lnd.xprv/channeldb/migration_01_to_11/graph.go

1180 lines
36 KiB
Go
Raw Normal View History

package migration_01_to_11
import (
"bytes"
"encoding/binary"
"fmt"
"image/color"
"io"
"net"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/coreos/bbolt"
"github.com/lightningnetwork/lnd/lnwire"
)
var (
// nodeBucket is a bucket which houses all the vertices or nodes within
// the channel graph. This bucket has a single-sub bucket which adds an
// additional index from pubkey -> alias. Within the top-level of this
// bucket, the key space maps a node's compressed public key to the
// serialized information for that node. Additionally, there's a
// special key "source" which stores the pubkey of the source node. The
// source node is used as the starting point for all graph/queries and
// traversals. The graph is formed as a star-graph with the source node
// at the center.
//
// maps: pubKey -> nodeInfo
// maps: source -> selfPubKey
nodeBucket = []byte("graph-node")
// nodeUpdateIndexBucket is a sub-bucket of the nodeBucket. This bucket
// will be used to quickly look up the "freshness" of a node's last
// update to the network. The bucket only contains keys, and no values,
// it's mapping:
//
// maps: updateTime || nodeID -> nil
nodeUpdateIndexBucket = []byte("graph-node-update-index")
// sourceKey is a special key that resides within the nodeBucket. The
// sourceKey maps a key to the public key of the "self node".
sourceKey = []byte("source")
// aliasIndexBucket is a sub-bucket that's nested within the main
// nodeBucket. This bucket maps the public key of a node to its
// current alias. This bucket is provided as it can be used within a
// future UI layer to add an additional degree of confirmation.
aliasIndexBucket = []byte("alias")
// edgeBucket is a bucket which houses all of the edge or channel
// information within the channel graph. This bucket essentially acts
// as an adjacency list, which in conjunction with a range scan, can be
// used to iterate over all the incoming and outgoing edges for a
// particular node. Key in the bucket use a prefix scheme which leads
// with the node's public key and sends with the compact edge ID.
// For each chanID, there will be two entries within the bucket, as the
// graph is directed: nodes may have different policies w.r.t to fees
// for their respective directions.
//
// maps: pubKey || chanID -> channel edge policy for node
edgeBucket = []byte("graph-edge")
// unknownPolicy is represented as an empty slice. It is
// used as the value in edgeBucket for unknown channel edge policies.
// Unknown policies are still stored in the database to enable efficient
// lookup of incoming channel edges.
unknownPolicy = []byte{}
// edgeIndexBucket is an index which can be used to iterate all edges
// in the bucket, grouping them according to their in/out nodes.
// Additionally, the items in this bucket also contain the complete
// edge information for a channel. The edge information includes the
// capacity of the channel, the nodes that made the channel, etc. This
// bucket resides within the edgeBucket above. Creation of an edge
// proceeds in two phases: first the edge is added to the edge index,
// afterwards the edgeBucket can be updated with the latest details of
// the edge as they are announced on the network.
//
// maps: chanID -> pubKey1 || pubKey2 || restofEdgeInfo
edgeIndexBucket = []byte("edge-index")
// edgeUpdateIndexBucket is a sub-bucket of the main edgeBucket. This
// bucket contains an index which allows us to gauge the "freshness" of
// a channel's last updates.
//
// maps: updateTime || chanID -> nil
edgeUpdateIndexBucket = []byte("edge-update-index")
// channelPointBucket maps a channel's full outpoint (txid:index) to
// its short 8-byte channel ID. This bucket resides within the
// edgeBucket above, and can be used to quickly remove an edge due to
// the outpoint being spent, or to query for existence of a channel.
//
// maps: outPoint -> chanID
channelPointBucket = []byte("chan-index")
// zombieBucket is a sub-bucket of the main edgeBucket bucket
// responsible for maintaining an index of zombie channels. Each entry
// exists within the bucket as follows:
//
// maps: chanID -> pubKey1 || pubKey2
//
// The chanID represents the channel ID of the edge that is marked as a
// zombie and is used as the key, which maps to the public keys of the
// edge's participants.
zombieBucket = []byte("zombie-index")
// disabledEdgePolicyBucket is a sub-bucket of the main edgeBucket bucket
// responsible for maintaining an index of disabled edge policies. Each
// entry exists within the bucket as follows:
//
// maps: <chanID><direction> -> []byte{}
//
// The chanID represents the channel ID of the edge and the direction is
// one byte representing the direction of the edge. The main purpose of
// this index is to allow pruning disabled channels in a fast way without
// the need to iterate all over the graph.
disabledEdgePolicyBucket = []byte("disabled-edge-policy-index")
// graphMetaBucket is a top-level bucket which stores various meta-deta
// related to the on-disk channel graph. Data stored in this bucket
// includes the block to which the graph has been synced to, the total
// number of channels, etc.
graphMetaBucket = []byte("graph-meta")
// pruneLogBucket is a bucket within the graphMetaBucket that stores
// a mapping from the block height to the hash for the blocks used to
// prune the graph.
