lnd.xprv/chainntnfs/interface_test.go

1697 lines
50 KiB
Go
Raw Normal View History

// +build dev
package chainntnfs_test
import (
"bytes"
"fmt"
"io/ioutil"
"log"
"sync"
"testing"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/integration/rpctest"
"github.com/btcsuite/btcd/rpcclient"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightninglabs/neutrino"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
// Required to auto-register the bitcoind backed ChainNotifier
// implementation.
"github.com/lightningnetwork/lnd/chainntnfs/bitcoindnotify"
// Required to auto-register the btcd backed ChainNotifier
// implementation.
"github.com/lightningnetwork/lnd/chainntnfs/btcdnotify"
// Required to auto-register the neutrino backed ChainNotifier
// implementation.
"github.com/lightningnetwork/lnd/chainntnfs/neutrinonotify"
2017-11-10 03:30:20 +03:00
// Required to register the boltdb walletdb implementation.
"github.com/btcsuite/btcwallet/chain"
_ "github.com/btcsuite/btcwallet/walletdb/bdb"
)
func testSingleConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
// We'd like to test the case of being notified once a txid reaches
// a *single* confirmation.
//
// So first, let's send some coins to "ourself", obtaining a txid.
// We're spending from a coinbase output here, so we use the dedicated
// function.
txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Now that we have a txid, register a confirmation notification with
// the chainntfn source.
numConfs := uint32(1)
confIntent, err := notifier.RegisterConfirmationsNtfn(
txid, pkScript, numConfs, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// Now generate a single block, the transaction should be included which
// should trigger a notification event.
blockHash, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
select {
case confInfo := <-confIntent.Confirmed:
if !confInfo.BlockHash.IsEqual(blockHash[0]) {
t.Fatalf("mismatched block hashes: expected %v, got %v",
blockHash[0], confInfo.BlockHash)
}
// Finally, we'll verify that the tx index returned is the exact same
// as the tx index of the transaction within the block itself.
msgBlock, err := miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to fetch block: %v", err)
}
block := btcutil.NewBlock(msgBlock)
specifiedTxHash, err := block.TxHash(int(confInfo.TxIndex))
if err != nil {
t.Fatalf("unable to index into block: %v", err)
}
if !specifiedTxHash.IsEqual(txid) {
t.Fatalf("mismatched tx indexes: expected %v, got %v",
txid, specifiedTxHash)
}
case <-time.After(20 * time.Second):
t.Fatalf("confirmation notification never received")
}
}
func testMultiConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
// We'd like to test the case of being notified once a txid reaches
// N confirmations, where N > 1.
//
// Again, we'll begin by creating a fresh transaction, so we can obtain
// a fresh txid.
txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner)
if err != nil {
t.Fatalf("unable to create test addr: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
numConfs := uint32(6)
confIntent, err := notifier.RegisterConfirmationsNtfn(
txid, pkScript, numConfs, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// Now generate a six blocks. The transaction should be included in the
// first block, which will be built upon by the other 5 blocks.
if _, err := miner.Node.Generate(6); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// TODO(roasbeef): reduce all timeouts after neutrino sync tightended
// up
select {
case <-confIntent.Confirmed:
break
case <-time.After(20 * time.Second):
t.Fatalf("confirmation notification never received")
}
}
func testBatchConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
// We'd like to test a case of serving notifications to multiple
// clients, each requesting to be notified once a txid receives
// various numbers of confirmations.
confSpread := [6]uint32{1, 2, 3, 6, 20, 22}
confIntents := make([]*chainntnfs.ConfirmationEvent, len(confSpread))
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Create a new txid spending miner coins for each confirmation entry
// in confSpread, we collect each conf intent into a slice so we can
// verify they're each notified at the proper number of confirmations
// below.
for i, numConfs := range confSpread {
txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner)
if err != nil {
t.Fatalf("unable to create test addr: %v", err)
}
confIntent, err := notifier.RegisterConfirmationsNtfn(
txid, pkScript, numConfs, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
confIntents[i] = confIntent
if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
}
initialConfHeight := uint32(currentHeight + 1)
// Now, for each confirmation intent, generate the delta number of blocks
// needed to trigger the confirmation notification. A goroutine is
// spawned in order to verify the proper notification is triggered.
for i, numConfs := range confSpread {
var blocksToGen uint32
// If this is the last instance, manually index to generate the
// proper block delta in order to avoid a panic.
if i == len(confSpread)-1 {
blocksToGen = confSpread[len(confSpread)-1] - confSpread[len(confSpread)-2]
} else {
blocksToGen = confSpread[i+1] - confSpread[i]
}
// Generate the number of blocks necessary to trigger this
// current confirmation notification.
if _, err := miner.Node.Generate(blocksToGen); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
select {
case conf := <-confIntents[i].Confirmed:
// All of the notifications above were originally
// confirmed in the same block. The returned
// notification should list the initial confirmation
// height rather than the height they were _fully_
// confirmed.
