lnd.xprv/channeldb/graph_test.go

2447 lines
69 KiB
Go
Raw Normal View History

package channeldb
import (
"bytes"
"crypto/sha256"
"fmt"
"image/color"
"math"
"math/big"
prand "math/rand"
"net"
"reflect"
"runtime"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/coreos/bbolt"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/lnwire"
)
var (
testAddr = &net.TCPAddr{IP: (net.IP)([]byte{0xA, 0x0, 0x0, 0x1}),
Port: 9000}
anotherAddr, _ = net.ResolveTCPAddr("tcp",
"[2001:db8:85a3:0:0:8a2e:370:7334]:80")
testAddrs = []net.Addr{testAddr, anotherAddr}
randSource = prand.NewSource(time.Now().Unix())
randInts = prand.New(randSource)
testSig = &btcec.Signature{
R: new(big.Int),
S: new(big.Int),
}
_, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10)
_, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10)
testFeatures = lnwire.NewFeatureVector(nil, lnwire.GlobalFeatures)
)
func createTestVertex(db *DB) (*LightningNode, error) {
updateTime := prand.Int63()
priv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, err
}
pub := priv.PubKey().SerializeCompressed()
n := &LightningNode{
HaveNodeAnnouncement: true,
AuthSigBytes: testSig.Serialize(),
LastUpdate: time.Unix(updateTime, 0),
Color: color.RGBA{1, 2, 3, 0},
Alias: "kek" + string(pub[:]),
Features: testFeatures,
Addresses: testAddrs,
db: db,
}
copy(n.PubKeyBytes[:], priv.PubKey().SerializeCompressed())
return n, nil
}
func TestNodeInsertionAndDeletion(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// We'd like to test basic insertion/deletion for vertexes from the
// graph, so we'll create a test vertex to start with.
_, testPub := btcec.PrivKeyFromBytes(btcec.S256(), key[:])
node := &LightningNode{
HaveNodeAnnouncement: true,
AuthSigBytes: testSig.Serialize(),
LastUpdate: time.Unix(1232342, 0),
Color: color.RGBA{1, 2, 3, 0},
Alias: "kek",
Features: testFeatures,
Addresses: testAddrs,
db: db,
}
copy(node.PubKeyBytes[:], testPub.SerializeCompressed())
// First, insert the node into the graph DB. This should succeed
// without any errors.
if err := graph.AddLightningNode(node); err != nil {
t.Fatalf("unable to add node: %v", err)
}
// Next, fetch the node from the database to ensure everything was
// serialized properly.
dbNode, err := graph.FetchLightningNode(testPub)
if err != nil {
t.Fatalf("unable to locate node: %v", err)
}
if _, exists, err := graph.HasLightningNode(dbNode.PubKeyBytes); err != nil {
t.Fatalf("unable to query for node: %v", err)
} else if !exists {
t.Fatalf("node should be found but wasn't")
}
// The two nodes should match exactly!
if err := compareNodes(node, dbNode); err != nil {
t.Fatalf("nodes don't match: %v", err)
}
// Next, delete the node from the graph, this should purge all data
// related to the node.
if err := graph.DeleteLightningNode(testPub); err != nil {
t.Fatalf("unable to delete node; %v", err)
}
// Finally, attempt to fetch the node again. This should fail as the
// node should have been deleted from the database.
_, err = graph.FetchLightningNode(testPub)
if err != ErrGraphNodeNotFound {
t.Fatalf("fetch after delete should fail!")
}
}
// TestPartialNode checks that we can add and retrieve a LightningNode where
// where only the pubkey is known to the database.
func TestPartialNode(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// We want to be able to insert nodes into the graph that only has the
// PubKey set.
_, testPub := btcec.PrivKeyFromBytes(btcec.S256(), key[:])
node := &LightningNode{
HaveNodeAnnouncement: false,
}
copy(node.PubKeyBytes[:], testPub.SerializeCompressed())
if err := graph.AddLightningNode(node); err != nil {
t.Fatalf("unable to add node: %v", err)
}
// Next, fetch the node from the database to ensure everything was
// serialized properly.
dbNode, err := graph.FetchLightningNode(testPub)
if err != nil {
t.Fatalf("unable to locate node: %v", err)
}
if _, exists, err := graph.HasLightningNode(dbNode.PubKeyBytes); err != nil {
t.Fatalf("unable to query for node: %v", err)
} else if !exists {
t.Fatalf("node should be found but wasn't")
}
// The two nodes should match exactly! (with default values for
// LastUpdate and db set to satisfy compareNodes())
node = &LightningNode{
HaveNodeAnnouncement: false,
LastUpdate: time.Unix(0, 0),
db: db,
}
copy(node.PubKeyBytes[:], testPub.SerializeCompressed())
if err := compareNodes(node, dbNode); err != nil {
t.Fatalf("nodes don't match: %v", err)
}
// Next, delete the node from the graph, this should purge all data
// related to the node.
if err := graph.DeleteLightningNode(testPub); err != nil {
t.Fatalf("unable to delete node: %v", err)
}
// Finally, attempt to fetch the node again. This should fail as the
// node should have been deleted from the database.
_, err = graph.FetchLightningNode(testPub)
if err != ErrGraphNodeNotFound {
t.Fatalf("fetch after delete should fail!")
}
}
func TestAliasLookup(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// We'd like to test the alias index within the database, so first
// create a new test node.
testNode, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
// Add the node to the graph's database, this should also insert an
// entry into the alias index for this node.
if err := graph.AddLightningNode(testNode); err != nil {
t.Fatalf("unable to add node: %v", err)
}
// Next, attempt to lookup the alias. The alias should exactly match
// the one which the test node was assigned.
nodePub, err := testNode.PubKey()
if err != nil {
t.Fatalf("unable to generate pubkey: %v", err)
}
dbAlias, err := graph.LookupAlias(nodePub)
if err != nil {
t.Fatalf("unable to find alias: %v", err)
}
if dbAlias != testNode.Alias {
t.Fatalf("aliases don't match, expected %v got %v",
testNode.Alias, dbAlias)
}
// Ensure that looking up a non-existent alias results in an error.
node, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
nodePub, err = node.PubKey()
if err != nil {
t.Fatalf("unable to generate pubkey: %v", err)
}
_, err = graph.LookupAlias(nodePub)
if err != ErrNodeAliasNotFound {
t.Fatalf("alias lookup should fail for non-existent pubkey")
}
}
func TestSourceNode(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// We'd like to test the setting/getting of the source node, so we
// first create a fake node to use within the test.
testNode, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
// Attempt to fetch the source node, this should return an error as the
// source node hasn't yet been set.
if _, err := graph.SourceNode(); err != ErrSourceNodeNotSet {
t.Fatalf("source node shouldn't be set in new graph")
}
// Set the source the source node, this should insert the node into the
// database in a special way indicating it's the source node.
if err := graph.SetSourceNode(testNode); err != nil {
t.Fatalf("unable to set source node: %v", err)
}
// Retrieve the source node from the database, it should exactly match
// the one we set above.
sourceNode, err := graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
if err := compareNodes(testNode, sourceNode); err != nil {
t.Fatalf("nodes don't match: %v", err)
}
}
func TestEdgeInsertionDeletion(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// We'd like to test the insertion/deletion of edges, so we create two
// vertexes to connect.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
2018-04-18 05:03:27 +03:00
// In addition to the fake vertexes we create some fake channel
// identifiers.
chanID := uint64(prand.Int63())
outpoint := wire.OutPoint{
Hash: rev,
Index: 9,
}
// Add the new edge to the database, this should proceed without any
// errors.
node1Pub, err := node1.PubKey()
if err != nil {
t.Fatalf("unable to generate node key: %v", err)
}
node2Pub, err := node2.PubKey()
if err != nil {
t.Fatalf("unable to generate node key: %v", err)
}
edgeInfo := ChannelEdgeInfo{
ChannelID: chanID,
ChainHash: key,
AuthProof: &ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
},
ChannelPoint: outpoint,
Capacity: 9000,
}
copy(edgeInfo.NodeKey1Bytes[:], node1Pub.SerializeCompressed())
copy(edgeInfo.NodeKey2Bytes[:], node2Pub.SerializeCompressed())
copy(edgeInfo.BitcoinKey1Bytes[:], node1Pub.SerializeCompressed())
copy(edgeInfo.BitcoinKey2Bytes[:], node2Pub.SerializeCompressed())
if err := graph.AddChannelEdge(&edgeInfo); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
// Ensure that both policies are returned as unknown (nil).
