirPub))
myDHproof := btcutil.Hash160(append(c.remotePub.SerializeCompressed(), idDH[:]...))
// Send over the 73 byte authentication message: my pubkey, their
// pubkey hash, DH proof.
var authMsg [73]byte
copy(authMsg[:33], c.longTermPriv.PubKey().SerializeCompressed())
copy(authMsg[33:], theirPKH)
copy(authMsg[53:], myDHproof)
if _, err = c.conn.Write(authMsg[:]); err != nil {
return nil
}
// Await, their response. They should send only the 20-byte DH proof.
resp := make([]byte, 20)
_, err = c.conn.Read(resp)
if err != nil {
return err
}
// Verify that their proof matches our locally computed version.
theirDHproof := btcutil.Hash160(append(localEphPubBytes, idDH[:]...))
if bytes.Equal(resp, theirDHproof) == false {
return fmt.Errorf("invalid DH proof %x", theirDHproof)
}
// Proof checks out, auth complete.
c.remotePub = theirPub
theirAdr := btcutil.Hash160(theirPub.SerializeCompressed())
copy(c.remoteLNId[:], theirAdr[:16])
c.authed = true
return nil
}
// authPKH...
func (c *LNDConn) authPKH(theirPKH, localEphPubBytes []byte) error {
if c.authed {
return fmt.Errorf("%s already authed", c.remotePub)
}
if len(theirPKH) != 20 {
return fmt.Errorf("remote PKH must be 20 bytes, got %d",
len(theirPKH))
}
// Send 53 bytes: our pubkey, and the remote's pubkey hash.
var greetingMsg [53]byte
copy(greetingMsg[:33], c.longTermPriv.PubKey().SerializeCompressed())
copy(greetingMsg[:33], theirPKH)
if _, err := c.conn.Write(greetingMsg[:]); err != nil {
return err
}
// Wait for their response.
// TODO(tadge): add timeout here
// * NOTE(roasbeef): read timeout should be set on the underlying
// net.Conn.
resp := make([]byte, 53)
if _, err := c.conn.Read(resp); err != nil {
return err
}
// Parse their long-term public key, and generate the DH proof.
theirPub, err := btcec.ParsePubKey(resp[:33], btcec.S256())
if err != nil {
return err
}
idDH := fastsha256.Sum256(btcec.GenerateSharedSecret(c.longTermPriv, theirPub))
fmt.Printf("made idDH %x\n", idDH)
theirDHproof := btcutil.Hash160(append(localEphPubBytes, idDH[:]...))
// Verify that their DH proof matches the one we just generated.
if bytes.Equal(resp[33:], theirDHproof) == false {
return fmt.Errorf("Invalid DH proof %x", theirDHproof)
}
// If their DH proof checks out, then send our own.
myDHproof := btcutil.Hash160(append(c.remotePub.SerializeCompressed(), idDH[:]...))
if _, err = c.conn.Write(myDHproof); err != nil {
return err
}
// Proof sent, auth complete.
c.remotePub = theirPub
theirAdr := btcutil.Hash160(theirPub.SerializeCompressed())
copy(c.remoteLNId[:], theirAdr[:16])
c.authed = true
return nil
}
// Read reads data from the connection.
// Read can be made to time out and return a Error with Timeout() == true
// after a fixed time limit; see SetDeadline and SetReadDeadline.
// Part of the net.Conn interface.
func (c *LNDConn) Read(b []byte) (n int, err error) {
// In order to reconcile the differences between the record abstraction
// of our AEAD connection, and the stream abstraction of TCP, we maintain
// an intermediate read buffer. If this buffer becomes depleated, then
// we read the next record, and feed it into the buffer. Otherwise, we
// read directly from the buffer.
if c.readBuf.Len() == 0 {
// The buffer is empty, so read the next cipher text.
ctext, err := readClear(c.conn)
if err != nil {
return 0, err
}
// Encode the current remote nonce, so we can use it to decrypt
// the cipher text.
var nonceBuf [8]byte
binary.BigEndian.PutUint64(nonceBuf[:], c.remoteNonceInt)
fmt.Printf("decrypt %d byte from %x nonce %d\n",
len(ctext), c.remoteLNId, c.remoteNonceInt)
c.remoteNonceInt++ // increment remote nonce, no matter what...
msg, err := c.chachaStream.Open(nil, nonceBuf[:], ctext, nil)
if err != nil {
fmt.Printf("decrypt %d byte ciphertext failed\n", len(ctext))
return 0, err
}
if _, err := c.readBuf.Write(msg); err != nil {
return 0, err
}
}
return c.readBuf.Read(b)
}
// Write writes data to the connection.
// Write can be made to time out and return a Error with Timeout() == true
// after a fixed time limit; see SetDeadline and SetWriteDeadline.