// Once a new block is discovered, any channels that have been closed
// (by spending the outpoint) can safely be removed from the graph, and
// the block is added to the prune log. We need to keep such a log for
// the case where a reorg happens, and we must "rewind" the state of the
// graph by removing channels that were previously confirmed. In such a
// case we'll remove all entries from the prune log with a block height
// that no longer exists.
pruneLogBucket = []byte("prune-log")
)
const (
// MaxAllowedExtraOpaqueBytes is the largest amount of opaque bytes that
// we'll permit to be written to disk. We limit this as otherwise, it
// would be possible for a node to create a ton of updates and slowly
// fill our disk, and also waste bandwidth due to relaying.
MaxAllowedExtraOpaqueBytes = 10000
)
// ChannelGraph is a persistent, on-disk graph representation of the Lightning
// Network. This struct can be used to implement path finding algorithms on top
// of, and also to update a node's view based on information received from the
// p2p network. Internally, the graph is stored using a modified adjacency list
// representation with some added object interaction possible with each
// serialized edge/node. The graph is stored is directed, meaning that are two
// edges stored for each channel: an inbound/outbound edge for each node pair.
// Nodes, edges, and edge information can all be added to the graph
// independently. Edge removal results in the deletion of all edge information
// for that edge.
type ChannelGraph struct {
db *DB
}
// newChannelGraph allocates a new ChannelGraph backed by a DB instance. The
// returned instance has its own unique reject cache and channel cache.
func newChannelGraph(db *DB, rejectCacheSize, chanCacheSize int) *ChannelGraph {
return &ChannelGraph{
db: db,
}
}
// SourceNode returns the source node of the graph. The source node is treated
// as the center node within a star-graph. This method may be used to kick off
// a path finding algorithm in order to explore the reachability of another
// node based off the source node.
func (c *ChannelGraph) SourceNode() (*LightningNode, error) {
var source *LightningNode
err := c.db.View(func(tx *bbolt.Tx) error {
// First grab the nodes bucket which stores the mapping from
// pubKey to node information.
nodes := tx.Bucket(nodeBucket)
if nodes == nil {
return ErrGraphNotFound
}
node, err := c.sourceNode(nodes)
if err != nil {
return err
}
source = node
return nil
})
if err != nil {
return nil, err
}
return source, nil
}
// sourceNode uses an existing database transaction and returns the source node
// of the graph. The source node is treated as the center node within a
// star-graph. This method may be used to kick off a path finding algorithm in
// order to explore the reachability of another node based off the source node.
func (c *ChannelGraph) sourceNode(nodes *bbolt.Bucket) (*LightningNode, error) {
selfPub := nodes.Get(sourceKey)
if selfPub == nil {
return nil, ErrSourceNodeNotSet
}
// With the pubKey of the source node retrieved, we're able to
// fetch the full node information.
node, err := fetchLightningNode(nodes, selfPub)
if err != nil {
return nil, err
}
node.db = c.db
return &node, nil
}
// SetSourceNode sets the source node within the graph database. The source
// node is to be used as the center of a star-graph within path finding
// algorithms.
func (c *ChannelGraph) SetSourceNode(node *LightningNode) error {
nodePubBytes := node.PubKeyBytes[:]
return c.db.Update(func(tx *bbolt.Tx) error {
// First grab the nodes bucket which stores the mapping from
// pubKey to node information.
nodes, err := tx.CreateBucketIfNotExists(nodeBucket)
if err != nil {
return err
}
// Next we create the mapping from source to the targeted
// public key.
if err := nodes.Put(sourceKey, nodePubBytes); err != nil {
return err
}
// Finally, we commit the information of the lightning node
// itself.
return addLightningNode(tx, node)
})
}
func addLightningNode(tx *bbolt.Tx, node *LightningNode) error {
nodes, err := tx.CreateBucketIfNotExists(nodeBucket)
if err != nil {
return err
}
aliases, err := nodes.CreateBucketIfNotExists(aliasIndexBucket)
if err != nil {
return err
}
updateIndex, err := nodes.CreateBucketIfNotExists(
nodeUpdateIndexBucket,
)
if err != nil {
return err
}
return putLightningNode(nodes, aliases, updateIndex, node)
}
// updateEdgePolicy attempts to update an edge's policy within the relevant
// buckets using an existing database transaction. The returned boolean will be
// true if the updated policy belongs to node1, and false if the policy belonged
// to node2.
func updateEdgePolicy(tx *bbolt.Tx, edge *ChannelEdgePolicy) (bool, error) {
edges := tx.Bucket(edgeBucket)
if edges == nil {
return false, ErrEdgeNotFound
}
edgeIndex := edges.Bucket(edgeIndexBucket)
if edgeIndex == nil {
return false, ErrEdgeNotFound
}
nodes, err := tx.CreateBucketIfNotExists(nodeBucket)
if err != nil {
return false, err
}
// Create the channelID key be converting the channel ID
// integer into a byte slice.