if conf.BlockHeight != initialConfHeight {
t.Fatalf("notification has incorrect initial "+
"conf height: expected %v, got %v",
initialConfHeight, conf.BlockHeight)
}
continue
case <-time.After(20 * time.Second):
t.Fatalf("confirmation notification never received: %v", numConfs)
}
}
}
func checkNotificationFields(ntfn *chainntnfs.SpendDetail,
outpoint *wire.OutPoint, spenderSha *chainhash.Hash,
height int32, t *testing.T) {
if *ntfn.SpentOutPoint != *outpoint {
t.Fatalf("ntfn includes wrong output, reports "+
"%v instead of %v",
ntfn.SpentOutPoint, outpoint)
}
if !bytes.Equal(ntfn.SpenderTxHash[:], spenderSha[:]) {
t.Fatalf("ntfn includes wrong spender tx sha, "+
"reports %v instead of %v",
ntfn.SpenderTxHash[:], spenderSha[:])
}
if ntfn.SpenderInputIndex != 0 {
t.Fatalf("ntfn includes wrong spending input "+
"index, reports %v, should be %v",
ntfn.SpenderInputIndex, 0)
}
if ntfn.SpendingHeight != height {
t.Fatalf("ntfn has wrong spending height: "+
"expected %v, got %v", height,
ntfn.SpendingHeight)
}
}
func testSpendNotification(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
// We'd like to test the spend notifications for all ChainNotifier
// concrete implementations.
//
// To do so, we first create a new output to our test target address.
outpoint, pkScript := chainntnfs.CreateSpendableOutput(t, miner)
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
2018-04-18 05:02:04 +03:00
// Now that we have an output index and the pkScript, register for a
// spentness notification for the newly created output with multiple
// clients in order to ensure the implementation can support
// multi-client spend notifications.
const numClients = 5
spendClients := make([]*chainntnfs.SpendEvent, numClients)
for i := 0; i < numClients; i++ {
spentIntent, err := notifier.RegisterSpendNtfn(
outpoint, pkScript, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register for spend ntfn: %v", err)
}
spendClients[i] = spentIntent
}
// Next, create a new transaction spending that output.
spendingTx := chainntnfs.CreateSpendTx(t, outpoint, pkScript)
// Broadcast our spending transaction.
spenderSha, err := miner.Node.SendRawTransaction(spendingTx, true)
if err != nil {
2017-08-11 07:15:36 +03:00
t.Fatalf("unable to broadcast tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, spenderSha); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
// Make sure notifications are not yet sent. We launch a go routine for
// all the spend clients, such that we can wait for them all in
// parallel.
//
// Since bitcoind is at times very slow at notifying about txs in the
// mempool, we use a quite large timeout of 10 seconds.
// TODO(halseth): change this when mempool spends are removed.
mempoolSpendTimeout := 10 * time.Second
mempoolSpends := make(chan *chainntnfs.SpendDetail, numClients)
for _, c := range spendClients {
go func(client *chainntnfs.SpendEvent) {
select {
case s := <-client.Spend:
mempoolSpends <- s
case <-time.After(mempoolSpendTimeout):
}
}(c)
}
select {
case <-mempoolSpends:
t.Fatalf("did not expect to get notification before " +
"block was mined")
case <-time.After(mempoolSpendTimeout):
}
// Make sure registering a client after the tx is in the mempool still
// doesn't trigger a notification.
spentIntent, err := notifier.RegisterSpendNtfn(
outpoint, pkScript, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register for spend ntfn: %v", err)
}
select {
case <-spentIntent.Spend:
t.Fatalf("did not expect to get notification before " +
"block was mined")
case <-time.After(mempoolSpendTimeout):
}
spendClients = append(spendClients, spentIntent)
// Now we mine a single block, which should include our spend. The
// notification should also be sent off.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
_, currentHeight, err = miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
for _, c := range spendClients {
select {
case ntfn := <-c.Spend:
// We've received the spend nftn. So now verify all the
// fields have been set properly.
checkNotificationFields(ntfn, outpoint, spenderSha,
currentHeight, t)
case <-time.After(30 * time.Second):
t.Fatalf("spend ntfn never received")
}
}
}
func testBlockEpochNotification(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
// We'd like to test the case of multiple registered clients receiving
// block epoch notifications.
const numBlocks = 10
const numClients = 5
var wg sync.WaitGroup
// Create numClients clients which will listen for block notifications. We
// expect each client to receive 10 notifications for each of the ten
// blocks we generate below. So we'll use a WaitGroup to synchronize the
// test.
for i := 0; i < numClients; i++ {
epochClient, err := notifier.RegisterBlockEpochNtfn(nil)
if err != nil {
t.Fatalf("unable to register for epoch notification")
}
wg.Add(numBlocks)
go func() {
for i := 0; i < numBlocks; i++ {
<-epochClient.Epochs
wg.Done()
}
}()
}
epochsSent := make(chan struct{})
go func() {
wg.Wait()
close(epochsSent)
}()
// Now generate 10 blocks, the clients above should each receive 10
// notifications, thereby unblocking the goroutine above.
if _, err := miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
select {
case <-epochsSent:
case <-time.After(30 * time.Second):
t.Fatalf("all notifications not sent")
}
}
func testMultiClientConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
// We'd like to test the case of a multiple clients registered to
// receive a confirmation notification for the same transaction.
txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
var wg sync.WaitGroup
const (
numConfsClients = 5
numConfs = 1
)
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Register for a conf notification for the above generated txid with
// numConfsClients distinct clients.