// Part of the net.Conn interface.
func (c *LNDConn) Write(b []byte) (n int, err error) {
if b == nil {
return 0, fmt.Errorf("write to %x nil", c.remoteLNId)
}
fmt.Printf("Encrypt %d byte plaintext to %x nonce %d\n",
len(b), c.remoteLNId, c.myNonceInt)
// first encrypt message with shared key
var nonceBuf [8]byte
binary.BigEndian.PutUint64(nonceBuf[:], c.myNonceInt)
c.myNonceInt++ // increment mine
ctext := c.chachaStream.Seal(nil, nonceBuf[:], b, nil)
if err != nil {
return 0, err
}
if len(ctext) > 65530 {
return 0, fmt.Errorf("Write to %x too long, %d bytes",
c.remoteLNId, len(ctext))
}
// use writeClear to prepend length / destination header
return writeClear(c.conn, ctext)
}
// Close closes the connection.
// Any blocked Read or Write operations will be unblocked and return errors.
// Part of the net.Conn interface.
func (c *LNDConn) Close() error {
c.myNonceInt = 0
c.remoteNonceInt = 0
c.remotePub = nil
return c.conn.Close()
}
// LocalAddr returns the local network address.
// Part of the net.Conn interface.
// If PBX reports address of pbx host.
func (c *LNDConn) LocalAddr() net.Addr {
return c.conn.LocalAddr()
}
// RemoteAddr returns the remote network address.
// Part of the net.Conn interface.
func (c *LNDConn) RemoteAddr() net.Addr {
return c.conn.RemoteAddr()
}
// SetDeadline sets the read and write deadlines associated
// with the connection. It is equivalent to calling both
// SetReadDeadline and SetWriteDeadline.
// Part of the net.Conn interface.
func (c *LNDConn) SetDeadline(t time.Time) error {
return c.conn.SetDeadline(t)
}
// SetReadDeadline sets the deadline for future Read calls.
// A zero value for t means Read will not time out.
// Part of the net.Conn interface.
func (c *LNDConn) SetReadDeadline(t time.Time) error {
return c.conn.SetReadDeadline(t)
}
// SetWriteDeadline sets the deadline for future Write calls.
// Even if write times out, it may return n > 0, indicating that
// some of the data was successfully written.
// A zero value for t means Write will not time out.
// Part of the net.Conn interface.
func (c *LNDConn) SetWriteDeadline(t time.Time) error {
return c.conn.SetWriteDeadline(t)
}
var _ net.Conn = (*LNDConn)(nil)

@ -1,206 +0,0 @@
package lndc
import (
"bytes"
"fmt"
"net"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/fastsha256"
"github.com/codahale/chacha20poly1305"
)
// Listener...
type Listener struct {
longTermPriv *btcec.PrivateKey
tcp *net.TCPListener
}
var _ net.Listener = (*Listener)(nil)
// NewListener...
func NewListener(localPriv *btcec.PrivateKey, listenAddr string) (*Listener, error) {
addr, err := net.ResolveTCPAddr("tcp", listenAddr)
if err != nil {
return nil, err
}
l, err := net.ListenTCP("tcp", addr)
if err != nil {
return nil, err
}
return &Listener{localPriv, l}, nil
}
// Accept waits for and returns the next connection to the listener.
// Part of the net.Listener interface.
func (l *Listener) Accept() (c net.Conn, err error) {
conn, err := l.tcp.Accept()
if err != nil {
return nil, nil
}
lndc := NewConn(l.longTermPriv, conn)
// Exchange an ephemeral public key with the remote connection in order
// to establish a confidential connection before we attempt to
// authenticated.
ephemeralKey, err := l.createCipherConn(lndc)
if err != nil {
return nil, err
}
// Now that we've established an encrypted connection, authenticate the
// identity of the remote host.
ephemeralPub := ephemeralKey.PubKey().SerializeCompressed()
if err := l.authenticateConnection(lndc, ephemeralPub); err != nil {
lndc.Close()
return nil, err
}
return lndc, nil
}
// createCipherConn....
func (l *Listener) createCipherConn(lnConn *LNDConn) (*btcec.PrivateKey, error) {
var err error
var theirEphPubBytes []byte
// First, read and deserialize their ephemeral public key.
theirEphPubBytes, err = readClear(lnConn.conn)
if err != nil {
return nil, err
}
if len(theirEphPubBytes) != 33 {
return nil, fmt.Errorf("Got invalid %d byte eph pubkey %x\n",
len(theirEphPubBytes), theirEphPubBytes)
}
theirEphPub, err := btcec.ParsePubKey(theirEphPubBytes, btcec.S256())
if err != nil {
return nil, err
}
// Once we've parsed and verified their key, generate, and send own
// ephemeral key pair for use within this session.
myEph, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, err
}
if _, err := writeClear(lnConn.conn, myEph.PubKey().SerializeCompressed()); err != nil {
return nil, err
}
// Now that we have both keys, do non-interactive diffie with ephemeral
// pubkeys, sha256 for good luck.
