lnd.xprv/netann/chan_status_manager_test.go

816 lines
22 KiB
Go
Raw Normal View History

package netann_test
import (
"bytes"
"crypto/rand"
"encoding/binary"
"fmt"
"io"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/netann"
)
// randOutpoint creates a random wire.Outpoint.
func randOutpoint(t *testing.T) wire.OutPoint {
t.Helper()
var buf [36]byte
_, err := io.ReadFull(rand.Reader, buf[:])
if err != nil {
t.Fatalf("unable to generate random outpoint: %v", err)
}
op := wire.OutPoint{}
copy(op.Hash[:], buf[:32])
op.Index = binary.BigEndian.Uint32(buf[32:])
return op
}
var shortChanIDs uint64
// createChannel generates a channeldb.OpenChannel with a random chanpoint and
// short channel id.
func createChannel(t *testing.T) *channeldb.OpenChannel {
t.Helper()
sid := atomic.AddUint64(&shortChanIDs, 1)
return &channeldb.OpenChannel{
ShortChannelID: lnwire.NewShortChanIDFromInt(sid),
ChannelFlags: lnwire.FFAnnounceChannel,
FundingOutpoint: randOutpoint(t),
}
}
// createEdgePolicies generates an edge info and two directional edge policies.
// The remote party's public key is generated randomly, and then sorted against
// our `pubkey` with the direction bit set appropriately in the policies. Our
// update will be created with the disabled bit set if startEnabled is false.
func createEdgePolicies(t *testing.T, channel *channeldb.OpenChannel,
pubkey *btcec.PublicKey, startEnabled bool) (*channeldb.ChannelEdgeInfo,
*channeldb.ChannelEdgePolicy, *channeldb.ChannelEdgePolicy) {
var (
pubkey1 [33]byte
pubkey2 [33]byte
dir1 lnwire.ChanUpdateChanFlags
dir2 lnwire.ChanUpdateChanFlags
)
// Set pubkey1 to OUR pubkey.
copy(pubkey1[:], pubkey.SerializeCompressed())
// Set the disabled bit appropriately on our update.
if !startEnabled {
dir1 |= lnwire.ChanUpdateDisabled
}
// Generate and set pubkey2 for THEIR pubkey.
privKey2, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Fatalf("unable to generate key pair: %v", err)
}
copy(pubkey2[:], privKey2.PubKey().SerializeCompressed())
// Set pubkey1 to the lower of the two pubkeys.
if bytes.Compare(pubkey2[:], pubkey1[:]) < 0 {
pubkey1, pubkey2 = pubkey2, pubkey1
dir1, dir2 = dir2, dir1
}
// Now that the ordering has been established, set pubkey2's direction
// bit.
dir2 |= lnwire.ChanUpdateDirection
return &channeldb.ChannelEdgeInfo{
ChannelPoint: channel.FundingOutpoint,
NodeKey1Bytes: pubkey1,
NodeKey2Bytes: pubkey2,
},
&channeldb.ChannelEdgePolicy{
ChannelID: channel.ShortChanID().ToUint64(),
ChannelFlags: dir1,
LastUpdate: time.Now(),
SigBytes: make([]byte, 64),
},
&channeldb.ChannelEdgePolicy{
ChannelID: channel.ShortChanID().ToUint64(),
ChannelFlags: dir2,
LastUpdate: time.Now(),
SigBytes: make([]byte, 64),
}
}
type mockGraph struct {
mu sync.Mutex
channels []*channeldb.OpenChannel
chanInfos map[wire.OutPoint]*channeldb.ChannelEdgeInfo
chanPols1 map[wire.OutPoint]*channeldb.ChannelEdgePolicy
chanPols2 map[wire.OutPoint]*channeldb.ChannelEdgePolicy
sidToCid map[lnwire.ShortChannelID]wire.OutPoint
updates chan *lnwire.ChannelUpdate
}
func newMockGraph(t *testing.T, numChannels int,
startActive, startEnabled bool, pubKey *btcec.PublicKey) *mockGraph {
g := &mockGraph{