var chanID [8]byte
byteOrder.PutUint64(chanID[:], edge.ChannelID)
// With the channel ID, we then fetch the value storing the two
// nodes which connect this channel edge.
nodeInfo := edgeIndex.Get(chanID[:])
if nodeInfo == nil {
return false, ErrEdgeNotFound
}
// Depending on the flags value passed above, either the first
// or second edge policy is being updated.
var fromNode, toNode []byte
var isUpdate1 bool
if edge.ChannelFlags&lnwire.ChanUpdateDirection == 0 {
fromNode = nodeInfo[:33]
toNode = nodeInfo[33:66]
isUpdate1 = true
} else {
fromNode = nodeInfo[33:66]
toNode = nodeInfo[:33]
isUpdate1 = false
}
// Finally, with the direction of the edge being updated
// identified, we update the on-disk edge representation.
err = putChanEdgePolicy(edges, nodes, edge, fromNode, toNode)
if err != nil {
return false, err
}
return isUpdate1, nil
}
// LightningNode represents an individual vertex/node within the channel graph.
// A node is connected to other nodes by one or more channel edges emanating
// from it. As the graph is directed, a node will also have an incoming edge
// attached to it for each outgoing edge.
type LightningNode struct {
// PubKeyBytes is the raw bytes of the public key of the target node.
PubKeyBytes [33]byte
pubKey *btcec.PublicKey
// HaveNodeAnnouncement indicates whether we received a node
// announcement for this particular node. If true, the remaining fields
// will be set, if false only the PubKey is known for this node.
HaveNodeAnnouncement bool
// LastUpdate is the last time the vertex information for this node has
// been updated.
LastUpdate time.Time
// Address is the TCP address this node is reachable over.
Addresses []net.Addr
// Color is the selected color for the node.
Color color.RGBA
// Alias is a nick-name for the node. The alias can be used to confirm
// a node's identity or to serve as a short ID for an address book.
Alias string
// AuthSigBytes is the raw signature under the advertised public key
// which serves to authenticate the attributes announced by this node.
AuthSigBytes []byte
// Features is the list of protocol features supported by this node.
Features *lnwire.FeatureVector
// ExtraOpaqueData is the set of data that was appended to this
// message, some of which we may not actually know how to iterate or
// parse. By holding onto this data, we ensure that we're able to
// properly validate the set of signatures that cover these new fields,
// and ensure we're able to make upgrades to the network in a forwards
// compatible manner.
ExtraOpaqueData []byte
db *DB
// TODO(roasbeef): discovery will need storage to keep it's last IP
// address and re-announce if interface changes?
// TODO(roasbeef): add update method and fetch?
}
// PubKey is the node's long-term identity public key. This key will be used to
// authenticated any advertisements/updates sent by the node.
//
// NOTE: By having this method to access an attribute, we ensure we only need
// to fully deserialize the pubkey if absolutely necessary.
func (l *LightningNode) PubKey() (*btcec.PublicKey, error) {
if l.pubKey != nil {
return l.pubKey, nil
}
key, err := btcec.ParsePubKey(l.PubKeyBytes[:], btcec.S256())
if err != nil {
return nil, err
}
l.pubKey = key
return key, nil
}
// ChannelEdgeInfo represents a fully authenticated channel along with all its
// unique attributes. Once an authenticated channel announcement has been
// processed on the network, then an instance of ChannelEdgeInfo encapsulating
// the channels attributes is stored. The other portions relevant to routing
// policy of a channel are stored within a ChannelEdgePolicy for each direction
// of the channel.
type ChannelEdgeInfo struct {
// ChannelID is the unique channel ID for the channel. The first 3
// bytes are the block height, the next 3 the index within the block,
// and the last 2 bytes are the output index for the channel.
ChannelID uint64
// ChainHash is the hash that uniquely identifies the chain that this
// channel was opened within.
//
// TODO(roasbeef): need to modify db keying for multi-chain
// * must add chain hash to prefix as well
ChainHash chainhash.Hash
// NodeKey1Bytes is the raw public key of the first node.
NodeKey1Bytes [33]byte
// NodeKey2Bytes is the raw public key of the first node.
NodeKey2Bytes [33]byte
// BitcoinKey1Bytes is the raw public key of the first node.
BitcoinKey1Bytes [33]byte
// BitcoinKey2Bytes is the raw public key of the first node.
BitcoinKey2Bytes [33]byte
// Features is an opaque byte slice that encodes the set of channel
// specific features that this channel edge supports.
Features []byte
// AuthProof is the authentication proof for this channel. This proof
// contains a set of signatures binding four identities, which attests
// to the legitimacy of the advertised channel.