sessionKey := fastsha256.Sum256(
btcec.GenerateSharedSecret(myEph, theirEphPub),
)
lnConn.chachaStream, err = chacha20poly1305.New(sessionKey[:])
// display private key for debug only
fmt.Printf("made session key %x\n", sessionKey)
lnConn.remoteNonceInt = 1 << 63
lnConn.myNonceInt = 0
lnConn.remotePub = theirEphPub
lnConn.authed = false
return myEph, nil
}
// AuthListen...
func (l *Listener) authenticateConnection(lnConn *LNDConn, localEphPubBytes []byte) error {
var err error
// TODO(roasbeef): should be using read/write clear here?
slice := make([]byte, 73)
n, err := lnConn.conn.Read(slice)
if err != nil {
fmt.Printf("Read error: %s\n", err.Error())
return err
}
fmt.Printf("read %d bytes\n", n)
authmsg := slice[:n]
if len(authmsg) != 53 && len(authmsg) != 73 {
return fmt.Errorf("got auth message of %d bytes, "+
"expect 53 or 73", len(authmsg))
}
myPKH := btcutil.Hash160(l.longTermPriv.PubKey().SerializeCompressed())
if !bytes.Equal(myPKH, authmsg[33:53]) {
return fmt.Errorf(
"remote host asking for PKH %x, that's not me", authmsg[33:53])
}
// do DH with id keys
theirPub, err := btcec.ParsePubKey(authmsg[:33], btcec.S256())
if err != nil {
return err
}
idDH := fastsha256.Sum256(
btcec.GenerateSharedSecret(lnConn.longTermPriv, theirPub),
)
myDHproof := btcutil.Hash160(
append(lnConn.remotePub.SerializeCompressed(), idDH[:]...),
)
theirDHproof := btcutil.Hash160(append(localEphPubBytes, idDH[:]...))
// If they already know our public key, then execute the fast path.
// Verify their DH proof, and send our own.
if len(authmsg) == 73 {
// Verify their DH proof.
if !bytes.Equal(authmsg[53:], theirDHproof) {
return fmt.Errorf("invalid DH proof from %s",
lnConn.RemoteAddr().String())
}
// Their DH proof checks out, so send ours now.
if _, err = lnConn.conn.Write(myDHproof); err != nil {
return err
}
} else {
// Otherwise, they don't yet know our public key. So we'll send
// it over to them, so we can both compute the DH proof.
msg := append(l.longTermPriv.PubKey().SerializeCompressed(), myDHproof...)
if _, err = lnConn.conn.Write(msg); err != nil {
return err
}
resp := make([]byte, 20)
if _, err := lnConn.conn.Read(resp); err != nil {
return err
}
// Verify their DH proof.
if bytes.Equal(resp, theirDHproof) == false {
return fmt.Errorf("Invalid DH proof %x", theirDHproof)
}
}
theirAdr := btcutil.Hash160(theirPub.SerializeCompressed())
copy(lnConn.remoteLNId[:], theirAdr[:16])
lnConn.remotePub = theirPub
lnConn.authed = true
return nil
}
// Close closes the listener.
// Any blocked Accept operations will be unblocked and return errors.
// Part of the net.Listener interface.
func (l *Listener) Close() error {
return l.tcp.Close()
}
// Addr returns the listener's network address.
// Part of the net.Listener interface.
func (l *Listener) Addr() net.Addr {
return l.tcp.Addr()
}

@ -1,97 +0,0 @@
package lndc
import (
"bytes"
"fmt"
"sync"
"testing"
"github.com/btcsuite/btcd/btcec"
)
func TestConnectionCorrectness(t *testing.T) {
// First, generate the long-term private keys both ends of the connection
// within our test.
localPriv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Fatalf("unable to generate local priv key: %v", err)
}
remotePriv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Fatalf("unable to generate remote priv key: %v", err)
}
// Having a port of "0" means a random port will be chosen for our
// listener.
addr := "127.0.0.1:0"
// Our listener will be local, and the connection remote.
listener, err := NewListener(localPriv, addr)
if err != nil {
t.Fatalf("unable to create listener: %v", err)
}
conn := NewConn(remotePriv, nil)
var wg sync.WaitGroup
var dialErr error
// Initiate a connection with a separate goroutine, and listen with our
// main one. If both errors are nil, then encryption+auth was succesful.
wg.Add(1)
go func() {
dialErr = conn.Dial(listener.Addr().String(),
localPriv.PubKey().SerializeCompressed())
wg.Done()
}()
localConn, listenErr := listener.Accept()
if listenErr != nil {
t.Fatalf("unable to accept connection: %v", listenErr)
}
wg.Wait()
if dialErr != nil {
t.Fatalf("unable to establish connection: %v", dialErr)
}
// Test out some message full-message reads.