channels: make([]*channeldb.OpenChannel, 0, numChannels),
chanInfos: make(map[wire.OutPoint]*channeldb.ChannelEdgeInfo),
chanPols1: make(map[wire.OutPoint]*channeldb.ChannelEdgePolicy),
chanPols2: make(map[wire.OutPoint]*channeldb.ChannelEdgePolicy),
sidToCid: make(map[lnwire.ShortChannelID]wire.OutPoint),
updates: make(chan *lnwire.ChannelUpdate, 2*numChannels),
}
for i := 0; i < numChannels; i++ {
c := createChannel(t)
info, pol1, pol2 := createEdgePolicies(
t, c, pubKey, startEnabled,
)
g.addChannel(c)
g.addEdgePolicy(c, info, pol1, pol2)
}
return g
}
func (g *mockGraph) FetchAllOpenChannels() ([]*channeldb.OpenChannel, error) {
return g.chans(), nil
}
func (g *mockGraph) FetchChannelEdgesByOutpoint(
op *wire.OutPoint) (*channeldb.ChannelEdgeInfo,
*channeldb.ChannelEdgePolicy, *channeldb.ChannelEdgePolicy, error) {
g.mu.Lock()
defer g.mu.Unlock()
info, ok := g.chanInfos[*op]
if !ok {
return nil, nil, nil, channeldb.ErrEdgeNotFound
}
pol1 := g.chanPols1[*op]
pol2 := g.chanPols2[*op]
return info, pol1, pol2, nil
}
func (g *mockGraph) ApplyChannelUpdate(update *lnwire.ChannelUpdate) error {
g.mu.Lock()
defer g.mu.Unlock()
outpoint, ok := g.sidToCid[update.ShortChannelID]
if !ok {
return fmt.Errorf("unknown short channel id: %v",
update.ShortChannelID)
}
pol1 := g.chanPols1[outpoint]
pol2 := g.chanPols2[outpoint]
// Determine which policy we should update by making the flags on the
// policies and updates, and seeing which match up.
var update1 bool
switch {
case update.ChannelFlags&lnwire.ChanUpdateDirection ==
pol1.ChannelFlags&lnwire.ChanUpdateDirection:
update1 = true
case update.ChannelFlags&lnwire.ChanUpdateDirection ==
pol2.ChannelFlags&lnwire.ChanUpdateDirection:
update1 = false
default:
return fmt.Errorf("unable to find policy to update")
}
timestamp := time.Unix(int64(update.Timestamp), 0)
policy := &channeldb.ChannelEdgePolicy{
ChannelID: update.ShortChannelID.ToUint64(),
ChannelFlags: update.ChannelFlags,
LastUpdate: timestamp,
SigBytes: make([]byte, 64),
}
if update1 {
g.chanPols1[outpoint] = policy
} else {
g.chanPols2[outpoint] = policy
}
// Send the update to network. This channel should be sufficiently
// buffered to avoid deadlocking.
g.updates <- update
return nil
}
func (g *mockGraph) chans() []*channeldb.OpenChannel {
g.mu.Lock()
defer g.mu.Unlock()
channels := make([]*channeldb.OpenChannel, 0, len(g.channels))
channels = append(channels, g.channels...)
return channels
}
func (g *mockGraph) addChannel(channel *channeldb.OpenChannel) {
g.mu.Lock()
defer g.mu.Unlock()
g.channels = append(g.channels, channel)
}
func (g *mockGraph) addEdgePolicy(c *channeldb.OpenChannel,
info *channeldb.ChannelEdgeInfo,
pol1, pol2 *channeldb.ChannelEdgePolicy) {
g.mu.Lock()
defer g.mu.Unlock()
g.chanInfos[c.FundingOutpoint] = info
g.chanPols1[c.FundingOutpoint] = pol1
g.chanPols2[c.FundingOutpoint] = pol2
g.sidToCid[c.ShortChanID()] = c.FundingOutpoint
}
func (g *mockGraph) removeChannel(channel *channeldb.OpenChannel) {
g.mu.Lock()
defer g.mu.Unlock()
for i, c := range g.channels {
if c.FundingOutpoint != channel.FundingOutpoint {
continue
}
g.channels = append(g.channels[:i], g.channels[i+1:]...)