AuthProof *ChannelAuthProof
// ChannelPoint is the funding outpoint of the channel. This can be
// used to uniquely identify the channel within the channel graph.
ChannelPoint wire.OutPoint
// Capacity is the total capacity of the channel, this is determined by
// the value output in the outpoint that created this channel.
Capacity btcutil.Amount
// ExtraOpaqueData is the set of data that was appended to this
// message, some of which we may not actually know how to iterate or
// parse. By holding onto this data, we ensure that we're able to
// properly validate the set of signatures that cover these new fields,
// and ensure we're able to make upgrades to the network in a forwards
// compatible manner.
ExtraOpaqueData []byte
}
// ChannelAuthProof is the authentication proof (the signature portion) for a
// channel. Using the four signatures contained in the struct, and some
// auxiliary knowledge (the funding script, node identities, and outpoint) nodes
// on the network are able to validate the authenticity and existence of a
// channel. Each of these signatures signs the following digest: chanID ||
// nodeID1 || nodeID2 || bitcoinKey1|| bitcoinKey2 || 2-byte-feature-len ||
// features.
type ChannelAuthProof struct {
// NodeSig1Bytes are the raw bytes of the first node signature encoded
// in DER format.
NodeSig1Bytes []byte
// NodeSig2Bytes are the raw bytes of the second node signature
// encoded in DER format.
NodeSig2Bytes []byte
// BitcoinSig1Bytes are the raw bytes of the first bitcoin signature
// encoded in DER format.
BitcoinSig1Bytes []byte
// BitcoinSig2Bytes are the raw bytes of the second bitcoin signature
// encoded in DER format.
BitcoinSig2Bytes []byte
}
// IsEmpty check is the authentication proof is empty Proof is empty if at
// least one of the signatures are equal to nil.
func (c *ChannelAuthProof) IsEmpty() bool {
return len(c.NodeSig1Bytes) == 0 ||
len(c.NodeSig2Bytes) == 0 ||
len(c.BitcoinSig1Bytes) == 0 ||
len(c.BitcoinSig2Bytes) == 0
}
// ChannelEdgePolicy represents a *directed* edge within the channel graph. For
// each channel in the database, there are two distinct edges: one for each
// possible direction of travel along the channel. The edges themselves hold
// information concerning fees, and minimum time-lock information which is
// utilized during path finding.
type ChannelEdgePolicy struct {
// SigBytes is the raw bytes of the signature of the channel edge
// policy. We'll only parse these if the caller needs to access the
// signature for validation purposes. Do not set SigBytes directly, but
// use SetSigBytes instead to make sure that the cache is invalidated.
SigBytes []byte
// ChannelID is the unique channel ID for the channel. The first 3
// bytes are the block height, the next 3 the index within the block,
// and the last 2 bytes are the output index for the channel.
ChannelID uint64
// LastUpdate is the last time an authenticated edge for this channel
// was received.
LastUpdate time.Time
// MessageFlags is a bitfield which indicates the presence of optional
// fields (like max_htlc) in the policy.
MessageFlags lnwire.ChanUpdateMsgFlags
// ChannelFlags is a bitfield which signals the capabilities of the
// channel as well as the directed edge this update applies to.
ChannelFlags lnwire.ChanUpdateChanFlags
// TimeLockDelta is the number of blocks this node will subtract from
// the expiry of an incoming HTLC. This value expresses the time buffer
// the node would like to HTLC exchanges.
TimeLockDelta uint16
// MinHTLC is the smallest value HTLC this node will accept, expressed
// in millisatoshi.
MinHTLC lnwire.MilliSatoshi
// MaxHTLC is the largest value HTLC this node will accept, expressed
// in millisatoshi.
MaxHTLC lnwire.MilliSatoshi
// FeeBaseMSat is the base HTLC fee that will be charged for forwarding
// ANY HTLC, expressed in mSAT's.
FeeBaseMSat lnwire.MilliSatoshi
// FeeProportionalMillionths is the rate that the node will charge for
// HTLCs for each millionth of a satoshi forwarded.
FeeProportionalMillionths lnwire.MilliSatoshi
// Node is the LightningNode that this directed edge leads to. Using
// this pointer the channel graph can further be traversed.
Node *LightningNode
// ExtraOpaqueData is the set of data that was appended to this
// message, some of which we may not actually know how to iterate or
// parse. By holding onto this data, we ensure that we're able to
// properly validate the set of signatures that cover these new fields,
// and ensure we're able to make upgrades to the network in a forwards
// compatible manner.