for i := 0; i < numConfsClients; i++ {
confClient, err := notifier.RegisterConfirmationsNtfn(
txid, pkScript, numConfs, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register for confirmation: %v", err)
}
wg.Add(1)
go func() {
<-confClient.Confirmed
wg.Done()
}()
}
confsSent := make(chan struct{})
go func() {
wg.Wait()
close(confsSent)
}()
// Finally, generate a single block which should trigger the unblocking
// of all numConfsClients blocked on the channel read above.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
select {
case <-confsSent:
case <-time.After(30 * time.Second):
t.Fatalf("all confirmation notifications not sent")
}
}
// Tests the case in which a confirmation notification is requested for a
// transaction that has already been included in a block. In this case, the
// confirmation notification should be dispatched immediately.
func testTxConfirmedBeforeNtfnRegistration(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
// First, let's send some coins to "ourself", obtaining a txid. We're
// spending from a coinbase output here, so we use the dedicated
// function.
txid3, pkScript3, err := chainntnfs.GetTestTxidAndScript(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, txid3); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
// Generate another block containing tx 3, but we won't register conf
// notifications for this tx until much later. The notifier must check
// older blocks when the confirmation event is registered below to ensure
// that the TXID hasn't already been included in the chain, otherwise the
// notification will never be sent.
_, err = miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
txid1, pkScript1, err := chainntnfs.GetTestTxidAndScript(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, txid1); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
txid2, pkScript2, err := chainntnfs.GetTestTxidAndScript(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, txid2); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Now generate another block containing txs 1 & 2.
blockHash, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Register a confirmation notification with the chainntfn source for tx2,
// which is included in the last block. The height hint is the height before
// the block is included. This notification should fire immediately since
// only 1 confirmation is required.
ntfn1, err := notifier.RegisterConfirmationsNtfn(
txid1, pkScript1, 1, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
select {
case confInfo := <-ntfn1.Confirmed:
// Finally, we'll verify that the tx index returned is the exact same
// as the tx index of the transaction within the block itself.
msgBlock, err := miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to fetch block: %v", err)
}
block := btcutil.NewBlock(msgBlock)
specifiedTxHash, err := block.TxHash(int(confInfo.TxIndex))
if err != nil {
t.Fatalf("unable to index into block: %v", err)
}
if !specifiedTxHash.IsEqual(txid1) {
t.Fatalf("mismatched tx indexes: expected %v, got %v",
txid1, specifiedTxHash)
}
// We'll also ensure that the block height has been set
// properly.
if confInfo.BlockHeight != uint32(currentHeight+1) {
t.Fatalf("incorrect block height: expected %v, got %v",
confInfo.BlockHeight, currentHeight)
}
break
case <-time.After(20 * time.Second):
t.Fatalf("confirmation notification never received")
}
// Register a confirmation notification for tx2, requiring 3 confirmations.
// This transaction is only partially confirmed, so the notification should
// not fire yet.
ntfn2, err := notifier.RegisterConfirmationsNtfn(
txid2, pkScript2, 3, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// Fully confirm tx3.
_, err = miner.Node.Generate(2)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
select {
case <-ntfn2.Confirmed:
case <-time.After(10 * time.Second):
t.Fatalf("confirmation notification never received")
}
select {
case <-ntfn1.Confirmed:
t.Fatalf("received multiple confirmations for tx")
case <-time.After(1 * time.Second):
}
// Finally register a confirmation notification for tx3, requiring 1
// confirmation. Ensure that conf notifications do not refire on txs
// 1 or 2.
ntfn3, err := notifier.RegisterConfirmationsNtfn(
txid3, pkScript3, 1, uint32(currentHeight-1),
)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
select {
case <-ntfn3.Confirmed:
case <-time.After(10 * time.Second):
t.Fatalf("confirmation notification never received")
}
time.Sleep(1 * time.Second)
select {
case <-ntfn1.Confirmed:
t.Fatalf("received multiple confirmations for tx")
default:
}
select {
case <-ntfn2.Confirmed:
t.Fatalf("received multiple confirmations for tx")
default:
}
}
// Test the case of a notification consumer having forget or being delayed in
// checking for a confirmation. This should not cause the notifier to stop
// working
func testLazyNtfnConsumer(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
// Create a transaction to be notified about. We'll register for
// notifications on this transaction but won't be prompt in checking them
txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
numConfs := uint32(3)
// Add a block right before registering, this makes race conditions
// between the historical dispatcher and the normal dispatcher more obvious
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
firstConfIntent, err := notifier.RegisterConfirmationsNtfn(
txid, pkScript, numConfs, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// Generate another 2 blocks, this should dispatch the confirm notification
if _, err := miner.Node.Generate(2); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Now make another transaction, just because we haven't checked to see
// if the first transaction has confirmed doesn't mean that we shouldn't
// be able to see if this transaction confirms first
txid, pkScript, err = chainntnfs.GetTestTxidAndScript(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
_, currentHeight, err = miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
numConfs = 1
secondConfIntent, err := notifier.RegisterConfirmationsNtfn(
txid, pkScript, numConfs, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
select {
case <-secondConfIntent.Confirmed:
// Successfully receive the second notification
break
case <-time.After(30 * time.Second):
t.Fatalf("Second confirmation notification never received")
}
// Make sure the first tx confirmed successfully
select {
case <-firstConfIntent.Confirmed:
break
case <-time.After(30 * time.Second):
t.Fatalf("First confirmation notification never received")
}
}
// Tests the case in which a spend notification is requested for a spend that
// has already been included in a block. In this case, the spend notification
// should be dispatched immediately.
func testSpendBeforeNtfnRegistration(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
// We'd like to test the spend notifications for all ChainNotifier
// concrete implementations.