_, e1, e2, err := graph.FetchChannelEdgesByID(chanID)
if err != nil {
t.Fatalf("unable to fetch channel edge")
}
if e1 != nil || e2 != nil {
t.Fatalf("channel edges not unknown")
}
// Next, attempt to delete the edge from the database, again this
// should proceed without any issues.
if err := graph.DeleteChannelEdge(&outpoint); err != nil {
t.Fatalf("unable to delete edge: %v", err)
}
// Ensure that any query attempts to lookup the delete channel edge are
// properly deleted.
if _, _, _, err := graph.FetchChannelEdgesByOutpoint(&outpoint); err == nil {
t.Fatalf("channel edge not deleted")
}
if _, _, _, err := graph.FetchChannelEdgesByID(chanID); err == nil {
t.Fatalf("channel edge not deleted")
}
// Finally, attempt to delete a (now) non-existent edge within the
// database, this should result in an error.
err = graph.DeleteChannelEdge(&outpoint)
if err != ErrEdgeNotFound {
t.Fatalf("deleting a non-existent edge should fail!")
}
}
func createEdge(height, txIndex uint32, txPosition uint16, outPointIndex uint32,
node1, node2 *LightningNode) (ChannelEdgeInfo, lnwire.ShortChannelID) {
shortChanID := lnwire.ShortChannelID{
BlockHeight: height,
TxIndex: txIndex,
TxPosition: txPosition,
}
outpoint := wire.OutPoint{
Hash: rev,
Index: outPointIndex,
}
node1Pub, _ := node1.PubKey()
node2Pub, _ := node2.PubKey()
edgeInfo := ChannelEdgeInfo{
ChannelID: shortChanID.ToUint64(),
ChainHash: key,
AuthProof: &ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
},
ChannelPoint: outpoint,
Capacity: 9000,
}
copy(edgeInfo.NodeKey1Bytes[:], node1Pub.SerializeCompressed())
copy(edgeInfo.NodeKey2Bytes[:], node2Pub.SerializeCompressed())
copy(edgeInfo.BitcoinKey1Bytes[:], node1Pub.SerializeCompressed())
copy(edgeInfo.BitcoinKey2Bytes[:], node2Pub.SerializeCompressed())
return edgeInfo, shortChanID
}
// TestDisconnectBlockAtHeight checks that the pruned state of the channel
// database is what we expect after calling DisconnectBlockAtHeight.
func TestDisconnectBlockAtHeight(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
sourceNode, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create source node: %v", err)
}
if err := graph.SetSourceNode(sourceNode); err != nil {
t.Fatalf("unable to set source node: %v", err)
}
// We'd like to test the insertion/deletion of edges, so we create two
// vertexes to connect.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
// In addition to the fake vertexes we create some fake channel
// identifiers.
var spendOutputs []*wire.OutPoint
var blockHash chainhash.Hash
copy(blockHash[:], bytes.Repeat([]byte{1}, 32))
// Prune the graph a few times to make sure we have entries in the
// prune log.
_, err = graph.PruneGraph(spendOutputs, &blockHash, 155)
if err != nil {
t.Fatalf("unable to prune graph: %v", err)
}
var blockHash2 chainhash.Hash
copy(blockHash2[:], bytes.Repeat([]byte{2}, 32))
_, err = graph.PruneGraph(spendOutputs, &blockHash2, 156)
if err != nil {
t.Fatalf("unable to prune graph: %v", err)
}
// We'll create 3 almost identical edges, so first create a helper
// method containing all logic for doing so.
// Create an edge which has its block height at 156.
height := uint32(156)
edgeInfo, _ := createEdge(height, 0, 0, 0, node1, node2)
// Create an edge with block height 157. We give it
// maximum values for tx index and position, to make
// sure our database range scan get edges from the
// entire range.
edgeInfo2, _ := createEdge(
height+1, math.MaxUint32&0x00ffffff, math.MaxUint16, 1,
node1, node2,
)
// Create a third edge, this with a block height of 155.
edgeInfo3, _ := createEdge(height-1, 0, 0, 2, node1, node2)
// Now add all these new edges to the database.
if err := graph.AddChannelEdge(&edgeInfo); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
if err := graph.AddChannelEdge(&edgeInfo2); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
if err := graph.AddChannelEdge(&edgeInfo3); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
// Call DisconnectBlockAtHeight, which should prune every channel
2018-04-18 05:02:04 +03:00
// that has a funding height of 'height' or greater.
removed, err := graph.DisconnectBlockAtHeight(uint32(height))
if err != nil {
t.Fatalf("unable to prune %v", err)
}
// The two edges should have been removed.
if len(removed) != 2 {
t.Fatalf("expected two edges to be removed from graph, "+
"only %d were", len(removed))
}
if removed[0].ChannelID != edgeInfo.ChannelID {
t.Fatalf("expected edge to be removed from graph")
}
if removed[1].ChannelID != edgeInfo2.ChannelID {
t.Fatalf("expected edge to be removed from graph")
}
// The two first edges should be removed from the db.
_, _, has, err := graph.HasChannelEdge(edgeInfo.ChannelID)
if err != nil {
t.Fatalf("unable to query for edge: %v", err)
}
if has {
t.Fatalf("edge1 was not pruned from the graph")
}
_, _, has, err = graph.HasChannelEdge(edgeInfo2.ChannelID)
if err != nil {
t.Fatalf("unable to query for edge: %v", err)
}
if has {
t.Fatalf("edge2 was not pruned from the graph")
}
// Edge 3 should not be removed.
_, _, has, err = graph.HasChannelEdge(edgeInfo3.ChannelID)
if err != nil {
t.Fatalf("unable to query for edge: %v", err)
}
if !has {
t.Fatalf("edge3 was pruned from the graph")
}
// PruneTip should be set to the blockHash we specified for the block
// at height 155.
hash, h, err := graph.PruneTip()
if err != nil {
t.Fatalf("unable to get prune tip: %v", err)
}
if !blockHash.IsEqual(hash) {
t.Fatalf("expected best block to be %x, was %x", blockHash, hash)
}
if h != height-1 {
t.Fatalf("expected best block height to be %d, was %d", height-1, h)
}
}
func assertEdgeInfoEqual(t *testing.T, e1 *ChannelEdgeInfo,
e2 *ChannelEdgeInfo) {
if e1.ChannelID != e2.ChannelID {
t.Fatalf("chan id's don't match: %v vs %v", e1.ChannelID,
e2.ChannelID)
}
if e1.ChainHash != e2.ChainHash {
t.Fatalf("chain hashes don't match: %v vs %v", e1.ChainHash,
e2.ChainHash)
}
if !bytes.Equal(e1.NodeKey1Bytes[:], e2.NodeKey1Bytes[:]) {
t.Fatalf("nodekey1 doesn't match")
}
if !bytes.Equal(e1.NodeKey2Bytes[:], e2.NodeKey2Bytes[:]) {
t.Fatalf("nodekey2 doesn't match")
}
if !bytes.Equal(e1.BitcoinKey1Bytes[:], e2.BitcoinKey1Bytes[:]) {
t.Fatalf("bitcoinkey1 doesn't match")
}
if !bytes.Equal(e1.BitcoinKey2Bytes[:], e2.BitcoinKey2Bytes[:]) {
t.Fatalf("bitcoinkey2 doesn't match")
}
if !bytes.Equal(e1.Features, e2.Features) {
t.Fatalf("features doesn't match: %x vs %x", e1.Features,
e2.Features)
}
if !bytes.Equal(e1.AuthProof.NodeSig1Bytes, e2.AuthProof.NodeSig1Bytes) {
t.Fatalf("nodesig1 doesn't match: %v vs %v",
spew.Sdump(e1.AuthProof.NodeSig1Bytes),
spew.Sdump(e2.AuthProof.NodeSig1Bytes))
}
if !bytes.Equal(e1.AuthProof.NodeSig2Bytes, e2.AuthProof.NodeSig2Bytes) {
t.Fatalf("nodesig2 doesn't match")
}
if !bytes.Equal(e1.AuthProof.BitcoinSig1Bytes, e2.AuthProof.BitcoinSig1Bytes) {
t.Fatalf("bitcoinsig1 doesn't match")
}
if !bytes.Equal(e1.AuthProof.BitcoinSig2Bytes, e2.AuthProof.BitcoinSig2Bytes) {
t.Fatalf("bitcoinsig2 doesn't match")
}
if e1.ChannelPoint != e2.ChannelPoint {
t.Fatalf("channel point match: %v vs %v", e1.ChannelPoint,
e2.ChannelPoint)
}
if e1.Capacity != e2.Capacity {
t.Fatalf("capacity doesn't match: %v vs %v", e1.Capacity,
e2.Capacity)
}
}
func TestEdgeInfoUpdates(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// We'd like to test the update of edges inserted into the database, so
// we create two vertexes to connect.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node1); err != nil {
t.Fatalf("unable to add node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node2); err != nil {
t.Fatalf("unable to add node: %v", err)
}
var (
firstNode *LightningNode
secondNode *LightningNode
)
if bytes.Compare(node1.PubKeyBytes[:], node2.PubKeyBytes[:]) == -1 {
firstNode = node1
secondNode = node2
} else {
firstNode = node2
secondNode = node1
}
2018-04-18 05:03:27 +03:00
// In addition to the fake vertexes we create some fake channel
// identifiers.