delete(g.chanInfos, c.FundingOutpoint)
delete(g.chanPols1, c.FundingOutpoint)
delete(g.chanPols2, c.FundingOutpoint)
delete(g.sidToCid, c.ShortChanID())
return
}
}
type mockSwitch struct {
mu sync.Mutex
isActive map[lnwire.ChannelID]bool
}
func newMockSwitch() *mockSwitch {
return &mockSwitch{
isActive: make(map[lnwire.ChannelID]bool),
}
}
func (s *mockSwitch) HasActiveLink(chanID lnwire.ChannelID) bool {
s.mu.Lock()
defer s.mu.Unlock()
// If the link is found, we will returns it's active status. In the
// real switch, it returns EligibleToForward().
active, ok := s.isActive[chanID]
if ok {
return active
}
return false
}
func (s *mockSwitch) SetStatus(chanID lnwire.ChannelID, active bool) {
s.mu.Lock()
defer s.mu.Unlock()
s.isActive[chanID] = active
}
func newManagerCfg(t *testing.T, numChannels int,
startEnabled bool) (*netann.ChanStatusConfig, *mockGraph, *mockSwitch) {
t.Helper()
privKey, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Fatalf("unable to generate key pair: %v", err)
}
privKeySigner := &keychain.PrivKeyDigestSigner{PrivKey: privKey}
graph := newMockGraph(
t, numChannels, startEnabled, startEnabled, privKey.PubKey(),
)
htlcSwitch := newMockSwitch()
cfg := &netann.ChanStatusConfig{
ChanStatusSampleInterval: 50 * time.Millisecond,
ChanEnableTimeout: 500 * time.Millisecond,
ChanDisableTimeout: time.Second,
OurPubKey: privKey.PubKey(),
MessageSigner: netann.NewNodeSigner(privKeySigner),
IsChannelActive: htlcSwitch.HasActiveLink,
ApplyChannelUpdate: graph.ApplyChannelUpdate,
DB: graph,
Graph: graph,
}
return cfg, graph, htlcSwitch
}
type testHarness struct {
t *testing.T
numChannels int
graph *mockGraph
htlcSwitch *mockSwitch
mgr *netann.ChanStatusManager
ourPubKey *btcec.PublicKey
safeDisableTimeout time.Duration
}
// newHarness returns a new testHarness for testing a ChanStatusManager. The
// mockGraph will be populated with numChannels channels. The startActive and
// startEnabled govern the initial state of the channels wrt the htlcswitch and
// the network, respectively.
func newHarness(t *testing.T, numChannels int,
startActive, startEnabled bool) testHarness {
cfg, graph, htlcSwitch := newManagerCfg(t, numChannels, startEnabled)
mgr, err := netann.NewChanStatusManager(cfg)
if err != nil {
t.Fatalf("unable to create chan status manager: %v", err)
}
err = mgr.Start()
if err != nil {
t.Fatalf("unable to start chan status manager: %v", err)
}
h := testHarness{
t: t,
numChannels: numChannels,
graph: graph,
htlcSwitch: htlcSwitch,
mgr: mgr,
ourPubKey: cfg.OurPubKey,
safeDisableTimeout: (3 * cfg.ChanDisableTimeout) / 2, // 1.5x
}
// Initialize link status as requested.
if startActive {
h.markActive(h.graph.channels)
} else {
h.markInactive(h.graph.channels)
}
return h
}
// markActive updates the active status of the passed channels within the mock
// switch to active.
func (h *testHarness) markActive(channels []*channeldb.OpenChannel) {
h.t.Helper()
for _, channel := range channels {
chanID := lnwire.NewChanIDFromOutPoint(&channel.FundingOutpoint)
h.htlcSwitch.SetStatus(chanID, true)
}
}
// markInactive updates the active status of the passed channels within the mock
// switch to inactive.