ExtraOpaqueData []byte
}
// IsDisabled determines whether the edge has the disabled bit set.
func (c *ChannelEdgePolicy) IsDisabled() bool {
return c.ChannelFlags&lnwire.ChanUpdateDisabled ==
lnwire.ChanUpdateDisabled
}
func putLightningNode(nodeBucket *bbolt.Bucket, aliasBucket *bbolt.Bucket,
updateIndex *bbolt.Bucket, node *LightningNode) error {
var (
scratch [16]byte
b bytes.Buffer
)
pub, err := node.PubKey()
if err != nil {
return err
}
nodePub := pub.SerializeCompressed()
// If the node has the update time set, write it, else write 0.
updateUnix := uint64(0)
if node.LastUpdate.Unix() > 0 {
updateUnix = uint64(node.LastUpdate.Unix())
}
byteOrder.PutUint64(scratch[:8], updateUnix)
if _, err := b.Write(scratch[:8]); err != nil {
return err
}
if _, err := b.Write(nodePub); err != nil {
return err
}
// If we got a node announcement for this node, we will have the rest
// of the data available. If not we don't have more data to write.
if !node.HaveNodeAnnouncement {
// Write HaveNodeAnnouncement=0.
byteOrder.PutUint16(scratch[:2], 0)
if _, err := b.Write(scratch[:2]); err != nil {
return err
}
return nodeBucket.Put(nodePub, b.Bytes())
}
// Write HaveNodeAnnouncement=1.
byteOrder.PutUint16(scratch[:2], 1)
if _, err := b.Write(scratch[:2]); err != nil {
return err
}
if err := binary.Write(&b, byteOrder, node.Color.R); err != nil {
return err
}
if err := binary.Write(&b, byteOrder, node.Color.G); err != nil {
return err
}
if err := binary.Write(&b, byteOrder, node.Color.B); err != nil {
return err
}
if err := wire.WriteVarString(&b, 0, node.Alias); err != nil {
return err
}
if err := node.Features.Encode(&b); err != nil {
return err
}
numAddresses := uint16(len(node.Addresses))
byteOrder.PutUint16(scratch[:2], numAddresses)
if _, err := b.Write(scratch[:2]); err != nil {
return err
}
for _, address := range node.Addresses {
if err := serializeAddr(&b, address); err != nil {
return err
}
}
sigLen := len(node.AuthSigBytes)
if sigLen > 80 {
return fmt.Errorf("max sig len allowed is 80, had %v",
sigLen)
}
err = wire.WriteVarBytes(&b, 0, node.AuthSigBytes)
if err != nil {
return err
}
if len(node.ExtraOpaqueData) > MaxAllowedExtraOpaqueBytes {
return ErrTooManyExtraOpaqueBytes(len(node.ExtraOpaqueData))
}
err = wire.WriteVarBytes(&b, 0, node.ExtraOpaqueData)
if err != nil {
return err
}
if err := aliasBucket.Put(nodePub, []byte(node.Alias)); err != nil {
return err
}
// With the alias bucket updated, we'll now update the index that
// tracks the time series of node updates.
var indexKey [8 + 33]byte
byteOrder.PutUint64(indexKey[:8], updateUnix)
copy(indexKey[8:], nodePub)
// If there was already an old index entry for this node, then we'll
// delete the old one before we write the new entry.
if nodeBytes := nodeBucket.Get(nodePub); nodeBytes != nil {
// Extract out the old update time to we can reconstruct the
// prior index key to delete it from the index.
oldUpdateTime := nodeBytes[:8]
var oldIndexKey [8 + 33]byte
copy(oldIndexKey[:8], oldUpdateTime)
copy(oldIndexKey[8:], nodePub)
if err := updateIndex.Delete(oldIndexKey[:]); err != nil {
return err
}
}
if err := updateIndex.Put(indexKey[:], nil); err != nil {
return err
}
return nodeBucket.Put(nodePub, b.Bytes())
}
func fetchLightningNode(nodeBucket *bbolt.Bucket,
nodePub []byte) (LightningNode, error) {
nodeBytes := nodeBucket.Get(nodePub)
if nodeBytes == nil {
return LightningNode{}, ErrGraphNodeNotFound
}
nodeReader := bytes.NewReader(nodeBytes)
return deserializeLightningNode(nodeReader)
}
func deserializeLightningNode(r io.Reader) (LightningNode, error) {
var (
node LightningNode
scratch [8]byte
err error
)
if _, err := r.Read(scratch[:]); err != nil {
return LightningNode{}, err
}
unix := int64(byteOrder.Uint64(scratch[:]))
node.LastUpdate = time.Unix(unix, 0)
if _, err := io.ReadFull(r, node.PubKeyBytes[:]); err != nil {
return LightningNode{}, err
}
if _, err := r.Read(scratch[:2]); err != nil {
return LightningNode{}, err
}
hasNodeAnn := byteOrder.Uint16(scratch[:2])
if hasNodeAnn == 1 {
node.HaveNodeAnnouncement = true
} else {
node.HaveNodeAnnouncement = false
}
// The rest of the data is optional, and will only be there if we got a node
// announcement for this node.