chanID := uint64(prand.Int63())
outpoint := wire.OutPoint{
Hash: rev,
Index: 9,
}
// Add the new edge to the database, this should proceed without any
// errors.
edgeInfo := &ChannelEdgeInfo{
ChannelID: chanID,
ChainHash: key,
AuthProof: &ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
},
ChannelPoint: outpoint,
Capacity: 1000,
}
copy(edgeInfo.NodeKey1Bytes[:], firstNode.PubKeyBytes[:])
copy(edgeInfo.NodeKey2Bytes[:], secondNode.PubKeyBytes[:])
copy(edgeInfo.BitcoinKey1Bytes[:], firstNode.PubKeyBytes[:])
copy(edgeInfo.BitcoinKey2Bytes[:], secondNode.PubKeyBytes[:])
if err := graph.AddChannelEdge(edgeInfo); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
// With the edge added, we can now create some fake edge information to
// update for both edges.
edge1 := &ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
ChannelID: chanID,
LastUpdate: time.Unix(433453, 0),
Flags: 0,
TimeLockDelta: 99,
MinHTLC: 2342135,
FeeBaseMSat: 4352345,
FeeProportionalMillionths: 3452352,
Node: secondNode,
db: db,
}
edge2 := &ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
ChannelID: chanID,
LastUpdate: time.Unix(124234, 0),
Flags: 1,
TimeLockDelta: 99,
MinHTLC: 2342135,
FeeBaseMSat: 4352345,
FeeProportionalMillionths: 90392423,
Node: firstNode,
db: db,
}
// Next, insert both nodes into the database, they should both be
// inserted without any issues.
if err := graph.UpdateEdgePolicy(edge1); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
if err := graph.UpdateEdgePolicy(edge2); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
// Check for existence of the edge within the database, it should be
// found.
_, _, found, err := graph.HasChannelEdge(chanID)
if err != nil {
t.Fatalf("unable to query for edge: %v", err)
} else if !found {
t.Fatalf("graph should have of inserted edge")
}
// We should also be able to retrieve the channelID only knowing the
// channel point of the channel.
dbChanID, err := graph.ChannelID(&outpoint)
if err != nil {
t.Fatalf("unable to retrieve channel ID: %v", err)
}
if dbChanID != chanID {
t.Fatalf("chan ID's mismatch, expected %v got %v", dbChanID,
chanID)
}
// With the edges inserted, perform some queries to ensure that they've
// been inserted properly.
dbEdgeInfo, dbEdge1, dbEdge2, err := graph.FetchChannelEdgesByID(chanID)
if err != nil {
t.Fatalf("unable to fetch channel by ID: %v", err)
}
if err := compareEdgePolicies(dbEdge1, edge1); err != nil {
t.Fatalf("edge doesn't match: %v", err)
}
if err := compareEdgePolicies(dbEdge2, edge2); err != nil {
t.Fatalf("edge doesn't match: %v", err)
}
assertEdgeInfoEqual(t, dbEdgeInfo, edgeInfo)
// Next, attempt to query the channel edges according to the outpoint
// of the channel.
dbEdgeInfo, dbEdge1, dbEdge2, err = graph.FetchChannelEdgesByOutpoint(&outpoint)
if err != nil {
t.Fatalf("unable to fetch channel by ID: %v", err)
}
if err := compareEdgePolicies(dbEdge1, edge1); err != nil {
t.Fatalf("edge doesn't match: %v", err)
}
if err := compareEdgePolicies(dbEdge2, edge2); err != nil {
t.Fatalf("edge doesn't match: %v", err)
}
assertEdgeInfoEqual(t, dbEdgeInfo, edgeInfo)
}
func randEdgePolicy(chanID uint64, op wire.OutPoint, db *DB) *ChannelEdgePolicy {
update := prand.Int63()
return newEdgePolicy(chanID, op, db, update)
}
func newEdgePolicy(chanID uint64, op wire.OutPoint, db *DB,
updateTime int64) *ChannelEdgePolicy {
return &ChannelEdgePolicy{
ChannelID: chanID,
LastUpdate: time.Unix(updateTime, 0),
TimeLockDelta: uint16(prand.Int63()),
MinHTLC: lnwire.MilliSatoshi(prand.Int63()),
FeeBaseMSat: lnwire.MilliSatoshi(prand.Int63()),
FeeProportionalMillionths: lnwire.MilliSatoshi(prand.Int63()),
db: db,
}
}
func TestGraphTraversal(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// We'd like to test some of the graph traversal capabilities within
// the DB, so we'll create a series of fake nodes to insert into the
// graph.
const numNodes = 20
nodes := make([]*LightningNode, numNodes)
nodeIndex := map[string]struct{}{}
for i := 0; i < numNodes; i++ {
node, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create node: %v", err)
}
nodes[i] = node
nodeIndex[node.Alias] = struct{}{}
}
// Add each of the nodes into the graph, they should be inserted
// without error.
for _, node := range nodes {
if err := graph.AddLightningNode(node); err != nil {
t.Fatalf("unable to add node: %v", err)
}
}
// Iterate over each node as returned by the graph, if all nodes are
// reached, then the map created above should be empty.
err = graph.ForEachNode(nil, func(_ *bolt.Tx, node *LightningNode) error {
delete(nodeIndex, node.Alias)
return nil
})
if err != nil {
t.Fatalf("for each failure: %v", err)
}
if len(nodeIndex) != 0 {
t.Fatalf("all nodes not reached within ForEach")
}
// Determine which node is "smaller", we'll need this in order to
// properly create the edges for the graph.
var firstNode, secondNode *LightningNode
if bytes.Compare(nodes[0].PubKeyBytes[:], nodes[1].PubKeyBytes[:]) == -1 {
firstNode = nodes[0]
secondNode = nodes[1]
} else {
firstNode = nodes[0]
secondNode = nodes[1]
}
// Create 5 channels between the first two nodes we generated above.
const numChannels = 5
chanIndex := map[uint64]struct{}{}
for i := 0; i < numChannels; i++ {
txHash := sha256.Sum256([]byte{byte(i)})
chanID := uint64(i + 1)
op := wire.OutPoint{
Hash: txHash,
Index: 0,
}
edgeInfo := ChannelEdgeInfo{
ChannelID: chanID,
ChainHash: key,
AuthProof: &ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
},
ChannelPoint: op,
Capacity: 1000,
}
copy(edgeInfo.NodeKey1Bytes[:], nodes[0].PubKeyBytes[:])
copy(edgeInfo.NodeKey2Bytes[:], nodes[1].PubKeyBytes[:])
copy(edgeInfo.BitcoinKey1Bytes[:], nodes[0].PubKeyBytes[:])
copy(edgeInfo.BitcoinKey2Bytes[:], nodes[1].PubKeyBytes[:])
err := graph.AddChannelEdge(&edgeInfo)
if err != nil {
t.Fatalf("unable to add node: %v", err)
}
// Create and add an edge with random data that points from
// node1 -> node2.