for i := 0; i < 10; i++ {
msg := []byte("hello" + string(i))
if _, err := conn.Write(msg); err != nil {
t.Fatalf("remote conn failed to write: %v", err)
}
readBuf := make([]byte, len(msg))
if _, err := localConn.Read(readBuf); err != nil {
t.Fatalf("local conn failed to read: %v", err)
}
if !bytes.Equal(readBuf, msg) {
t.Fatalf("messages don't match, %v vs %v",
string(readBuf), string(msg))
}
}
// Now try incremental message reads. This simulates first writing a
// message header, then a message body.
outMsg := []byte("hello world")
fmt.Println("write")
if _, err := conn.Write(outMsg); err != nil {
t.Fatalf("remote conn failed to write: %v", err)
}
readBuf := make([]byte, len(outMsg))
if _, err := localConn.Read(readBuf[:len(outMsg)/2]); err != nil {
t.Fatalf("local conn failed to read: %v", err)
}
if _, err := localConn.Read(readBuf[len(outMsg)/2:]); err != nil {
t.Fatalf("local conn failed to read: %v", err)
}
if !bytes.Equal(outMsg, readBuf) {
t.Fatalf("messages don't match, %v vs %v",
string(readBuf), string(outMsg))
}
}

@ -2,56 +2,436 @@ package lndc
import (
"bytes"
"crypto/cipher"
"encoding/binary"
"fmt"
"io"
"net"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/fastsha256"
"github.com/codahale/chacha20poly1305"
"github.com/lightningnetwork/lnd/lnwire"
"golang.org/x/crypto/ripemd160"
)
// New & improved tcp open session.
// There's connector A and listener B. Once the connection is set up there's no
// difference, but there can be during the setup.
// Setup:
// 1 -> A sends B ephemeral secp256k1 pubkey (33 bytes)
// 2 <- B sends A ephemeral secp256k1 pubkey (33 bytes)
// A and B do DH, get a shared secret.
// ==========
// Seesion is open! Done! Well not quite. Session is confidential but not
// yet authenticated. From here on, can use the Send() and Recv() functions with
// chacha20poly1305.
// ==========
/* good ol' OP_HASH160, which is just ripemd160(sha256(input)) */
func H160(input []byte) []byte {
rp := ripemd160.New()
shaout := fastsha256.Sum256(input)
_, _ = rp.Write(shaout[:])
return rp.Sum(nil)
}
// Nodes authenticate by doing a DH with their persistent identity keys, and then
// exchanging hash based proofs that they got the same shared IDDH secret.
// The DH proof is h160(remote eph pubkey, IDDH secret)
// A initiates auth.
//
// If A does not know B's pubkey but only B's pubkey hash:
//
// 1 -> A sends [PubKeyA, PubKeyHashB] (53 bytes)
// B computes ID pubkey DH
// 2 <- B sends [PubkeyB, DH proof] (53 bytes)
// 3 -> A sends DH proof (20 bytes)
// done.
//
// This exchange can be sped up if A already knows B's pubkey:
//
// A already knows who they're talking to, or trying to talk to
// 1 -> A sends [PubKeyA, PubkeyHashB, DH proof] (73 bytes)
// 2 <- B sends DH proof (20 bytes)
//
// A and B both verify those H160 hashes, and if matching consider their
// session counterparty authenticated.
//
// A possible weakness of the DH proof is if B re-uses eph keys. That potentially
// makes *A*'s proof weaker though. A gets to choose the proof B creates. As
// long as your software makes new eph keys each time, you should be OK.
// Lightning Network Data Conection. Encrypted.
type LNDConn struct {
Version uint8
Cn net.Conn
RemotePub *btcec.PublicKey
RemoteLNId [16]byte
MyNonceInt uint64
RemoteNonceInt uint64
// if Authed == false, the RemotePub is the EPHEMERAL key.
// once authed == true, RemotePub is who you're actually talking to.
Authed bool
// chachaStream saves some time as you don't have to init it with
// the session key every time. Make SessionKey redundant; remove later
chachaStream cipher.AEAD
// WhoAreYou...
/*func (lndc *LNDConn) WhoAreYou(host string) (*btcec.PublicKey, error) {
// ViaPbx specifies whether this is a direct TCP connection or an
// encapsulated PBX connection.
// if going ViaPbx, Cn isn't used
// channels are used for Read() and Write(),
// which are filled by the PBXhandler.
ViaPbx bool
PbxIncoming chan []byte
PbxOutgoing chan []byte
}
/* new & improved tcp open session.
There's connector A and listener B. Once the connection is set up there's no
difference, but there can be during the setup.
Setup:
1 -> A sends B ephemeral secp256k1 pubkey (33 bytes)
2 <- B sends A ephemeral secp256k1 pubkey (33 bytes)
A and B do DH, get a shared secret.