if !node.HaveNodeAnnouncement {
return node, nil
}
// We did get a node announcement for this node, so we'll have the rest
// of the data available.
if err := binary.Read(r, byteOrder, &node.Color.R); err != nil {
return LightningNode{}, err
}
if err := binary.Read(r, byteOrder, &node.Color.G); err != nil {
return LightningNode{}, err
}
if err := binary.Read(r, byteOrder, &node.Color.B); err != nil {
return LightningNode{}, err
}
node.Alias, err = wire.ReadVarString(r, 0)
if err != nil {
return LightningNode{}, err
}
fv := lnwire.NewFeatureVector(nil, nil)
err = fv.Decode(r)
if err != nil {
return LightningNode{}, err
}
node.Features = fv
if _, err := r.Read(scratch[:2]); err != nil {
return LightningNode{}, err
}
numAddresses := int(byteOrder.Uint16(scratch[:2]))
var addresses []net.Addr
for i := 0; i < numAddresses; i++ {
address, err := deserializeAddr(r)
if err != nil {
return LightningNode{}, err
}
addresses = append(addresses, address)
}
node.Addresses = addresses
node.AuthSigBytes, err = wire.ReadVarBytes(r, 0, 80, "sig")
if err != nil {
return LightningNode{}, err
}
// We'll try and see if there are any opaque bytes left, if not, then
// we'll ignore the EOF error and return the node as is.
node.ExtraOpaqueData, err = wire.ReadVarBytes(
r, 0, MaxAllowedExtraOpaqueBytes, "blob",
)
switch {
case err == io.ErrUnexpectedEOF:
case err == io.EOF:
case err != nil:
return LightningNode{}, err
}
return node, nil
}
func deserializeChanEdgeInfo(r io.Reader) (ChannelEdgeInfo, error) {
var (
err error
edgeInfo ChannelEdgeInfo
)
if _, err := io.ReadFull(r, edgeInfo.NodeKey1Bytes[:]); err != nil {
return ChannelEdgeInfo{}, err
}
if _, err := io.ReadFull(r, edgeInfo.NodeKey2Bytes[:]); err != nil {
return ChannelEdgeInfo{}, err
}
if _, err := io.ReadFull(r, edgeInfo.BitcoinKey1Bytes[:]); err != nil {
return ChannelEdgeInfo{}, err
}
if _, err := io.ReadFull(r, edgeInfo.BitcoinKey2Bytes[:]); err != nil {
return ChannelEdgeInfo{}, err
}
edgeInfo.Features, err = wire.ReadVarBytes(r, 0, 900, "features")
if err != nil {
return ChannelEdgeInfo{}, err
}
proof := &ChannelAuthProof{}
proof.NodeSig1Bytes, err = wire.ReadVarBytes(r, 0, 80, "sigs")
if err != nil {
return ChannelEdgeInfo{}, err
}
proof.NodeSig2Bytes, err = wire.ReadVarBytes(r, 0, 80, "sigs")
if err != nil {
return ChannelEdgeInfo{}, err
}
proof.BitcoinSig1Bytes, err = wire.ReadVarBytes(r, 0, 80, "sigs")
if err != nil {
return ChannelEdgeInfo{}, err
}
proof.BitcoinSig2Bytes, err = wire.ReadVarBytes(r, 0, 80, "sigs")
if err != nil {
return ChannelEdgeInfo{}, err
}
if !proof.IsEmpty() {
edgeInfo.AuthProof = proof
}
edgeInfo.ChannelPoint = wire.OutPoint{}
if err := readOutpoint(r, &edgeInfo.ChannelPoint); err != nil {
return ChannelEdgeInfo{}, err
}
if err := binary.Read(r, byteOrder, &edgeInfo.Capacity); err != nil {
return ChannelEdgeInfo{}, err
}
if err := binary.Read(r, byteOrder, &edgeInfo.ChannelID); err != nil {
return ChannelEdgeInfo{}, err
}
if _, err := io.ReadFull(r, edgeInfo.ChainHash[:]); err != nil {
return ChannelEdgeInfo{}, err
}
// We'll try and see if there are any opaque bytes left, if not, then
// we'll ignore the EOF error and return the edge as is.
edgeInfo.ExtraOpaqueData, err = wire.ReadVarBytes(
r, 0, MaxAllowedExtraOpaqueBytes, "blob",
)
switch {
case err == io.ErrUnexpectedEOF:
case err == io.EOF:
case err != nil:
return ChannelEdgeInfo{}, err
}
return edgeInfo, nil
}
func putChanEdgePolicy(edges, nodes *bbolt.Bucket, edge *ChannelEdgePolicy,
from, to []byte) error {
var edgeKey [33 + 8]byte
copy(edgeKey[:], from)
byteOrder.PutUint64(edgeKey[33:], edge.ChannelID)
var b bytes.Buffer
if err := serializeChanEdgePolicy(&b, edge, to); err != nil {
return err
}
// Before we write out the new edge, we'll create a new entry in the
// update index in order to keep it fresh.
updateUnix := uint64(edge.LastUpdate.Unix())
var indexKey [8 + 8]byte
byteOrder.PutUint64(indexKey[:8], updateUnix)
byteOrder.PutUint64(indexKey[8:], edge.ChannelID)
updateIndex, err := edges.CreateBucketIfNotExists(edgeUpdateIndexBucket)
if err != nil {
return err
}
// If there was already an entry for this edge, then we'll need to
// delete the old one to ensure we don't leave around any after-images.