func (h *testHarness) markInactive(channels []*channeldb.OpenChannel) {
h.t.Helper()
for _, channel := range channels {
chanID := lnwire.NewChanIDFromOutPoint(&channel.FundingOutpoint)
h.htlcSwitch.SetStatus(chanID, false)
}
}
// assertEnables requests enables for all of the passed channels, and asserts
// that the errors returned from RequestEnable matches expErr.
func (h *testHarness) assertEnables(channels []*channeldb.OpenChannel, expErr error) {
h.t.Helper()
for _, channel := range channels {
h.assertEnable(channel.FundingOutpoint, expErr)
}
}
// assertDisables requests disables for all of the passed channels, and asserts
// that the errors returned from RequestDisable matches expErr.
func (h *testHarness) assertDisables(channels []*channeldb.OpenChannel, expErr error) {
h.t.Helper()
for _, channel := range channels {
h.assertDisable(channel.FundingOutpoint, expErr)
}
}
// assertEnable requests an enable for the given outpoint, and asserts that the
// returned error matches expErr.
func (h *testHarness) assertEnable(outpoint wire.OutPoint, expErr error) {
h.t.Helper()
err := h.mgr.RequestEnable(outpoint, false)
if err != expErr {
h.t.Fatalf("expected enable error: %v, got %v", expErr, err)
}
}
// assertDisable requests a disable for the given outpoint, and asserts that the
// returned error matches expErr.
func (h *testHarness) assertDisable(outpoint wire.OutPoint, expErr error) {
h.t.Helper()
err := h.mgr.RequestDisable(outpoint, false)
if err != expErr {
h.t.Fatalf("expected disable error: %v, got %v", expErr, err)
}
}
// assertNoUpdates waits for the specified duration, and asserts that no updates
// are announced on the network.
func (h *testHarness) assertNoUpdates(duration time.Duration) {
h.t.Helper()
h.assertUpdates(nil, false, duration)
}
// assertUpdates waits for the specified duration, asserting that an update
// are receive on the network for each of the passed OpenChannels, and that all
// of their disable bits are set to match expEnabled. The expEnabled parameter
// is ignored if channels is nil.
func (h *testHarness) assertUpdates(channels []*channeldb.OpenChannel,
expEnabled bool, duration time.Duration) {
h.t.Helper()
// Compute an index of the expected short channel ids for which we want
// to received updates.
expSids := sidsFromChans(channels)
timeout := time.After(duration)
recvdSids := make(map[lnwire.ShortChannelID]struct{})
for {
select {
case upd := <-h.graph.updates:
// Assert that the received short channel id is one that
// we expect. If no updates were expected, this will
// always fail on the first update received.
if _, ok := expSids[upd.ShortChannelID]; !ok {
h.t.Fatalf("received update for unexpected "+
"short chan id: %v", upd.ShortChannelID)
}
// Assert that the disabled bit is set properly.
enabled := upd.ChannelFlags&lnwire.ChanUpdateDisabled !=
lnwire.ChanUpdateDisabled
if expEnabled != enabled {
h.t.Fatalf("expected enabled: %v, actual: %v",
expEnabled, enabled)
}
recvdSids[upd.ShortChannelID] = struct{}{}
case <-timeout:
// Time is up, assert that the correct number of unique
// updates was received.
if len(recvdSids) == len(channels) {
return
}
h.t.Fatalf("expected %d updates, got %d",
len(channels), len(recvdSids))
}
}
}
// sidsFromChans returns an index contain the short channel ids of each channel
// provided in the list of OpenChannels.
func sidsFromChans(
channels []*channeldb.OpenChannel) map[lnwire.ShortChannelID]struct{} {
sids := make(map[lnwire.ShortChannelID]struct{})
for _, channel := range channels {
sids[channel.ShortChanID()] = struct{}{}
}
return sids
}
type stateMachineTest struct {
name string
startEnabled bool
startActive bool
fn func(testHarness)
}
var stateMachineTests = []stateMachineTest{
{
name: "active and enabled is stable",
startActive: true,
startEnabled: true,
fn: func(h testHarness) {
// No updates should be sent because being active and
// enabled should be a stable state.