==========
Seesion is open! Done! Well not quite. Session is confidential but not
yet authenticated. From here on, can use the Send() and Recv() functions with
chacha20poly1305.
==========
The DH proof is h160(remote eph pubkey, IDDH secret)
A initiates auth.
If A does not know B's pubkey but only B's pubkey hash:
1 -> A sends [PubKeyA, PubKeyHashB] (53 bytes)
B computes ID pubkey DH
2 <- B sends [PubkeyB, DH proof] (53 bytes)
3 -> A sends DH proof (20 bytes)
done.
This exchange can be sped up if A already knows B's pubkey:
A already knows who they're talking to, or trying to talk to
1 -> A sends [PubKeyA, PubkeyHashB, DH proof] (73 bytes)
2 <- B sends DH proof (20 bytes)
A and B both verify those H160 hashes, and if matching consider their
session counterparty authenticated.
A possible weakness of the DH proof is if B re-uses eph keys. That potentially
makes *A*'s proof weaker though. A gets to choose the proof B creates. As
long as your software makes new eph keys each time, you should be
*/
// Open creates and auths an lndc connections,
// after the TCP or pbx connection is already assigned / dialed.
func (lndc *LNDConn) Open(
me *btcec.PrivateKey, remote []byte) error {
// make TCP connection to listening host
var err error
if len(remote) != 33 && len(remote) != 20 {
return fmt.Errorf("must supply either remote pubkey or pubkey hash")
}
// calc remote LNId; need this for creating pbx connections
// just because LNid is in the struct does not mean it's authed!
if len(remote) == 20 {
copy(lndc.RemoteLNId[:], remote[:16])
} else {
theirAdr := H160(remote)
copy(lndc.RemoteLNId[:], theirAdr[:16])
}
// make up an ephtemeral keypair. Doesn't exit this function.
myEph, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil
}
// Sned 1. Send my ephemeral pubkey. Can add version bits.
err = lndc.writeClear(myEph.PubKey().SerializeCompressed())
if err != nil {
return err
}
// read their ephemeral pubkey
TheirEphPubBytes, err := lndc.readClear()
if err != nil {
return err
}
// deserialize their ephemeral pubkey
TheirEphPub, err := btcec.ParsePubKey(TheirEphPubBytes, btcec.S256())
if err != nil {
return err
}
// do non-interactive diffie with ephemeral pubkeys
// sha256 for good luck
sessionKey :=
fastsha256.Sum256(btcec.GenerateSharedSecret(myEph, TheirEphPub))
lndc.chachaStream, err = chacha20poly1305.New(sessionKey[:])
if err != nil {
return err
}
// display private key for debug only
fmt.Printf("made session key %x\n", sessionKey)
lndc.MyNonceInt = 1 << 63
lndc.RemoteNonceInt = 0
lndc.RemotePub = TheirEphPub
lndc.Authed = false
// session is now open and confidential but not yet authenticated.
// So auth!
if len(remote) == 20 { // only know pubkey hash (20 bytes)
return lndc.AuthPKH(me, remote, myEph.PubKey().SerializeCompressed())
} else { // must be 33 byte pubkey
return lndc.AuthPubKey(me, remote, myEph.PubKey().SerializeCompressed())
}
}
// TcpListen takes a lndc that's just connected, and sets it up.
// Call this just after a connection comes in.
// calls AuthListen, waiting for the auth step before returning.
// in the case of a pbx connection, there is no lndc.Cn
func (lndc *LNDConn) Setup(me *btcec.PrivateKey) error {
var err error
var TheirEphPubBytes []byte
TheirEphPubBytes, err = lndc.readClear()
if err != nil {
return err
}
if len(TheirEphPubBytes) != 33 {
return fmt.Errorf("Got invalid %d byte eph pubkey %x\n",
len(TheirEphPubBytes), TheirEphPubBytes)
}
// deserialize their ephemeral pubkey
TheirEphPub, err := btcec.ParsePubKey(TheirEphPubBytes, btcec.S256())
if err != nil {
return err
}
// their key looks OK, make our own
myEph, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil
}
// and send out our eph key
err = lndc.writeClear(myEph.PubKey().SerializeCompressed())
if err != nil {
return err
}
// do non-interactive diffie with ephemeral pubkeys
// sha256 for good luck
sessionKey :=
fastsha256.Sum256(btcec.GenerateSharedSecret(myEph, TheirEphPub))
lndc.chachaStream, err = chacha20poly1305.New(sessionKey[:])
// display private key for debug only
fmt.Printf("made session key %x\n", sessionKey)
lndc.RemoteNonceInt = 1 << 63
lndc.MyNonceInt = 0
lndc.RemotePub = TheirEphPub
lndc.Authed = false
// session is open and confidential but not yet authenticated.