//
// To do so, we first create a new output to our test target address.
outpoint, pkScript := chainntnfs.CreateSpendableOutput(t, miner)
// We'll then spend this output and broadcast the spend transaction.
spendingTx := chainntnfs.CreateSpendTx(t, outpoint, pkScript)
spenderSha, err := miner.Node.SendRawTransaction(spendingTx, true)
if err != nil {
t.Fatalf("unable to broadcast tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, spenderSha); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
// We create an epoch client we can use to make sure the notifier is
// caught up to the mining node's chain.
epochClient, err := notifier.RegisterBlockEpochNtfn(nil)
if err != nil {
t.Fatalf("unable to register for block epoch: %v", err)
}
// Now we mine an additional block, which should include our spend.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// checkSpends registers two clients to be notified of a spend that has
// already happened. The notifier should dispatch a spend notification
// immediately.
checkSpends := func() {
const numClients = 2
spendClients := make([]*chainntnfs.SpendEvent, numClients)
for i := 0; i < numClients; i++ {
spentIntent, err := notifier.RegisterSpendNtfn(
outpoint, pkScript, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register for spend ntfn: %v",
err)
}
spendClients[i] = spentIntent
}
for _, client := range spendClients {
select {
case ntfn := <-client.Spend:
// We've received the spend nftn. So now verify
// all the fields have been set properly.
checkNotificationFields(ntfn, outpoint, spenderSha,
currentHeight, t)
case <-time.After(30 * time.Second):
t.Fatalf("spend ntfn never received")
}
}
}
// Wait for the notifier to have caught up to the mined block.
select {
case _, ok := <-epochClient.Epochs:
if !ok {
t.Fatalf("epoch channel was closed")
}
case <-time.After(15 * time.Second):
t.Fatalf("did not receive block epoch")
}
// Check that the spend clients gets immediately notified for the spend
// in the previous block.
checkSpends()
// Bury the spend even deeper, and do the same check.
const numBlocks = 10
if _, err := miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// Wait for the notifier to have caught up with the new blocks.
for i := 0; i < numBlocks; i++ {
select {
case _, ok := <-epochClient.Epochs:
if !ok {
t.Fatalf("epoch channel was closed")
}
case <-time.After(15 * time.Second):
t.Fatalf("did not receive block epoch")
}
}
// The clients should still be notified immediately.
checkSpends()
}
func testCancelSpendNtfn(node *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
// We'd like to test that once a spend notification is registered, it
// can be cancelled before the notification is dispatched.
// First, we'll start by creating a new output that we can spend
// ourselves.
outpoint, pkScript := chainntnfs.CreateSpendableOutput(t, node)
_, currentHeight, err := node.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Create two clients that each registered to the spend notification.
// We'll cancel the notification for the first client and leave the
// notification for the second client enabled.
const numClients = 2
spendClients := make([]*chainntnfs.SpendEvent, numClients)
for i := 0; i < numClients; i++ {
spentIntent, err := notifier.RegisterSpendNtfn(
outpoint, pkScript, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register for spend ntfn: %v", err)
}
spendClients[i] = spentIntent
}
// Next, create a new transaction spending that output.
spendingTx := chainntnfs.CreateSpendTx(t, outpoint, pkScript)
// Before we broadcast the spending transaction, we'll cancel the
// notification of the first client.
spendClients[1].Cancel()
// Broadcast our spending transaction.
spenderSha, err := node.Node.SendRawTransaction(spendingTx, true)
if err != nil {
t.Fatalf("unable to broadcast tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(node, spenderSha); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
// Now we mine a single block, which should include our spend. The
// notification should also be sent off.
if _, err := node.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// However, the spend notification for the first client should have
// been dispatched.
select {
case ntfn := <-spendClients[0].Spend:
// We've received the spend nftn. So now verify all the
// fields have been set properly.
if *ntfn.SpentOutPoint != *outpoint {
t.Fatalf("ntfn includes wrong output, reports "+
"%v instead of %v",
ntfn.SpentOutPoint, outpoint)
}
if !bytes.Equal(ntfn.SpenderTxHash[:], spenderSha[:]) {
t.Fatalf("ntfn includes wrong spender tx sha, "+
"reports %v instead of %v",
ntfn.SpenderTxHash[:], spenderSha[:])
}
if ntfn.SpenderInputIndex != 0 {
t.Fatalf("ntfn includes wrong spending input "+
"index, reports %v, should be %v",
ntfn.SpenderInputIndex, 0)
}
case <-time.After(20 * time.Second):
t.Fatalf("spend ntfn never received")
}
// However, The spend notification of the second client should NOT have
// been dispatched.