// An unknown policy value does not have a update time recorded, so
// it also does not need to be removed.
if edgeBytes := edges.Get(edgeKey[:]); edgeBytes != nil &&
!bytes.Equal(edgeBytes[:], unknownPolicy) {
// In order to delete the old entry, we'll need to obtain the
// *prior* update time in order to delete it. To do this, we'll
// need to deserialize the existing policy within the database
// (now outdated by the new one), and delete its corresponding
// entry within the update index. We'll ignore any
// ErrEdgePolicyOptionalFieldNotFound error, as we only need
// the channel ID and update time to delete the entry.
// TODO(halseth): get rid of these invalid policies in a
// migration.
oldEdgePolicy, err := deserializeChanEdgePolicy(
bytes.NewReader(edgeBytes), nodes,
)
if err != nil && err != ErrEdgePolicyOptionalFieldNotFound {
return err
}
oldUpdateTime := uint64(oldEdgePolicy.LastUpdate.Unix())
var oldIndexKey [8 + 8]byte
byteOrder.PutUint64(oldIndexKey[:8], oldUpdateTime)
byteOrder.PutUint64(oldIndexKey[8:], edge.ChannelID)
if err := updateIndex.Delete(oldIndexKey[:]); err != nil {
return err
}
}
if err := updateIndex.Put(indexKey[:], nil); err != nil {
return err
}
updateEdgePolicyDisabledIndex(
edges, edge.ChannelID,
edge.ChannelFlags&lnwire.ChanUpdateDirection > 0,
edge.IsDisabled(),
)
return edges.Put(edgeKey[:], b.Bytes()[:])
}
// updateEdgePolicyDisabledIndex is used to update the disabledEdgePolicyIndex
// bucket by either add a new disabled ChannelEdgePolicy or remove an existing
// one.
// The direction represents the direction of the edge and disabled is used for
// deciding whether to remove or add an entry to the bucket.
// In general a channel is disabled if two entries for the same chanID exist
// in this bucket.
// Maintaining the bucket this way allows a fast retrieval of disabled
// channels, for example when prune is needed.
func updateEdgePolicyDisabledIndex(edges *bbolt.Bucket, chanID uint64,
direction bool, disabled bool) error {
var disabledEdgeKey [8 + 1]byte
byteOrder.PutUint64(disabledEdgeKey[0:], chanID)
if direction {
disabledEdgeKey[8] = 1
}
disabledEdgePolicyIndex, err := edges.CreateBucketIfNotExists(
disabledEdgePolicyBucket,
)
if err != nil {
return err
}
if disabled {
return disabledEdgePolicyIndex.Put(disabledEdgeKey[:], []byte{})
}
return disabledEdgePolicyIndex.Delete(disabledEdgeKey[:])
}
// putChanEdgePolicyUnknown marks the edge policy as unknown
// in the edges bucket.
func putChanEdgePolicyUnknown(edges *bbolt.Bucket, channelID uint64,
from []byte) error {
var edgeKey [33 + 8]byte
copy(edgeKey[:], from)
byteOrder.PutUint64(edgeKey[33:], channelID)
if edges.Get(edgeKey[:]) != nil {
return fmt.Errorf("Cannot write unknown policy for channel %v "+
" when there is already a policy present", channelID)
}
return edges.Put(edgeKey[:], unknownPolicy)
}
func fetchChanEdgePolicy(edges *bbolt.Bucket, chanID []byte,
nodePub []byte, nodes *bbolt.Bucket) (*ChannelEdgePolicy, error) {
var edgeKey [33 + 8]byte
copy(edgeKey[:], nodePub)
copy(edgeKey[33:], chanID[:])
edgeBytes := edges.Get(edgeKey[:])
if edgeBytes == nil {
return nil, ErrEdgeNotFound
}
// No need to deserialize unknown policy.
if bytes.Equal(edgeBytes[:], unknownPolicy) {
return nil, nil
}
edgeReader := bytes.NewReader(edgeBytes)
ep, err := deserializeChanEdgePolicy(edgeReader, nodes)
switch {
// If the db policy was missing an expected optional field, we return
// nil as if the policy was unknown.