// Listen for auth message
return lndc.AuthListen(me, myEph.PubKey().SerializeCompressed())
}
func (lndc *LNDConn) AuthListen(
myId *btcec.PrivateKey, localEphPubBytes []byte) error {
var err error
slice := make([]byte, 65535)
n, err := lndc.Read(slice)
if err != nil {
return err
}
fmt.Printf("read %d bytes\n", n)
slice = slice[:n]
if err != nil {
fmt.Printf("Read error: %s\n", err.Error())
err2 := lndc.Close()
if err2 != nil {
return err2
}
return err
}
authmsg := slice
if len(authmsg) != 53 && len(authmsg) != 73 {
err = lndc.Close()
if err != nil {
return err
}
return fmt.Errorf(
"Got auth message of %d bytes, expect 53 or 73", len(authmsg))
}
theirPub, err := btcec.ParsePubKey(authmsg[:33], btcec.S256())
if err != nil {
return err
}
myPKH := H160(myId.PubKey().SerializeCompressed())
if bytes.Equal(myPKH, authmsg[33:53]) == false {
err = lndc.Close()
if err != nil {
return err
}
return fmt.Errorf(
"remote host asking for PKH %x, that's not me", authmsg[33:53])
}
// do DH with id keys
idDH := fastsha256.Sum256(btcec.GenerateSharedSecret(myId, theirPub))
myDHproof := H160(append(lndc.RemotePub.SerializeCompressed(), idDH[:]...))
theirDHproof := H160(append(localEphPubBytes, idDH[:]...))
if len(authmsg) == 73 { // quick mode
// verify their DH proof
if bytes.Equal(authmsg[53:], theirDHproof) == false {
err = lndc.Close()
if err != nil {
return err
}
return fmt.Errorf(
"Invalid DH proof from %s", lndc.Cn.RemoteAddr().String())
}
// looks good, send my own
_, err = lndc.Write(myDHproof)
if err != nil {
err2 := lndc.Close()
if err2 != nil {
return err2
}
return err
}
// and we're authed
} else { // 53 byte, they don't know my pubkey
msg := append(myId.PubKey().SerializeCompressed(), myDHproof...)
_, err = lndc.Write(msg)
if err != nil {
err2 := lndc.Close()
if err2 != nil {
return err2
}
return err
}
resp := make([]byte, 65535)
n, err := lndc.Read(resp)
if err != nil {
return err
}
resp = resp[:n]
if n != 20 {
err2 := lndc.Close()
if err2 != nil {
return err2
}
fmt.Errorf("expected 20 byte DH proof, got %d", n)
}
// verify their DH proof
if bytes.Equal(resp, theirDHproof) == false {
err = lndc.Close()
if err != nil {
return err
}
return fmt.Errorf("Invalid DH proof %x", theirDHproof)
}
//proof looks good, auth
}
lndc.RemotePub = theirPub
theirAdr := H160(theirPub.SerializeCompressed())
copy(lndc.RemoteLNId[:], theirAdr[:16])
lndc.Authed = true
return nil
}
func (lndc *LNDConn) AuthPKH(
myId *btcec.PrivateKey, theirPKH, localEphPubBytes []byte) error {
var err error
if myId == nil {
return fmt.Errorf("can't auth: supplied privkey is nil")
}
if lndc.Authed {
return fmt.Errorf("%s already authed", lndc.RemotePub)
}
if len(theirPKH) != 20 {
return fmt.Errorf("remote PKH must be 20 bytes, got %d", len(theirPKH))
}
// send 53 bytes; my pubkey, and remote pubkey hash
msg := myId.PubKey().SerializeCompressed()
msg = append(msg, theirPKH...)
_, err = lndc.Write(msg)
if err != nil {
return err
}
// wait for their response.
// TODO add timeout here
resp := make([]byte, 65535)
n, err := lndc.Read(resp)
if err != nil {
return err
}
resp = resp[:n]
// response should be 53 bytes, their pubkey and DH proof
if n != 53 {
return fmt.Errorf(
"PKH auth response should be 53 bytes, got %d", len(resp))
}
theirPub, err := btcec.ParsePubKey(resp[:33], btcec.S256())
if err != nil {
return err
}
idDH := fastsha256.Sum256(btcec.GenerateSharedSecret(myId, theirPub))
fmt.Printf("made idDH %x\n", idDH)
theirDHproof := H160(append(localEphPubBytes, idDH[:]...))
// verify their DH proof
if bytes.Equal(resp[33:], theirDHproof) == false {
return fmt.Errorf("Invalid DH proof %x", theirDHproof)
}
// their DH proof checks out, send our own
myDHproof := H160(append(lndc.RemotePub.SerializeCompressed(), idDH[:]...))