h.assertNoUpdates(h.safeDisableTimeout)
},
},
{
name: "inactive and disabled is stable",
startActive: false,
startEnabled: false,
fn: func(h testHarness) {
// No updates should be sent because being inactive and
// disabled should be a stable state.
h.assertNoUpdates(h.safeDisableTimeout)
},
},
{
name: "start disabled request enable",
startActive: true, // can't request enable unless active
startEnabled: false,
fn: func(h testHarness) {
// Request enables for all channels.
h.assertEnables(h.graph.chans(), nil)
// Expect to see them all enabled on the network.
h.assertUpdates(
h.graph.chans(), true, h.safeDisableTimeout,
)
},
},
{
name: "start enabled request disable",
startActive: true,
startEnabled: true,
fn: func(h testHarness) {
// Request disables for all channels.
h.assertDisables(h.graph.chans(), nil)
// Expect to see them all disabled on the network.
h.assertUpdates(
h.graph.chans(), false, h.safeDisableTimeout,
)
},
},
{
name: "request enable already enabled",
startActive: true,
startEnabled: true,
fn: func(h testHarness) {
// Request enables for already enabled channels.
h.assertEnables(h.graph.chans(), nil)
// Manager shouldn't send out any updates.
h.assertNoUpdates(h.safeDisableTimeout)
},
},
{
name: "request disabled already disabled",
startActive: false,
startEnabled: false,
fn: func(h testHarness) {
// Request disables for already enabled channels.
h.assertDisables(h.graph.chans(), nil)
// Manager shouldn't sent out any updates.
h.assertNoUpdates(h.safeDisableTimeout)
},
},
{
name: "detect and disable inactive",
startActive: true,
startEnabled: true,
fn: func(h testHarness) {
// Simulate disconnection and have links go inactive.
h.markInactive(h.graph.chans())
// Should see all channels passively disabled.
h.assertUpdates(
h.graph.chans(), false, h.safeDisableTimeout,
)
},
},
{
name: "quick flap stays active",
startActive: true,
startEnabled: true,
fn: func(h testHarness) {
// Simulate disconnection and have links go inactive.
h.markInactive(h.graph.chans())
// Allow 2 sample intervals to pass, but not long
// enough for a disable to occur.
time.Sleep(100 * time.Millisecond)
// Simulate reconnect by making channels active.
h.markActive(h.graph.chans())
// Request that all channels be reenabled.
h.assertEnables(h.graph.chans(), nil)
// Pending disable should have been canceled, and
// no updates sent. Channels remain enabled on the
// network.
h.assertNoUpdates(h.safeDisableTimeout)
},
},
{
name: "no passive enable from becoming active",
startActive: false,
startEnabled: false,
fn: func(h testHarness) {
// Simulate reconnect by making channels active.
h.markActive(h.graph.chans())
// No updates should be sent without explicit enable.
h.assertNoUpdates(h.safeDisableTimeout)
},
},
{
name: "enable inactive channel fails",
startActive: false,
startEnabled: false,
fn: func(h testHarness) {
// Request enable of inactive channels, expect error
// indicating that channel was not active.
h.assertEnables(
h.graph.chans(), netann.ErrEnableInactiveChan,
)
// No updates should be sent as a result of the failure.
h.assertNoUpdates(h.safeDisableTimeout)
},
},
{
name: "enable unknown channel fails",
startActive: false,
startEnabled: false,
fn: func(h testHarness) {
// Create channels unknown to the graph.
unknownChans := []*channeldb.OpenChannel{
createChannel(h.t),
createChannel(h.t),
createChannel(h.t),
}
// Request that they be enabled, which should return an
// error as the graph doesn't have an edge for them.
h.assertEnables(
unknownChans, channeldb.ErrEdgeNotFound,
)
// No updates should be sent as a result of the failure.