edge := randEdgePolicy(chanID, op, db)
edge.Flags = 0
edge.Node = secondNode
edge.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
// Create another random edge that points from node2 -> node1
// this time.
edge = randEdgePolicy(chanID, op, db)
edge.Flags = 1
edge.Node = firstNode
edge.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
chanIndex[chanID] = struct{}{}
}
// Iterate through all the known channels within the graph DB, once
2018-04-18 05:03:27 +03:00
// again if the map is empty that indicates that all edges have
// properly been reached.
err = graph.ForEachChannel(func(ei *ChannelEdgeInfo, _ *ChannelEdgePolicy,
_ *ChannelEdgePolicy) error {
delete(chanIndex, ei.ChannelID)
return nil
})
if err != nil {
t.Fatalf("for each failure: %v", err)
}
if len(chanIndex) != 0 {
t.Fatalf("all edges not reached within ForEach")
}
// Finally, we want to test the ability to iterate over all the
// outgoing channels for a particular node.
numNodeChans := 0
err = firstNode.ForEachChannel(nil, func(_ *bolt.Tx, _ *ChannelEdgeInfo,
outEdge, inEdge *ChannelEdgePolicy) error {
// All channels between first and second node should have fully
// (both sides) specified policies.
if inEdge == nil || outEdge == nil {
return fmt.Errorf("channel policy not present")
}
2018-04-18 05:03:27 +03:00
// Each should indicate that it's outgoing (pointed
// towards the second node).
if !bytes.Equal(outEdge.Node.PubKeyBytes[:], secondNode.PubKeyBytes[:]) {
return fmt.Errorf("wrong outgoing edge")
}
// The incoming edge should also indicate that it's pointing to
// the origin node.
if !bytes.Equal(inEdge.Node.PubKeyBytes[:], firstNode.PubKeyBytes[:]) {
return fmt.Errorf("wrong outgoing edge")
}
2017-02-23 22:56:47 +03:00
numNodeChans++
return nil
})
if err != nil {
t.Fatalf("for each failure: %v", err)
}
if numNodeChans != numChannels {
t.Fatalf("all edges for node not reached within ForEach: "+
"expected %v, got %v", numChannels, numNodeChans)
}
}
func assertPruneTip(t *testing.T, graph *ChannelGraph, blockHash *chainhash.Hash,
blockHeight uint32) {
pruneHash, pruneHeight, err := graph.PruneTip()
if err != nil {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line %v: unable to fetch prune tip: %v", line, err)
}
if !bytes.Equal(blockHash[:], pruneHash[:]) {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line: %v, prune tips don't match, expected %x got %x",
line, blockHash, pruneHash)
}
if pruneHeight != blockHeight {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line %v: prune heights don't match, expected %v "+
"got %v", line, blockHeight, pruneHeight)
}
}
func assertNumChans(t *testing.T, graph *ChannelGraph, n int) {
numChans := 0
if err := graph.ForEachChannel(func(*ChannelEdgeInfo, *ChannelEdgePolicy,
*ChannelEdgePolicy) error {
2017-02-23 22:56:47 +03:00
numChans++
return nil
}); err != nil {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line %v: unable to scan channels: %v", line, err)
}
if numChans != n {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line %v: expected %v chans instead have %v", line,
n, numChans)
}
}
func assertNumNodes(t *testing.T, graph *ChannelGraph, n int) {
numNodes := 0
err := graph.ForEachNode(nil, func(_ *bolt.Tx, _ *LightningNode) error {
numNodes++
return nil
})
if err != nil {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line %v: unable to scan nodes: %v", line, err)
}
if numNodes != n {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line %v: expected %v nodes, got %v", line, n, numNodes)
}
}
func assertChanViewEqual(t *testing.T, a []EdgePoint, b []EdgePoint) {
if len(a) != len(b) {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line %v: chan views don't match", line)
}
chanViewSet := make(map[wire.OutPoint]struct{})
for _, op := range a {
chanViewSet[op.OutPoint] = struct{}{}
}
for _, op := range b {
if _, ok := chanViewSet[op.OutPoint]; !ok {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line %v: chanPoint(%v) not found in first "+
"view", line, op)
}
}
}
func assertChanViewEqualChanPoints(t *testing.T, a []EdgePoint, b []*wire.OutPoint) {
if len(a) != len(b) {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line %v: chan views don't match", line)
}
chanViewSet := make(map[wire.OutPoint]struct{})
for _, op := range a {
chanViewSet[op.OutPoint] = struct{}{}
}
for _, op := range b {
if _, ok := chanViewSet[*op]; !ok {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("line %v: chanPoint(%v) not found in first "+
"view", line, op)
}
}
}
func TestGraphPruning(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
sourceNode, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create source node: %v", err)
}
if err := graph.SetSourceNode(sourceNode); err != nil {
t.Fatalf("unable to set source node: %v", err)
}
// As initial set up for the test, we'll create a graph with 5 vertexes
// and enough edges to create a fully connected graph. The graph will
// be rather simple, representing a straight line.
const numNodes = 5
graphNodes := make([]*LightningNode, numNodes)
for i := 0; i < numNodes; i++ {
node, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create node: %v", err)
}
if err := graph.AddLightningNode(node); err != nil {
t.Fatalf("unable to add node: %v", err)
}
graphNodes[i] = node
}
// With the vertexes created, we'll next create a series of channels
// between them.
channelPoints := make([]*wire.OutPoint, 0, numNodes-1)
edgePoints := make([]EdgePoint, 0, numNodes-1)
for i := 0; i < numNodes-1; i++ {
txHash := sha256.Sum256([]byte{byte(i)})
chanID := uint64(i + 1)
op := wire.OutPoint{
Hash: txHash,
Index: 0,
}
channelPoints = append(channelPoints, &op)
edgeInfo := ChannelEdgeInfo{
ChannelID: chanID,
ChainHash: key,
AuthProof: &ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
},
ChannelPoint: op,
Capacity: 1000,
}
copy(edgeInfo.NodeKey1Bytes[:], graphNodes[i].PubKeyBytes[:])
copy(edgeInfo.NodeKey2Bytes[:], graphNodes[i+1].PubKeyBytes[:])
copy(edgeInfo.BitcoinKey1Bytes[:], graphNodes[i].PubKeyBytes[:])
copy(edgeInfo.BitcoinKey2Bytes[:], graphNodes[i+1].PubKeyBytes[:])
if err := graph.AddChannelEdge(&edgeInfo); err != nil {
t.Fatalf("unable to add node: %v", err)
}
pkScript, err := genMultiSigP2WSH(
edgeInfo.BitcoinKey1Bytes[:], edgeInfo.BitcoinKey2Bytes[:],
)
if err != nil {
t.Fatalf("unable to gen multi-sig p2wsh: %v", err)
}
edgePoints = append(edgePoints, EdgePoint{
FundingPkScript: pkScript,
OutPoint: op,
})
// Create and add an edge with random data that points from
// node_i -> node_i+1
edge := randEdgePolicy(chanID, op, db)
edge.Flags = 0
edge.Node = graphNodes[i]
edge.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
// Create another random edge that points from node_i+1 ->
// node_i this time.
edge = randEdgePolicy(chanID, op, db)
edge.Flags = 1
edge.Node = graphNodes[i]
edge.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
}
// With all the channel points added, we'll consult the graph to ensure
// it has the same channel view as the one we just constructed.
channelView, err := graph.ChannelView()
if err != nil {
t.Fatalf("unable to get graph channel view: %v", err)
}
assertChanViewEqual(t, channelView, edgePoints)
// Now with our test graph created, we can test the pruning
// capabilities of the channel graph.