select {
case _, ok := <-spendClients[1].Spend:
if ok {
t.Fatalf("spend ntfn should have been cancelled")
}
case <-time.After(20 * time.Second):
t.Fatalf("spend ntfn never cancelled")
}
}
func testCancelEpochNtfn(node *rpctest.Harness, notifier chainntnfs.TestChainNotifier,
t *testing.T) {
// We'd like to ensure that once a client cancels their block epoch
// notifications, no further notifications are sent over the channel
// if/when new blocks come in.
const numClients = 2
epochClients := make([]*chainntnfs.BlockEpochEvent, numClients)
for i := 0; i < numClients; i++ {
epochClient, err := notifier.RegisterBlockEpochNtfn(nil)
if err != nil {
t.Fatalf("unable to register for epoch notification")
}
epochClients[i] = epochClient
}
// Now before we mine any blocks, cancel the notification for the first
// epoch client.
epochClients[0].Cancel()
// Now mine a single block, this should trigger the logic to dispatch
// epoch notifications.
if _, err := node.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// The epoch notification for the first client shouldn't have been
// dispatched.
select {
case _, ok := <-epochClients[0].Epochs:
if ok {
t.Fatalf("epoch notification should have been cancelled")
}
case <-time.After(2 * time.Second):
t.Fatalf("epoch notification not sent")
}
// However, the epoch notification for the second client should have
// been dispatched as normal.
select {
case _, ok := <-epochClients[1].Epochs:
if !ok {
t.Fatalf("epoch was cancelled")
}
case <-time.After(20 * time.Second):
t.Fatalf("epoch notification not sent")
}
}
func testReorgConf(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier,
t *testing.T) {
// Set up a new miner that we can use to cause a reorg.
2018-08-17 05:48:25 +03:00
miner2, err := rpctest.New(chainntnfs.NetParams, nil, []string{"--txindex"})
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
if err := miner2.SetUp(false, 0); err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
defer miner2.TearDown()
// We start by connecting the new miner to our original miner,
// such that it will sync to our original chain.
if err := rpctest.ConnectNode(miner, miner2); err != nil {
t.Fatalf("unable to connect harnesses: %v", err)
}
nodeSlice := []*rpctest.Harness{miner, miner2}
if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil {
t.Fatalf("unable to join node on blocks: %v", err)
}
// The two should be on the same blockheight.
_, nodeHeight1, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
_, nodeHeight2, err := miner2.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
if nodeHeight1 != nodeHeight2 {
t.Fatalf("expected both miners to be on the same height: %v vs %v",
nodeHeight1, nodeHeight2)
}
// We disconnect the two nodes, such that we can start mining on them
// individually without the other one learning about the new blocks.
err = miner.Node.AddNode(miner2.P2PAddress(), rpcclient.ANRemove)
if err != nil {
t.Fatalf("unable to remove node: %v", err)
}
txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Now that we have a txid, register a confirmation notification with
// the chainntfn source.
numConfs := uint32(2)
confIntent, err := notifier.RegisterConfirmationsNtfn(
txid, pkScript, numConfs, uint32(currentHeight),
)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// Now generate a single block, the transaction should be included.
_, err = miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// Transaction only has one confirmation, and the notification is registered
// with 2 confirmations, so we should not be notified yet.
select {
case <-confIntent.Confirmed:
t.Fatal("tx was confirmed unexpectedly")
case <-time.After(1 * time.Second):
}
// Reorganize transaction out of the chain by generating a longer fork
// from the other miner. The transaction is not included in this fork.
miner2.Node.Generate(2)
// Reconnect nodes to reach consensus on the longest chain. miner2's chain
// should win and become active on miner1.
if err := rpctest.ConnectNode(miner, miner2); err != nil {
t.Fatalf("unable to connect harnesses: %v", err)
}
nodeSlice = []*rpctest.Harness{miner, miner2}
if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil {
t.Fatalf("unable to join node on blocks: %v", err)
}
_, nodeHeight1, err = miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
_, nodeHeight2, err = miner2.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
if nodeHeight1 != nodeHeight2 {
t.Fatalf("expected both miners to be on the same height: %v vs %v",
nodeHeight1, nodeHeight2)
}
// Even though there is one block above the height of the block that the
// transaction was included in, it is not the active chain so the
// notification should not be sent.
select {
case <-confIntent.Confirmed:
t.Fatal("tx was confirmed unexpectedly")
case <-time.After(1 * time.Second):
}
// Now confirm the transaction on the longest chain and verify that we
// receive the notification.
tx, err := miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get raw tx: %v", err)
}
2017-11-10 03:30:20 +03:00
txid, err = miner2.Node.SendRawTransaction(tx.MsgTx(), false)
if err != nil {
t.Fatalf("unable to get send tx: %v", err)
}
if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil {
2017-11-10 03:30:20 +03:00
t.Fatalf("tx not relayed to miner: %v", err)
}
_, err = miner.Node.Generate(3)
if err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
select {
case <-confIntent.Confirmed:
case <-time.After(20 * time.Second):
t.Fatalf("confirmation notification never received")
}
}
// testCatchUpClientOnMissedBlocks tests the case of multiple registered client
// receiving historical block epoch notifications due to their best known block
// being out of date.
func testCatchUpClientOnMissedBlocks(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
const numBlocks = 10
const numClients = 5
var wg sync.WaitGroup
outdatedHash, outdatedHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to retrieve current height: %v", err)
}
// This function is used by UnsafeStart to ensure all notifications
// are fully drained before clients register for notifications.