h.assertNoUpdates(h.safeDisableTimeout)
},
},
{
name: "disable unknown channel fails",
startActive: false,
startEnabled: false,
fn: func(h testHarness) {
// Create channels unknown to the graph.
unknownChans := []*channeldb.OpenChannel{
createChannel(h.t),
createChannel(h.t),
createChannel(h.t),
}
// Request that they be disabled, which should return an
// error as the graph doesn't have an edge for them.
h.assertDisables(
unknownChans, channeldb.ErrEdgeNotFound,
)
// No updates should be sent as a result of the failure.
h.assertNoUpdates(h.safeDisableTimeout)
},
},
{
name: "add new channels",
startActive: false,
startEnabled: false,
fn: func(h testHarness) {
// Allow the manager to enter a steady state for the
// initial channel set.
h.assertNoUpdates(h.safeDisableTimeout)
// Add a new channels to the graph, but don't yet add
// the edge policies. We should see no updates sent
// since the manager can't access the policies.
newChans := []*channeldb.OpenChannel{
createChannel(h.t),
createChannel(h.t),
createChannel(h.t),
}
for _, c := range newChans {
h.graph.addChannel(c)
}
h.assertNoUpdates(h.safeDisableTimeout)
// Check that trying to enable the channel with unknown
// edges results in a failure.
h.assertEnables(newChans, channeldb.ErrEdgeNotFound)
// Now, insert edge policies for the channel into the
// graph, starting with the channel enabled, and mark
// the link active.
for _, c := range newChans {
info, pol1, pol2 := createEdgePolicies(
h.t, c, h.ourPubKey, true,
)
h.graph.addEdgePolicy(c, info, pol1, pol2)
}
h.markActive(newChans)
// We expect no updates to be sent since the channel is
// enabled and active.
h.assertNoUpdates(h.safeDisableTimeout)
// Finally, assert that enabling the channel doesn't
// return an error now that everything is in place.
h.assertEnables(newChans, nil)
},
},
{
name: "remove channels then disable",
startActive: true,
startEnabled: true,
fn: func(h testHarness) {
// Allow the manager to enter a steady state for the
// initial channel set.
h.assertNoUpdates(h.safeDisableTimeout)
// Select half of the current channels to remove.
channels := h.graph.chans()
rmChans := channels[:len(channels)/2]
// Mark the channel inactive and remove them from the
// graph. This should trigger the manager to attempt a
// mark the channel disabled, but will unable to do so
// because it can't find the edge policies.
h.markInactive(rmChans)
for _, c := range rmChans {
h.graph.removeChannel(c)
}
h.assertNoUpdates(h.safeDisableTimeout)
// Check that trying to enable the channel with unknown
// edges results in a failure.
h.assertDisables(rmChans, channeldb.ErrEdgeNotFound)
},
},
{
name: "disable channels then remove",
startActive: true,
startEnabled: true,
fn: func(h testHarness) {
// Allow the manager to enter a steady state for the
// initial channel set.
h.assertNoUpdates(h.safeDisableTimeout)
// Select half of the current channels to remove.
channels := h.graph.chans()
rmChans := channels[:len(channels)/2]
// Check that trying to enable the channel with unknown
// edges results in a failure.
h.assertDisables(rmChans, nil)
// Since the channels are still in the graph, we expect
// these channels to be disabled on the network.
h.assertUpdates(rmChans, false, h.safeDisableTimeout)
// Finally, remove the channels from the graph and
// assert no more updates are sent.
for _, c := range rmChans {
h.graph.removeChannel(c)
}
h.assertNoUpdates(h.safeDisableTimeout)
},
},
}
// TestChanStatusManagerStateMachine tests the possible state transitions that
// can be taken by the ChanStatusManager.
func TestChanStatusManagerStateMachine(t *testing.T) {
t.Parallel()
for _, test := range stateMachineTests {
tc := test
t.Run(test.name, func(t *testing.T) {
t.Parallel()
const numChannels = 10
h := newHarness(
t, numChannels, tc.startActive, tc.startEnabled,
)
defer h.mgr.Stop()
tc.fn(h)
})
}
}