// First we create a mock block that ends up closing the first two
// channels.
var blockHash chainhash.Hash
copy(blockHash[:], bytes.Repeat([]byte{1}, 32))
blockHeight := uint32(1)
block := channelPoints[:2]
prunedChans, err := graph.PruneGraph(block, &blockHash, blockHeight)
if err != nil {
t.Fatalf("unable to prune graph: %v", err)
}
if len(prunedChans) != 2 {
t.Fatalf("incorrect number of channels pruned: "+
"expected %v, got %v", 2, prunedChans)
}
// Now ensure that the prune tip has been updated.
assertPruneTip(t, graph, &blockHash, blockHeight)
// Count up the number of channels known within the graph, only 2
// should be remaining.
assertNumChans(t, graph, 2)
// Those channels should also be missing from the channel view.
channelView, err = graph.ChannelView()
if err != nil {
t.Fatalf("unable to get graph channel view: %v", err)
}
assertChanViewEqualChanPoints(t, channelView, channelPoints[2:])
// Next we'll create a block that doesn't close any channels within the
// graph to test the negative error case.
fakeHash := sha256.Sum256([]byte("test prune"))
nonChannel := &wire.OutPoint{
Hash: fakeHash,
Index: 9,
}
blockHash = sha256.Sum256(blockHash[:])
blockHeight = 2
prunedChans, err = graph.PruneGraph(
[]*wire.OutPoint{nonChannel}, &blockHash, blockHeight,
)
if err != nil {
t.Fatalf("unable to prune graph: %v", err)
}
// No channels should have been detected as pruned.
if len(prunedChans) != 0 {
t.Fatalf("channels were pruned but shouldn't have been")
}
// Once again, the prune tip should have been updated. We should still
// see both channels and their participants, along with the source node.
assertPruneTip(t, graph, &blockHash, blockHeight)
assertNumChans(t, graph, 2)
assertNumNodes(t, graph, 4)
// Finally, create a block that prunes the remainder of the channels
// from the graph.
blockHash = sha256.Sum256(blockHash[:])
blockHeight = 3
prunedChans, err = graph.PruneGraph(
channelPoints[2:], &blockHash, blockHeight,
)
if err != nil {
t.Fatalf("unable to prune graph: %v", err)
}
// The remainder of the channels should have been pruned from the
// graph.
if len(prunedChans) != 2 {
t.Fatalf("incorrect number of channels pruned: "+
"expected %v, got %v", 2, len(prunedChans))
}
// The prune tip should be updated, no channels should be found, and
// only the source node should remain within the current graph.
assertPruneTip(t, graph, &blockHash, blockHeight)
assertNumChans(t, graph, 0)
assertNumNodes(t, graph, 1)
// Finally, the channel view at this point in the graph should now be
// completely empty. Those channels should also be missing from the
// channel view.
channelView, err = graph.ChannelView()
if err != nil {
t.Fatalf("unable to get graph channel view: %v", err)
}
if len(channelView) != 0 {
t.Fatalf("channel view should be empty, instead have: %v",
channelView)
}
}
// TestHighestChanID tests that we're able to properly retrieve the highest
// known channel ID in the database.
func TestHighestChanID(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// If we don't yet have any channels in the database, then we should
// get a channel ID of zero if we ask for the highest channel ID.
bestID, err := graph.HighestChanID()
if err != nil {
t.Fatalf("unable to get highest ID: %v", err)
}
if bestID != 0 {
t.Fatalf("best ID w/ no chan should be zero, is instead: %v",
bestID)
}
// Next, we'll insert two channels into the database, with each channel
// connecting the same two nodes.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
// The first channel with be at height 10, while the other will be at
// height 100.
edge1, _ := createEdge(10, 0, 0, 0, node1, node2)
edge2, chanID2 := createEdge(100, 0, 0, 0, node1, node2)
if err := graph.AddChannelEdge(&edge1); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
if err := graph.AddChannelEdge(&edge2); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
// Now that the edges has been inserted, we'll query for the highest
// known channel ID in the database.
bestID, err = graph.HighestChanID()
if err != nil {
t.Fatalf("unable to get highest ID: %v", err)
}
if bestID != chanID2.ToUint64() {
t.Fatalf("expected %v got %v for best chan ID: ",
chanID2.ToUint64(), bestID)
}
// If we add another edge, then the current best chan ID should be
// updated as well.
edge3, chanID3 := createEdge(1000, 0, 0, 0, node1, node2)
if err := graph.AddChannelEdge(&edge3); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
bestID, err = graph.HighestChanID()
if err != nil {
t.Fatalf("unable to get highest ID: %v", err)
}
if bestID != chanID3.ToUint64() {
t.Fatalf("expected %v got %v for best chan ID: ",
chanID3.ToUint64(), bestID)
}
}
// TestChanUpdatesInHorizon tests the we're able to properly retrieve all known
// channel updates within a specific time horizon. It also tests that upon
// insertion of a new edge, the edge update index is updated properly.
func TestChanUpdatesInHorizon(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// If we issue an arbitrary query before any channel updates are
// inserted in the database, we should get zero results.
chanUpdates, err := graph.ChanUpdatesInHorizon(
time.Unix(999, 0), time.Unix(9999, 0),
)
if err != nil {
t.Fatalf("unable to updates for updates: %v", err)
}
if len(chanUpdates) != 0 {
t.Fatalf("expected 0 chan updates, instead got %v",
len(chanUpdates))
}
// We'll start by creating two nodes which will seed our test graph.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node1); err != nil {
t.Fatalf("unable to add node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node2); err != nil {
t.Fatalf("unable to add node: %v", err)
}
// We'll now create 10 channels between the two nodes, with update
// times 10 seconds after each other.
const numChans = 10
startTime := time.Unix(1234, 0)
endTime := startTime
edges := make([]ChannelEdge, 0, numChans)
for i := 0; i < numChans; i++ {
txHash := sha256.Sum256([]byte{byte(i)})
op := wire.OutPoint{
Hash: txHash,
Index: 0,
}
channel, chanID := createEdge(
uint32(i*10), 0, 0, 0, node1, node2,
)
if err := graph.AddChannelEdge(&channel); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
updateTime := endTime
endTime = updateTime.Add(time.Second * 10)
edge1 := newEdgePolicy(
chanID.ToUint64(), op, db, updateTime.Unix(),
)
edge1.Flags = 0
edge1.Node = node2
edge1.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge1); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
edge2 := newEdgePolicy(
chanID.ToUint64(), op, db, updateTime.Unix(),
)
edge2.Flags = 1
edge2.Node = node1
edge2.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge2); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
edges = append(edges, ChannelEdge{
Info: &channel,
Policy1: edge1,
Policy2: edge2,
})
}
// With our channels loaded, we'll now start our series of queries.
queryCases := []struct {
start time.Time
end time.Time
resp []ChannelEdge
}{
// If we query for a time range that's strictly below our set
// of updates, then we'll get an empty result back.
{
start: time.Unix(100, 0),
end: time.Unix(200, 0),
},
// If we query for a time range that's well beyond our set of
// updates, we should get an empty set of results back.
{
start: time.Unix(99999, 0),
end: time.Unix(999999, 0),
},
// If we query for the start time, and 10 seconds directly
// after it, we should only get a single update, that first
// one.
{
start: time.Unix(1234, 0),
end: startTime.Add(time.Second * 10),
resp: []ChannelEdge{edges[0]},
},
// If we add 10 seconds past the first update, and then
// subtract 10 from the last update, then we should only get
// the 8 edges in the middle.
{
start: startTime.Add(time.Second * 10),
end: endTime.Add(-time.Second * 10),
resp: edges[1:9],
},
// If we use the start and end time as is, we should get the
// entire range.