case err == ErrEdgePolicyOptionalFieldNotFound:
return nil, nil
case err != nil:
return nil, err
}
return ep, nil
}
func serializeChanEdgePolicy(w io.Writer, edge *ChannelEdgePolicy,
to []byte) error {
err := wire.WriteVarBytes(w, 0, edge.SigBytes)
if err != nil {
return err
}
if err := binary.Write(w, byteOrder, edge.ChannelID); err != nil {
return err
}
var scratch [8]byte
updateUnix := uint64(edge.LastUpdate.Unix())
byteOrder.PutUint64(scratch[:], updateUnix)
if _, err := w.Write(scratch[:]); err != nil {
return err
}
if err := binary.Write(w, byteOrder, edge.MessageFlags); err != nil {
return err
}
if err := binary.Write(w, byteOrder, edge.ChannelFlags); err != nil {
return err
}
if err := binary.Write(w, byteOrder, edge.TimeLockDelta); err != nil {
return err
}
if err := binary.Write(w, byteOrder, uint64(edge.MinHTLC)); err != nil {
return err
}
if err := binary.Write(w, byteOrder, uint64(edge.FeeBaseMSat)); err != nil {
return err
}
if err := binary.Write(w, byteOrder, uint64(edge.FeeProportionalMillionths)); err != nil {
return err
}
if _, err := w.Write(to); err != nil {
return err
}
// If the max_htlc field is present, we write it. To be compatible with
// older versions that wasn't aware of this field, we write it as part
// of the opaque data.
// TODO(halseth): clean up when moving to TLV.
var opaqueBuf bytes.Buffer
if edge.MessageFlags.HasMaxHtlc() {
err := binary.Write(&opaqueBuf, byteOrder, uint64(edge.MaxHTLC))
if err != nil {
return err
}
}
if len(edge.ExtraOpaqueData) > MaxAllowedExtraOpaqueBytes {
return ErrTooManyExtraOpaqueBytes(len(edge.ExtraOpaqueData))
}
if _, err := opaqueBuf.Write(edge.ExtraOpaqueData); err != nil {
return err
}
if err := wire.WriteVarBytes(w, 0, opaqueBuf.Bytes()); err != nil {
return err
}
return nil
}
func deserializeChanEdgePolicy(r io.Reader,
nodes *bbolt.Bucket) (*ChannelEdgePolicy, error) {
edge := &ChannelEdgePolicy{}
var err error
edge.SigBytes, err = wire.ReadVarBytes(r, 0, 80, "sig")
if err != nil {
return nil, err
}
if err := binary.Read(r, byteOrder, &edge.ChannelID); err != nil {
return nil, err
}
var scratch [8]byte
if _, err := r.Read(scratch[:]); err != nil {
return nil, err
}
unix := int64(byteOrder.Uint64(scratch[:]))
edge.LastUpdate = time.Unix(unix, 0)
if err := binary.Read(r, byteOrder, &edge.MessageFlags); err != nil {
return nil, err
}
if err := binary.Read(r, byteOrder, &edge.ChannelFlags); err != nil {
return nil, err
}
if err := binary.Read(r, byteOrder, &edge.TimeLockDelta); err != nil {
return nil, err
}
var n uint64
if err := binary.Read(r, byteOrder, &n); err != nil {
return nil, err
}
edge.MinHTLC = lnwire.MilliSatoshi(n)
if err := binary.Read(r, byteOrder, &n); err != nil {
return nil, err
}
edge.FeeBaseMSat = lnwire.MilliSatoshi(n)
if err := binary.Read(r, byteOrder, &n); err != nil {
return nil, err
}
edge.FeeProportionalMillionths = lnwire.MilliSatoshi(n)
var pub [33]byte
if _, err := r.Read(pub[:]); err != nil {
return nil, err
}
node, err := fetchLightningNode(nodes, pub[:])
if err != nil {
return nil, fmt.Errorf("unable to fetch node: %x, %v",
pub[:], err)
}
edge.Node = &node
// We'll try and see if there are any opaque bytes left, if not, then
// we'll ignore the EOF error and return the edge as is.
edge.ExtraOpaqueData, err = wire.ReadVarBytes(
r, 0, MaxAllowedExtraOpaqueBytes, "blob",
)
switch {
case err == io.ErrUnexpectedEOF:
case err == io.EOF:
case err != nil:
return nil, err
}
// See if optional fields are present.
if edge.MessageFlags.HasMaxHtlc() {
// The max_htlc field should be at the beginning of the opaque
// bytes.
opq := edge.ExtraOpaqueData
// If the max_htlc field is not present, it might be old data
// stored before this field was validated. We'll return the
// edge along with an error.
if len(opq) < 8 {
return edge, ErrEdgePolicyOptionalFieldNotFound
}
maxHtlc := byteOrder.Uint64(opq[:8])
edge.MaxHTLC = lnwire.MilliSatoshi(maxHtlc)
// Exclude the parsed field from the rest of the opaque data.
edge.ExtraOpaqueData = opq[8:]
}
return edge, nil
}