_, err = lndc.Write(myDHproof)
if err != nil {
return err
}
// proof sent, auth complete
lndc.RemotePub = theirPub
theirAdr := H160(theirPub.SerializeCompressed())
copy(lndc.RemoteLNId[:], theirAdr[:16])
lndc.Authed = true
return nil
}
func (lndc *LNDConn) AuthPubKey(
myId *btcec.PrivateKey, remotePubBytes, localEphPubBytes []byte) error {
var err error
if myId == nil {
return fmt.Errorf("can't auth: supplied privkey is nil")
}
if lndc.Authed {
return fmt.Errorf("%s already authed", lndc.RemotePub)
}
theirPub, err := btcec.ParsePubKey(remotePubBytes, btcec.S256())
if err != nil {
return err
}
theirPKH := H160(remotePubBytes)
// I know enough to generate DH, do so
idDH := fastsha256.Sum256(btcec.GenerateSharedSecret(myId, theirPub))
myDHproof := H160(append(lndc.RemotePub.SerializeCompressed(), idDH[:]...))
// message is 73 bytes; my pubkey, their pubkey hash, DH proof
msg := myId.PubKey().SerializeCompressed()
msg = append(msg, theirPKH...)
msg = append(msg, myDHproof...)
_, err = lndc.Write(msg)
if err != nil {
return err
}
resp := make([]byte, 65535)
n, err := lndc.Read(resp)
if err != nil {
return err
}
resp = resp[:n]
if n != 20 {
fmt.Errorf("expected 20 byte DH proof, got %d", len(resp))
}
theirDHproof := H160(append(localEphPubBytes, idDH[:]...))
// verify their DH proof
if bytes.Equal(resp, theirDHproof) == false {
return fmt.Errorf("Invalid DH proof %x", theirDHproof)
}
// proof checks out, auth complete
lndc.RemotePub = theirPub
theirAdr := H160(theirPub.SerializeCompressed())
copy(lndc.RemoteLNId[:], theirAdr[:16])
lndc.Authed = true
return nil
}
func (lndc *LNDConn) WhoAreYou(host string) (*btcec.PublicKey, error) {
var err error
if lndc.Cn == nil {
return nil, fmt.Errorf("no connection to ask on")
@ -74,64 +454,180 @@ import (
return nil, err
}
return btcec.ParsePubKey(IamResp[:33], btcec.S256())
}*/
// PbxEncapsulate...
// encapsulation for sending to Pbx host.
// put FWDMSG, then 16 byte destination ID, then message (with msgtype)
//func (lndc *LNDConn) PbxEncapsulate(b *[]byte) {
// fmt.Printf("PbxEncapsulate %d byte message, dest ID %x\n",
// len(*b), lndc.RemoteLNId)
// *b = append(lndc.RemoteLNId[:], *b...)
// *b = append([]byte{lnwire.MSGID_FWDMSG}, *b...)
//}
func H160(input []byte) []byte {
rp := ripemd160.New()
shaout := fastsha256.Sum256(input)
_, _ = rp.Write(shaout[:])
return rp.Sum(nil)
}
// readClear and writeClear don't encrypt but directly read and write to the
// underlying data link, only adding or subtracting a 2 byte length header.
// All Read() and Write() calls for lndc's use these functions internally
// (they aren't exported). They're also used in the key agreement phase.
/*
Make ETcpCons adhere to Conn interface.
need:
Read(b []byte) (n int, err error)
Write(b []byte) (n int, err error)
Close() error
LocalAddr() Addr
RemoteAddr() Addr
SetDeadline(t time.Time) error
SetReadDeadline(t time.Time) error
SetWriteDeadline(t time.Time) error
// readClear reads the next length-prefixed message from the underlying raw
// TCP connection.
func readClear(c net.Conn) ([]byte, error) {
ETcpCons can be either regular TCP connections, which is good, or PBX-routed
connections, which is worse, but there are levels of connectivity we are
prepared to accept.
When it's PBX, don't try to use Cn
*/
func (lndc *LNDConn) Read(b []byte) (n int, err error) {
// first get message length from first 2 bytes
var ctext []byte
ctext, err = lndc.readClear()
if err != nil {
return 0, err
}
// now decrypt
nonceBuf := new(bytes.Buffer)
err = binary.Write(nonceBuf, binary.BigEndian, lndc.RemoteNonceInt)
fmt.Printf("decrypt %d byte from %x nonce %d\n",
len(ctext), lndc.RemoteLNId, lndc.RemoteNonceInt)
lndc.RemoteNonceInt++ // increment remote nonce, no matter what...