{
start: startTime,
end: endTime,
resp: edges,
},
}
for _, queryCase := range queryCases {
resp, err := graph.ChanUpdatesInHorizon(
queryCase.start, queryCase.end,
)
if err != nil {
t.Fatalf("unable to query for updates: %v", err)
}
if len(resp) != len(queryCase.resp) {
t.Fatalf("expected %v chans, got %v chans",
len(queryCase.resp), len(resp))
}
for i := 0; i < len(resp); i++ {
chanExp := queryCase.resp[i]
chanRet := resp[i]
assertEdgeInfoEqual(t, chanExp.Info, chanRet.Info)
err := compareEdgePolicies(chanExp.Policy1, chanRet.Policy1)
if err != nil {
t.Fatal(err)
}
compareEdgePolicies(chanExp.Policy2, chanRet.Policy2)
if err != nil {
t.Fatal(err)
}
}
}
}
// TestNodeUpdatesInHorizon tests that we're able to properly scan and retrieve
// the most recent node updates within a particular time horizon.
func TestNodeUpdatesInHorizon(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
startTime := time.Unix(1234, 0)
endTime := startTime
// If we issue an arbitrary query before we insert any nodes into the
// database, then we shouldn't get any results back.
nodeUpdates, err := graph.NodeUpdatesInHorizon(
time.Unix(999, 0), time.Unix(9999, 0),
)
if err != nil {
t.Fatalf("unable to query for node updates: %v", err)
}
if len(nodeUpdates) != 0 {
t.Fatalf("expected 0 node updates, instead got %v",
len(nodeUpdates))
}
// We'll create 10 node announcements, each with an update timestmap 10
// seconds after the other.
const numNodes = 10
nodeAnns := make([]LightningNode, 0, numNodes)
for i := 0; i < numNodes; i++ {
nodeAnn, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test vertex: %v", err)
}
// The node ann will use the current end time as its last
// update them, then we'll add 10 seconds in order to create
// the proper update time for the next node announcement.
updateTime := endTime
endTime = updateTime.Add(time.Second * 10)
nodeAnn.LastUpdate = updateTime
nodeAnns = append(nodeAnns, *nodeAnn)
if err := graph.AddLightningNode(nodeAnn); err != nil {
t.Fatalf("unable to add lightning node: %v", err)
}
}
queryCases := []struct {
start time.Time
end time.Time
resp []LightningNode
}{
// If we query for a time range that's strictly below our set
// of updates, then we'll get an empty result back.
{
start: time.Unix(100, 0),
end: time.Unix(200, 0),
},
// If we query for a time range that's well beyond our set of
// updates, we should get an empty set of results back.
{
start: time.Unix(99999, 0),
end: time.Unix(999999, 0),
},
// If we skip he first time epoch with out start time, then we
// should get back every now but the first.
{
start: startTime.Add(time.Second * 10),
end: endTime,
resp: nodeAnns[1:],
},
// If we query for the range as is, we should get all 10
// announcements back.
{
start: startTime,
end: endTime,
resp: nodeAnns,
},
// If we reduce the ending time by 10 seconds, then we should
// get all but the last node we inserted.
{
start: startTime,
end: endTime.Add(-time.Second * 10),
resp: nodeAnns[:9],
},
}
for _, queryCase := range queryCases {
resp, err := graph.NodeUpdatesInHorizon(queryCase.start, queryCase.end)
if err != nil {
t.Fatalf("unable to query for nodes: %v", err)
}
if len(resp) != len(queryCase.resp) {
t.Fatalf("expected %v nodes, got %v nodes",
len(queryCase.resp), len(resp))
}
for i := 0; i < len(resp); i++ {
err := compareNodes(&queryCase.resp[i], &resp[i])
if err != nil {
t.Fatal(err)
}
}
}
}
// TestFilterKnownChanIDs tests that we're able to properly perform the set
// differences of an incoming set of channel ID's, and those that we already
// know of on disk.
func TestFilterKnownChanIDs(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// If we try to filter out a set of channel ID's before we even know of
// any channels, then we should get the entire set back.
preChanIDs := []uint64{1, 2, 3, 4}
filteredIDs, err := graph.FilterKnownChanIDs(preChanIDs)
if err != nil {
t.Fatalf("unable to filter chan IDs: %v", err)
}
if !reflect.DeepEqual(preChanIDs, filteredIDs) {
t.Fatalf("chan IDs shouldn't have been filtered!")
}
// We'll start by creating two nodes which will seed our test graph.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node1); err != nil {
t.Fatalf("unable to add node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node2); err != nil {
t.Fatalf("unable to add node: %v", err)
}
// Next, we'll add 5 channel ID's to the graph, each of them having a
// block height 10 blocks after the previous.
const numChans = 5
chanIDs := make([]uint64, 0, numChans)
for i := 0; i < numChans; i++ {
channel, chanID := createEdge(
uint32(i*10), 0, 0, 0, node1, node2,
)
if err := graph.AddChannelEdge(&channel); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
chanIDs = append(chanIDs, chanID.ToUint64())
}
queryCases := []struct {
queryIDs []uint64
resp []uint64
}{
// If we attempt to filter out all chanIDs we know of, the
// response should be the empty set.
{
queryIDs: chanIDs,
},
// If we query for a set of ID's that we didn't insert, we
// should get the same set back.
{
queryIDs: []uint64{99, 100},
resp: []uint64{99, 100},
},
// If we query for a super-set of our the chan ID's inserted,
// we should only get those new chanIDs back.
{
queryIDs: append(chanIDs, []uint64{99, 101}...),
resp: []uint64{99, 101},
},
}
for _, queryCase := range queryCases {
resp, err := graph.FilterKnownChanIDs(queryCase.queryIDs)
if err != nil {
t.Fatalf("unable to filter chan IDs: %v", err)
}
if !reflect.DeepEqual(resp, queryCase.resp) {
t.Fatalf("expected %v, got %v", spew.Sdump(queryCase.resp),
spew.Sdump(resp))
}
}
}
// TestFilterChannelRange tests that we're able to properly retrieve the full
// set of short channel ID's for a given block range.
func TestFilterChannelRange(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// We'll first populate our graph with two nodes. All channels created
// below will be made between these two nodes.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node1); err != nil {
t.Fatalf("unable to add node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node2); err != nil {
t.Fatalf("unable to add node: %v", err)
}
// If we try to filter a channel range before we have any channels
// inserted, we should get an empty slice of results.
resp, err := graph.FilterChannelRange(10, 100)
if err != nil {
t.Fatalf("unable to filter channels: %v", err)
}
if len(resp) != 0 {
t.Fatalf("expected zero chans, instead got %v", len(resp))
}
// To start, we'll create a set of channels, each mined in a block 10
// blocks after the prior one.
startHeight := uint32(100)
endHeight := startHeight
const numChans = 10
chanIDs := make([]uint64, 0, numChans)
for i := 0; i < numChans; i++ {
chanHeight := endHeight
channel, chanID := createEdge(
uint32(chanHeight), uint32(i+1), 0, 0, node1, node2,
)
if err := graph.AddChannelEdge(&channel); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
chanIDs = append(chanIDs, chanID.ToUint64())
endHeight += 10
}
// With our channels inserted, we'll construct a series of queries that
// we'll execute below in order to exercise the features of the
// FilterKnownChanIDs method.
queryCases := []struct {
startHeight uint32
endHeight uint32
resp []uint64
}{
// If we query for the entire range, then we should get the same
// set of short channel IDs back.
{
startHeight: startHeight,
endHeight: endHeight,
resp: chanIDs,
},
// If we query for a range of channels right before our range, we
// shouldn't get any results back.
{
startHeight: 0,
endHeight: 10,
},
// If we only query for the last height (range wise), we should
// only get that last channel.
{
startHeight: endHeight - 10,
endHeight: endHeight - 10,
resp: chanIDs[9:],
},
// If we query for just the first height, we should only get a
// single channel back (the first one).