generateBlocks := func() error {
_, err = miner.Node.Generate(numBlocks)
return err
}
// We want to ensure that when a client registers for block notifications,
// the notifier's best block is at the tip of the chain. If it isn't, the
// client may not receive all historical notifications.
bestHeight := outdatedHeight + numBlocks
err = notifier.UnsafeStart(bestHeight, nil, bestHeight, generateBlocks)
if err != nil {
t.Fatalf("unable to unsafe start the notifier: %v", err)
}
defer notifier.Stop()
// Create numClients clients whose best known block is 10 blocks behind
// the tip of the chain. We expect each client to receive numBlocks
// notifications, 1 for each block they're behind.
clients := make([]*chainntnfs.BlockEpochEvent, 0, numClients)
outdatedBlock := &chainntnfs.BlockEpoch{
Height: outdatedHeight, Hash: outdatedHash,
}
for i := 0; i < numClients; i++ {
epochClient, err := notifier.RegisterBlockEpochNtfn(outdatedBlock)
if err != nil {
t.Fatalf("unable to register for epoch notification: %v", err)
}
clients = append(clients, epochClient)
}
for expectedHeight := outdatedHeight + 1; expectedHeight <=
bestHeight; expectedHeight++ {
for _, epochClient := range clients {
select {
case block := <-epochClient.Epochs:
if block.Height != expectedHeight {
t.Fatalf("received block of height: %d, "+
"expected: %d", block.Height,
expectedHeight)
}
case <-time.After(20 * time.Second):
t.Fatalf("did not receive historical notification "+
"for height %d", expectedHeight)
}
}
}
// Finally, ensure that an extra block notification wasn't received.
anyExtras := make(chan struct{}, len(clients))
for _, epochClient := range clients {
wg.Add(1)
go func(epochClient *chainntnfs.BlockEpochEvent) {
defer wg.Done()
select {
case <-epochClient.Epochs:
anyExtras <- struct{}{}
case <-time.After(5 * time.Second):
}
}(epochClient)
}
wg.Wait()
close(anyExtras)
var extraCount int
for range anyExtras {
extraCount++
}
if extraCount > 0 {
t.Fatalf("received %d unexpected block notification", extraCount)
}
}
// testCatchUpOnMissedBlocks the case of multiple registered clients receiving
// historical block epoch notifications due to the notifier's best known block
// being out of date.
func testCatchUpOnMissedBlocks(miner *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
const numBlocks = 10
const numClients = 5
var wg sync.WaitGroup
_, bestHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
// This function is used by UnsafeStart to ensure all notifications
// are fully drained before clients register for notifications.
generateBlocks := func() error {
_, err = miner.Node.Generate(numBlocks)
return err
}
// Next, start the notifier with outdated best block information.
err = notifier.UnsafeStart(
bestHeight, nil, bestHeight+numBlocks, generateBlocks,
)
if err != nil {
t.Fatalf("unable to unsafe start the notifier: %v", err)
}
defer notifier.Stop()
// Create numClients clients who will listen for block notifications.
clients := make([]*chainntnfs.BlockEpochEvent, 0, numClients)
for i := 0; i < numClients; i++ {
epochClient, err := notifier.RegisterBlockEpochNtfn(nil)
if err != nil {
t.Fatalf("unable to register for epoch notification: %v", err)
}
clients = append(clients, epochClient)
}
// Generate a single block to trigger the backlog of historical
// notifications for the previously mined blocks.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// We expect each client to receive numBlocks + 1 notifications, 1 for
// each block that the notifier has missed out on.
for expectedHeight := bestHeight + 1; expectedHeight <=
bestHeight+numBlocks+1; expectedHeight++ {
for _, epochClient := range clients {
select {
case block := <-epochClient.Epochs:
if block.Height != expectedHeight {
t.Fatalf("received block of height: %d, "+
"expected: %d", block.Height,
expectedHeight)
}
case <-time.After(20 * time.Second):
t.Fatalf("did not receive historical notification "+
"for height %d", expectedHeight)
}
}
}
// Finally, ensure that an extra block notification wasn't received.
anyExtras := make(chan struct{}, len(clients))
for _, epochClient := range clients {
wg.Add(1)
go func(epochClient *chainntnfs.BlockEpochEvent) {
defer wg.Done()
select {
case <-epochClient.Epochs:
anyExtras <- struct{}{}
case <-time.After(5 * time.Second):
}
}(epochClient)
}
wg.Wait()
close(anyExtras)
var extraCount int
for range anyExtras {
extraCount++
}
if extraCount > 0 {
t.Fatalf("received %d unexpected block notification", extraCount)
}
}
// testCatchUpOnMissedBlocks tests that a client will still receive all valid
// block notifications in the case where a notifier's best block has been reorged
// out of the chain.
func testCatchUpOnMissedBlocksWithReorg(miner1 *rpctest.Harness,
notifier chainntnfs.TestChainNotifier, t *testing.T) {
const numBlocks = 10
const numClients = 5
var wg sync.WaitGroup
// Set up a new miner that we can use to cause a reorg.