msg, err := lndc.chachaStream.Open(nil, nonceBuf.Bytes(), ctext, nil)
if err != nil {
fmt.Printf("decrypt %d byte ciphertext failed\n", len(ctext))
return 0, err
}
n = copy(b, msg)
if n < len(msg) {
return 0, fmt.Errorf(
"Can't read from %x: Slice provided too small. %d bytes, need %d",
lndc.RemoteLNId, len(b), len(msg))
}
return n, nil
}
func (lndc *LNDConn) Write(b []byte) (n int, err error) {
if b == nil {
return 0, fmt.Errorf("Write to %x nil", lndc.RemoteLNId)
}
fmt.Printf("Encrypt %d byte plaintext to %x nonce %d\n",
len(b), lndc.RemoteLNId, lndc.MyNonceInt)
// first encrypt message with shared key
nonceBuf := new(bytes.Buffer)
err = binary.Write(nonceBuf, binary.BigEndian, lndc.MyNonceInt)
if err != nil {
return 0, err
}
lndc.MyNonceInt++ // increment mine
ctext := lndc.chachaStream.Seal(nil, nonceBuf.Bytes(), b, nil)
if err != nil {
return 0, err
}
if len(ctext) > 65530 {
return 0, fmt.Errorf("Write to %x too long, %d bytes",
lndc.RemoteLNId, len(ctext))
}
// use writeClear to prepend length / destination header
err = lndc.writeClear(ctext)
// returns len of how much you put in, not how much written on the wire
return len(b), err
}
func (lndc *LNDConn) Close() error {
// return lndc.Cn.Close()
// return nil
lndc.MyNonceInt = 0
lndc.RemoteNonceInt = 0
lndc.RemotePub = nil
// if lndc.ViaPbx {
// return nil // don't close pbx connection
// }
err := lndc.Cn.Close()
return err
}
// network address; if PBX reports address of pbx host
func (lndc *LNDConn) LocalAddr() net.Addr {
return lndc.Cn.LocalAddr()
}
func (lndc *LNDConn) RemoteAddr() net.Addr {
return lndc.Cn.RemoteAddr()
}
// timing stuff for net.conn compatibility
func (lndc *LNDConn) SetDeadline(t time.Time) error {
return lndc.Cn.SetDeadline(t)
}
func (lndc *LNDConn) SetReadDeadline(t time.Time) error {
return lndc.Cn.SetReadDeadline(t)
}
func (lndc *LNDConn) SetWriteDeadline(t time.Time) error {
return lndc.Cn.SetWriteDeadline(t)
}
/* ReadClear and WriteClear don't encrypt but directly read and write to the
underlying data link, only adding or subtracting a 2 byte length header.
All Read() and Write() calls for lndc's use these functions internally
(they aren't exported). They're also used in the key agreement phase.
*/
// encapsulation for sending to Pbx host.
// put FWDMSG, then 16 byte destination ID, then message (with msgtype)
func (lndc *LNDConn) PbxEncapsulate(b *[]byte) {
fmt.Printf("PbxEncapsulate %d byte message, dest ID %x\n",
len(*b), lndc.RemoteLNId)
*b = append(lndc.RemoteLNId[:], *b...)
*b = append([]byte{lnwire.MSGID_FWDMSG}, *b...)
}
func (lndc *LNDConn) readClear() ([]byte, error) {
var msgLen uint16
// needs to be pointer or will silently not do anything.
var msg []byte
if err := binary.Read(c, binary.BigEndian, &msgLen); err != nil {
return nil, err
if lndc.ViaPbx { //pbx mode
msg = <-lndc.PbxIncoming
} else { // normal tcp mode
err := binary.Read(lndc.Cn, binary.BigEndian, &msgLen)
if err != nil {
return nil, err
}
// fmt.Printf("%d byte LMsg incoming\n", msgLen)
msg = make([]byte, msgLen)
_, err = io.ReadFull(lndc.Cn, msg)
if err != nil {
return nil, err
}
}
msg := make([]byte, msgLen)
if _, err := io.ReadFull(c, msg); err != nil {
return nil, err
}
return msg, nil
}
// TODO(roasbeef): incorporate buffer pool
// writeClear writes the passed message with a prefixed 2-byte length header.
func writeClear(conn net.Conn, msg []byte) (int, error) {
func (lndc *LNDConn) writeClear(msg []byte) error {
var err error
if len(msg) > 65530 {
return 0, fmt.Errorf("lmsg too long, %d bytes", len(msg))
return fmt.Errorf("LMsg too long, %d bytes", len(msg))
}
// Add 2 byte length header (pbx doesn't need it) and send over TCP.
var msgBuf bytes.Buffer
if err := binary.Write(&msgBuf, binary.BigEndian, uint16(len(msg))); err != nil {
return 0, err
if msg == nil {
return fmt.Errorf("LMsg nil")
}
if _, err := msgBuf.Write(msg); err != nil {
return 0, err
if lndc.ViaPbx {
lndc.PbxEncapsulate(&msg)
lndc.PbxOutgoing <- msg
} else {
// add 2 byte length header (pbx doesn't need it) and send over TCP
hdr := new(bytes.Buffer)
err = binary.Write(hdr, binary.BigEndian, uint16(len(msg)))
if err != nil {
return err
}
msg = append(hdr.Bytes(), msg...)
_, err = lndc.Cn.Write(msg)
return err
}
return conn.Write(msgBuf.Bytes())
return nil
}