{
startHeight: startHeight,
endHeight: startHeight,
resp: chanIDs[:1],
},
}
for i, queryCase := range queryCases {
resp, err := graph.FilterChannelRange(
queryCase.startHeight, queryCase.endHeight,
)
if err != nil {
t.Fatalf("unable to issue range query: %v", err)
}
if !reflect.DeepEqual(resp, queryCase.resp) {
t.Fatalf("case #%v: expected %v, got %v", i,
queryCase.resp, resp)
}
}
}
// TestFetchChanInfos tests that we're able to properly retrieve the full set
// of ChannelEdge structs for a given set of short channel ID's.
func TestFetchChanInfos(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// We'll first populate our graph with two nodes. All channels created
// below will be made between these two nodes.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node1); err != nil {
t.Fatalf("unable to add node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node2); err != nil {
t.Fatalf("unable to add node: %v", err)
}
// We'll make 5 test channels, ensuring we keep track of which channel
// ID corresponds to a particular ChannelEdge.
const numChans = 5
startTime := time.Unix(1234, 0)
endTime := startTime
edges := make([]ChannelEdge, 0, numChans)
edgeQuery := make([]uint64, 0, numChans)
for i := 0; i < numChans; i++ {
txHash := sha256.Sum256([]byte{byte(i)})
op := wire.OutPoint{
Hash: txHash,
Index: 0,
}
channel, chanID := createEdge(
uint32(i*10), 0, 0, 0, node1, node2,
)
if err := graph.AddChannelEdge(&channel); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
updateTime := endTime
endTime = updateTime.Add(time.Second * 10)
edge1 := newEdgePolicy(
chanID.ToUint64(), op, db, updateTime.Unix(),
)
edge1.Flags = 0
edge1.Node = node2
edge1.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge1); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
edge2 := newEdgePolicy(
chanID.ToUint64(), op, db, updateTime.Unix(),
)
edge2.Flags = 1
edge2.Node = node1
edge2.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge2); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
edges = append(edges, ChannelEdge{
Info: &channel,
Policy1: edge1,
Policy2: edge2,
})
edgeQuery = append(edgeQuery, chanID.ToUint64())
}
// We'll now attempt to query for the range of channel ID's we just
// inserted into the database. We should get the exact same set of
// edges back.
resp, err := graph.FetchChanInfos(edgeQuery)
if err != nil {
t.Fatalf("unable to fetch chan edges: %v", err)
}
if len(resp) != len(edges) {
t.Fatalf("expected %v edges, instead got %v", len(edges),
len(resp))
}
for i := 0; i < len(resp); i++ {
err := compareEdgePolicies(resp[i].Policy1, edges[i].Policy1)
if err != nil {
t.Fatalf("edge doesn't match: %v", err)
}
err = compareEdgePolicies(resp[i].Policy2, edges[i].Policy2)
if err != nil {
t.Fatalf("edge doesn't match: %v", err)
}
assertEdgeInfoEqual(t, resp[i].Info, edges[i].Info)
}
}
// TestIncompleteChannelPolicies tests that a channel that only has a policy
// specified on one end is properly returned in ForEachChannel calls from
// both sides.
func TestIncompleteChannelPolicies(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// Create two nodes.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node1); err != nil {
t.Fatalf("unable to add node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node2); err != nil {
t.Fatalf("unable to add node: %v", err)
}
// Create channel between nodes.
txHash := sha256.Sum256([]byte{0})
op := wire.OutPoint{
Hash: txHash,
Index: 0,
}
channel, chanID := createEdge(
uint32(0), 0, 0, 0, node1, node2,
)
if err := graph.AddChannelEdge(&channel); err != nil {
t.Fatalf("unable to create channel edge: %v", err)
}
// Ensure that channel is reported with unknown policies.
checkPolicies := func(node *LightningNode, expectedIn, expectedOut bool) {
calls := 0
node.ForEachChannel(nil, func(_ *bolt.Tx, _ *ChannelEdgeInfo,
outEdge, inEdge *ChannelEdgePolicy) error {
if !expectedOut && outEdge != nil {
t.Fatalf("Expected no outgoing policy")
}
if expectedOut && outEdge == nil {
t.Fatalf("Expected an outgoing policy")
}
if !expectedIn && inEdge != nil {
t.Fatalf("Expected no incoming policy")
}
if expectedIn && inEdge == nil {
t.Fatalf("Expected an incoming policy")
}
calls++
return nil
})
if calls != 1 {
t.Fatalf("Expected only one callback call")
}
}
checkPolicies(node2, false, false)
// Only create an edge policy for node1 and leave the policy for node2
// unknown.
updateTime := time.Unix(1234, 0)
edgePolicy := newEdgePolicy(
chanID.ToUint64(), op, db, updateTime.Unix(),
)
edgePolicy.Flags = 0
edgePolicy.Node = node2
edgePolicy.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
checkPolicies(node1, false, true)
checkPolicies(node2, true, false)
// Create second policy and assert that both policies are reported
// as present.
edgePolicy = newEdgePolicy(
chanID.ToUint64(), op, db, updateTime.Unix(),
)
edgePolicy.Flags = 1
edgePolicy.Node = node1
edgePolicy.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
checkPolicies(node1, true, true)
checkPolicies(node2, true, true)
}
// TestChannelEdgePruningUpdateIndexDeletion tests that once edges are deleted
// from the graph, then their entries within the update index are also cleaned
// up.
func TestChannelEdgePruningUpdateIndexDeletion(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
sourceNode, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create source node: %v", err)
}
if err := graph.SetSourceNode(sourceNode); err != nil {
t.Fatalf("unable to set source node: %v", err)
}
// We'll first populate our graph with two nodes. All channels created
// below will be made between these two nodes.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node1); err != nil {
t.Fatalf("unable to add node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node2); err != nil {
t.Fatalf("unable to add node: %v", err)
}
// With the two nodes created, we'll now create a random channel, as
// well as two edges in the database with distinct update times.
edgeInfo, chanID := createEdge(100, 0, 0, 0, node1, node2)
if err := graph.AddChannelEdge(&edgeInfo); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
edge1 := randEdgePolicy(chanID.ToUint64(), edgeInfo.ChannelPoint, db)
edge1.Flags = 0
edge1.Node = node1
edge1.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge1); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
edge2 := randEdgePolicy(chanID.ToUint64(), edgeInfo.ChannelPoint, db)
edge2.Flags = 1
edge2.Node = node2
edge2.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge2); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
// Now that both edges have been updated, if we manually check the
// update index, we should have an entry for both edges.
if err := db.View(func(tx *bolt.Tx) error {
edges := tx.Bucket(edgeBucket)
if edges == nil {
return ErrGraphNoEdgesFound
}
edgeIndex := edges.Bucket(edgeIndexBucket)
if edgeIndex == nil {
return ErrGraphNoEdgesFound
}
edgeUpdateIndex := edges.Bucket(edgeUpdateIndexBucket)
if edgeUpdateIndex == nil {
return ErrGraphNoEdgesFound
}
var edgeKey [8 + 8]byte
byteOrder.PutUint64(edgeKey[:8], uint64(edge1.LastUpdate.Unix()))
byteOrder.PutUint64(edgeKey[8:], edge1.ChannelID)
if edgeUpdateIndex.Get(edgeKey[:]) == nil {
return fmt.Errorf("first edge not found in update " +
"index")
}
byteOrder.PutUint64(edgeKey[:8], uint64(edge2.LastUpdate.Unix()))
byteOrder.PutUint64(edgeKey[8:], edge2.ChannelID)
if edgeUpdateIndex.Get(edgeKey[:]) == nil {
return fmt.Errorf("second edge not found in update " +
"index")
}
return nil
}); err != nil {
t.Fatalf("unable to read update index: %v", err)
}
// Now we'll prune the graph, removing the edges, and also the update
// index entries from the database all together.
var blockHash chainhash.Hash
copy(blockHash[:], bytes.Repeat([]byte{2}, 32))
_, err = graph.PruneGraph(
[]*wire.OutPoint{&edgeInfo.ChannelPoint}, &blockHash, 101,
)
if err != nil {
t.Fatalf("unable to prune graph: %v", err)
}
// We'll now check the database state again, at this point, we should
// no longer be able to locate the entries within the edge update
// index.
if err := db.View(func(tx *bolt.Tx) error {
edges := tx.Bucket(edgeBucket)
if edges == nil {
return ErrGraphNoEdgesFound
}
edgeIndex := edges.Bucket(edgeIndexBucket)
if edgeIndex == nil {
return ErrGraphNoEdgesFound
}
edgeUpdateIndex := edges.Bucket(edgeUpdateIndexBucket)
if edgeUpdateIndex == nil {
return ErrGraphNoEdgesFound
}
var edgeKey [8 + 8]byte
byteOrder.PutUint64(edgeKey[:8], uint64(edge1.LastUpdate.Unix()))
byteOrder.PutUint64(edgeKey[8:], edge1.ChannelID)
if edgeUpdateIndex.Get(edgeKey[:]) != nil {
return fmt.Errorf("first edge still found in update " +
"index")
}
byteOrder.PutUint64(edgeKey[:8], uint64(edge2.LastUpdate.Unix()))
byteOrder.PutUint64(edgeKey[8:], edge2.ChannelID)
if edgeUpdateIndex.Get(edgeKey[:]) != nil {
return fmt.Errorf("second edge still found in update " +
"index")
}
return nil
}); err != nil {
t.Fatalf("unable to read update index: %v", err)
}
}
// TestPruneGraphNodes tests that unconnected vertexes are pruned via the
// PruneSyncState method.