2018-08-17 05:48:25 +03:00
miner2, err := rpctest.New(chainntnfs.NetParams, nil, []string{"--txindex"})
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
if err := miner2.SetUp(false, 0); err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
defer miner2.TearDown()
// We start by connecting the new miner to our original miner,
// such that it will sync to our original chain.
if err := rpctest.ConnectNode(miner1, miner2); err != nil {
t.Fatalf("unable to connect harnesses: %v", err)
}
nodeSlice := []*rpctest.Harness{miner1, miner2}
if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil {
t.Fatalf("unable to join node on blocks: %v", err)
}
// The two should be on the same blockheight.
_, nodeHeight1, err := miner1.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
_, nodeHeight2, err := miner2.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
if nodeHeight1 != nodeHeight2 {
t.Fatalf("expected both miners to be on the same height: %v vs %v",
nodeHeight1, nodeHeight2)
}
// We disconnect the two nodes, such that we can start mining on them
// individually without the other one learning about the new blocks.
err = miner1.Node.AddNode(miner2.P2PAddress(), rpcclient.ANRemove)
if err != nil {
t.Fatalf("unable to remove node: %v", err)
}
// Now mine on each chain separately
blocks, err := miner1.Node.Generate(numBlocks)
if err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// We generate an extra block on miner 2's chain to ensure it is the
// longer chain.
_, err = miner2.Node.Generate(numBlocks + 1)
if err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// Sync the two chains to ensure they will sync to miner2's chain.
if err := rpctest.ConnectNode(miner1, miner2); err != nil {
t.Fatalf("unable to connect harnesses: %v", err)
}
nodeSlice = []*rpctest.Harness{miner1, miner2}
if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil {
t.Fatalf("unable to join node on blocks: %v", err)
}
// The two should be on the same block hash.
timeout := time.After(10 * time.Second)
for {
nodeHash1, _, err := miner1.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current block hash: %v", err)
}
nodeHash2, _, err := miner2.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current block hash: %v", err)
}
if *nodeHash1 == *nodeHash2 {
break
}
select {
case <-timeout:
t.Fatalf("Unable to sync two chains")
case <-time.After(50 * time.Millisecond):
continue
}
}
// Next, start the notifier with outdated best block information.
// We set the notifier's best block to be the last block mined on the
// shorter chain, to test that the notifier correctly rewinds to
// the common ancestor between the two chains.
syncHeight := nodeHeight1 + numBlocks + 1
err = notifier.UnsafeStart(
nodeHeight1+numBlocks, blocks[numBlocks-1], syncHeight, nil,
)
if err != nil {
t.Fatalf("Unable to unsafe start the notifier: %v", err)
}
defer notifier.Stop()
// Create numClients clients who will listen for block notifications.
clients := make([]*chainntnfs.BlockEpochEvent, 0, numClients)
for i := 0; i < numClients; i++ {
epochClient, err := notifier.RegisterBlockEpochNtfn(nil)
if err != nil {
t.Fatalf("unable to register for epoch notification: %v", err)
}
clients = append(clients, epochClient)
}
// Generate a single block, which should trigger the notifier to rewind
// to the common ancestor and dispatch notifications from there.
_, err = miner2.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// If the chain backend to the notifier stores information about reorged
// blocks, the notifier is able to rewind the chain to the common
// ancestor between the chain tip and its outdated best known block.
// In this case, the client is expected to receive numBlocks + 2
// notifications, 1 for each block the notifier has missed out on from
// the longer chain.
//
// If the chain backend does not store information about reorged blocks,
// the notifier has no way of knowing where to rewind to and therefore
// the client is only expected to receive notifications for blocks
// whose height is greater than the notifier's best known height: 2
// notifications, in this case.
var startingHeight int32
switch notifier.(type) {
case *neutrinonotify.NeutrinoNotifier:
startingHeight = nodeHeight1 + numBlocks + 1
default:
startingHeight = nodeHeight1 + 1
}
for expectedHeight := startingHeight; expectedHeight <=
nodeHeight1+numBlocks+2; expectedHeight++ {
for _, epochClient := range clients {
select {
case block := <-epochClient.Epochs:
if block.Height != expectedHeight {
t.Fatalf("received block of height: %d, "+
"expected: %d", block.Height,
expectedHeight)
}
case <-time.After(20 * time.Second):
t.Fatalf("did not receive historical notification "+
"for height %d", expectedHeight)
}
}
}
// Finally, ensure that an extra block notification wasn't received.