func TestPruneGraphNodes(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
// We'll start off by inserting our source node, to ensure that it's
// the only node left after we prune the graph.
graph := db.ChannelGraph()
sourceNode, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create source node: %v", err)
}
if err := graph.SetSourceNode(sourceNode); err != nil {
t.Fatalf("unable to set source node: %v", err)
}
// With the source node inserted, we'll now add three nodes to the
// channel graph, at the end of the scenario, only two of these nodes
// should still be in the graph.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node1); err != nil {
t.Fatalf("unable to add node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node2); err != nil {
t.Fatalf("unable to add node: %v", err)
}
node3, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node3); err != nil {
t.Fatalf("unable to add node: %v", err)
}
// We'll now add a new edge to the graph, but only actually advertise
// the edge of *one* of the nodes.
edgeInfo, chanID := createEdge(100, 0, 0, 0, node1, node2)
if err := graph.AddChannelEdge(&edgeInfo); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
// We'll now insert an advertised edge, but it'll only be the edge that
// points from the first to the second node.
edge1 := randEdgePolicy(chanID.ToUint64(), edgeInfo.ChannelPoint, db)
edge1.Flags = 0
edge1.Node = node1
edge1.SigBytes = testSig.Serialize()
if err := graph.UpdateEdgePolicy(edge1); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
// We'll now initiate a around of graph pruning.
if err := graph.PruneGraphNodes(); err != nil {
t.Fatalf("unable to prune graph nodes: %v", err)
}
// At this point, there should be 3 nodes left in the graph still: the
// source node (which can't be pruned), and node 1+2. Nodes 1 and two
// should still be left in the graph as there's half of an advertised
// edge between them.
assertNumNodes(t, graph, 3)
// Finally, we'll ensure that node3, the only fully unconnected node as
// properly deleted from the graph and not another node in its place.
node3Pub, err := node3.PubKey()
if err != nil {
t.Fatalf("unable to fetch the pubkey of node3: %v", err)
}
if _, err := graph.FetchLightningNode(node3Pub); err == nil {
t.Fatalf("node 3 should have been deleted!")
}
}
// TestAddChannelEdgeShellNodes tests that when we attempt to add a ChannelEdge
// to the graph, one or both of the nodes the edge involves aren't found in the
// database, then shell edges are created for each node if needed.
func TestAddChannelEdgeShellNodes(t *testing.T) {
t.Parallel()
db, cleanUp, err := makeTestDB()
defer cleanUp()
if err != nil {
t.Fatalf("unable to make test database: %v", err)
}
graph := db.ChannelGraph()
// To start, we'll create two nodes, and only add one of them to the
// channel graph.
node1, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
if err := graph.AddLightningNode(node1); err != nil {
t.Fatalf("unable to add node: %v", err)
}
node2, err := createTestVertex(db)
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
// We'll now create an edge between the two nodes, as a result, node2
// should be inserted into the database as a shell node.
edgeInfo, _ := createEdge(100, 0, 0, 0, node1, node2)
if err := graph.AddChannelEdge(&edgeInfo); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
node1Pub, err := node1.PubKey()
if err != nil {
t.Fatalf("unable to parse node 1 pub: %v", err)
}
node2Pub, err := node2.PubKey()
if err != nil {
t.Fatalf("unable to parse node 2 pub: %v", err)
}
// Ensure that node1 was inserted as a full node, while node2 only has
// a shell node present.
node1, err = graph.FetchLightningNode(node1Pub)
if err != nil {
t.Fatalf("unable to fetch node1: %v", err)
}
if !node1.HaveNodeAnnouncement {
t.Fatalf("have shell announcement for node1, shouldn't")
}
node2, err = graph.FetchLightningNode(node2Pub)
if err != nil {
t.Fatalf("unable to fetch node2: %v", err)
}
if node2.HaveNodeAnnouncement {
t.Fatalf("should have shell announcement for node2, but is full")
}
}
// compareNodes is used to compare two LightningNodes while excluding the
// Features struct, which cannot be compared as the semantics for reserializing
// the featuresMap have not been defined.
func compareNodes(a, b *LightningNode) error {
if a.LastUpdate != b.LastUpdate {
return fmt.Errorf("node LastUpdate doesn't match: expected %v, \n"+
"got %v", a.LastUpdate, b.LastUpdate)
}
if !reflect.DeepEqual(a.Addresses, b.Addresses) {
return fmt.Errorf("Addresses doesn't match: expected %#v, \n "+
"got %#v", a.Addresses, b.Addresses)
}
if !reflect.DeepEqual(a.PubKeyBytes, b.PubKeyBytes) {
return fmt.Errorf("PubKey doesn't match: expected %#v, \n "+
"got %#v", a.PubKeyBytes, b.PubKeyBytes)
}
if !reflect.DeepEqual(a.Color, b.Color) {
return fmt.Errorf("Color doesn't match: expected %#v, \n "+
"got %#v", a.Color, b.Color)
}
if !reflect.DeepEqual(a.Alias, b.Alias) {
return fmt.Errorf("Alias doesn't match: expected %#v, \n "+
"got %#v", a.Alias, b.Alias)
}
if !reflect.DeepEqual(a.db, b.db) {
return fmt.Errorf("db doesn't match: expected %#v, \n "+
"got %#v", a.db, b.db)
}
if !reflect.DeepEqual(a.HaveNodeAnnouncement, b.HaveNodeAnnouncement) {
return fmt.Errorf("HaveNodeAnnouncement doesn't match: expected %#v, \n "+
"got %#v", a.HaveNodeAnnouncement, b.HaveNodeAnnouncement)
}
return nil
}
// compareEdgePolicies is used to compare two ChannelEdgePolices using
// compareNodes, so as to exclude comparisons of the Nodes' Features struct.
func compareEdgePolicies(a, b *ChannelEdgePolicy) error {
if a.ChannelID != b.ChannelID {
return fmt.Errorf("ChannelID doesn't match: expected %v, "+
"got %v", a.ChannelID, b.ChannelID)
}
if !reflect.DeepEqual(a.LastUpdate, b.LastUpdate) {
return fmt.Errorf("edge LastUpdate doesn't match: expected %#v, \n "+
"got %#v", a.LastUpdate, b.LastUpdate)
}
if a.Flags != b.Flags {
return fmt.Errorf("Flags doesn't match: expected %v, "+
"got %v", a.Flags, b.Flags)
}
if a.TimeLockDelta != b.TimeLockDelta {
return fmt.Errorf("TimeLockDelta doesn't match: expected %v, "+
"got %v", a.TimeLockDelta, b.TimeLockDelta)
}
if a.MinHTLC != b.MinHTLC {
return fmt.Errorf("MinHTLC doesn't match: expected %v, "+
"got %v", a.MinHTLC, b.MinHTLC)
}
if a.FeeBaseMSat != b.FeeBaseMSat {
return fmt.Errorf("FeeBaseMSat doesn't match: expected %v, "+
"got %v", a.FeeBaseMSat, b.FeeBaseMSat)
}
if a.FeeProportionalMillionths != b.FeeProportionalMillionths {
return fmt.Errorf("FeeProportionalMillionths doesn't match: "+
"expected %v, got %v", a.FeeProportionalMillionths,
b.FeeProportionalMillionths)
}
if err := compareNodes(a.Node, b.Node); err != nil {
return err
}
if !reflect.DeepEqual(a.db, b.db) {
return fmt.Errorf("db doesn't match: expected %#v, \n "+
"got %#v", a.db, b.db)
}
return nil
}