anyExtras := make(chan struct{}, len(clients))
for _, epochClient := range clients {
wg.Add(1)
go func(epochClient *chainntnfs.BlockEpochEvent) {
defer wg.Done()
select {
case <-epochClient.Epochs:
anyExtras <- struct{}{}
case <-time.After(5 * time.Second):
}
}(epochClient)
}
wg.Wait()
close(anyExtras)
var extraCount int
for range anyExtras {
extraCount++
}
if extraCount > 0 {
t.Fatalf("received %d unexpected block notification", extraCount)
}
}
type testCase struct {
name string
test func(node *rpctest.Harness, notifier chainntnfs.TestChainNotifier,
t *testing.T)
}
type blockCatchupTestCase struct {
name string
test func(node *rpctest.Harness, notifier chainntnfs.TestChainNotifier,
t *testing.T)
}
var ntfnTests = []testCase{
{
name: "single conf ntfn",
test: testSingleConfirmationNotification,
},
{
name: "multi conf ntfn",
test: testMultiConfirmationNotification,
},
{
name: "batch conf ntfn",
test: testBatchConfirmationNotification,
},
{
name: "multi client conf",
test: testMultiClientConfirmationNotification,
},
{
name: "spend ntfn",
test: testSpendNotification,
},
{
name: "block epoch",
test: testBlockEpochNotification,
},
{
name: "historical conf dispatch",
test: testTxConfirmedBeforeNtfnRegistration,
},
{
name: "historical spend dispatch",
test: testSpendBeforeNtfnRegistration,
},
{
name: "cancel spend ntfn",
test: testCancelSpendNtfn,
},
{
name: "cancel epoch ntfn",
test: testCancelEpochNtfn,
},
{
name: "lazy ntfn consumer",
test: testLazyNtfnConsumer,
},
{
name: "reorg conf",
test: testReorgConf,
},
}
var blockCatchupTests = []blockCatchupTestCase{
{
name: "catch up client on historical block epoch ntfns",
test: testCatchUpClientOnMissedBlocks,
},
{
name: "test catch up on missed blocks",
test: testCatchUpOnMissedBlocks,
},
{
name: "test catch up on missed blocks w/ reorged best block",
test: testCatchUpOnMissedBlocksWithReorg,
},
}
// TestInterfaces tests all registered interfaces with a unified set of tests
// which exercise each of the required methods found within the ChainNotifier
// interface.
//
// NOTE: In the future, when additional implementations of the ChainNotifier
// interface have been implemented, in order to ensure the new concrete
// implementation is automatically tested, two steps must be undertaken. First,
// one needs add a "non-captured" (_) import from the new sub-package. This
// import should trigger an init() method within the package which registers
// the interface. Second, an additional case in the switch within the main loop
// below needs to be added which properly initializes the interface.
func TestInterfaces(t *testing.T) {
// Initialize the harness around a btcd node which will serve as our
// dedicated miner to generate blocks, cause re-orgs, etc. We'll set up
// this node with a chain length of 125, so we have plenty of BTC to
// play around with.
miner, tearDown := chainntnfs.NewMiner(t, nil, true, 25)
defer tearDown()
rpcConfig := miner.RPCConfig()
p2pAddr := miner.P2PAddress()
log.Printf("Running %v ChainNotifier interface tests", len(ntfnTests))
for _, notifierDriver := range chainntnfs.RegisteredNotifiers() {
// Initialize a height hint cache for each notifier.
tempDir, err := ioutil.TempDir("", "channeldb")
if err != nil {
t.Fatalf("unable to create temp dir: %v", err)
}
db, err := channeldb.Open(tempDir)
if err != nil {
t.Fatalf("unable to create db: %v", err)
}
hintCache, err := chainntnfs.NewHeightHintCache(db, true)
if err != nil {
t.Fatalf("unable to create height hint cache: %v", err)
}
var (
cleanUp func()
newNotifier func() (chainntnfs.TestChainNotifier, error)
notifierType = notifierDriver.NotifierType
)
switch notifierType {
2017-11-10 03:30:20 +03:00
case "bitcoind":
var bitcoindConn *chain.BitcoindConn
bitcoindConn, cleanUp = chainntnfs.NewBitcoindBackend(
t, p2pAddr, true,
)
newNotifier = func() (chainntnfs.TestChainNotifier, error) {
return bitcoindnotify.New(
bitcoindConn, hintCache, hintCache,
), nil
2017-11-10 03:30:20 +03:00
}
case "btcd":
newNotifier = func() (chainntnfs.TestChainNotifier, error) {
return btcdnotify.New(
&rpcConfig, hintCache, hintCache,
)
}
case "neutrino":
var spvNode *neutrino.ChainService
spvNode, cleanUp = chainntnfs.NewNeutrinoBackend(
t, p2pAddr,
)
newNotifier = func() (chainntnfs.TestChainNotifier, error) {
return neutrinonotify.New(
spvNode, hintCache, hintCache,
)
}
}
log.Printf("Running ChainNotifier interface tests for: %v",
notifierType)
notifier, err := newNotifier()
if err != nil {
t.Fatalf("unable to create %v notifier: %v",
notifierType, err)
}
if err := notifier.Start(); err != nil {
t.Fatalf("unable to start notifier %v: %v",
notifierType, err)
}
for _, ntfnTest := range ntfnTests {
testName := fmt.Sprintf("%v: %v", notifierType,
ntfnTest.name)
success := t.Run(testName, func(t *testing.T) {
ntfnTest.test(miner, notifier, t)
})
if !success {
break
}
}
notifier.Stop()
// Run catchup tests separately since they require restarting
// the notifier every time.
for _, blockCatchupTest := range blockCatchupTests {
notifier, err = newNotifier()
if err != nil {
t.Fatalf("unable to create %v notifier: %v",
notifierType, err)
}
testName := fmt.Sprintf("%v: %v", notifierType,
blockCatchupTest.name)
success := t.Run(testName, func(t *testing.T) {
blockCatchupTest.test(miner, notifier, t)
})
if !success {
break
}
}
if cleanUp != nil {
cleanUp()
}
}
}