851 lines
28 KiB
Go
851 lines
28 KiB
Go
|
package routing
|
||
|
|
||
|
import (
|
||
|
"encoding/hex"
|
||
|
"sync"
|
||
|
"sync/atomic"
|
||
|
"time"
|
||
|
|
||
|
"github.com/davecgh/go-spew/spew"
|
||
|
"github.com/lightningnetwork/lnd/chainntnfs"
|
||
|
"github.com/lightningnetwork/lnd/channeldb"
|
||
|
"github.com/lightningnetwork/lnd/lnwallet"
|
||
|
"github.com/lightningnetwork/lnd/lnwire"
|
||
|
"github.com/roasbeef/btcd/btcec"
|
||
|
"github.com/roasbeef/btcd/wire"
|
||
|
"github.com/roasbeef/btcutil"
|
||
|
)
|
||
|
|
||
|
// FeeSchema is the set fee configuration for a Lighting Node on the network.
|
||
|
// Using the coefficients described within he schema, the required fee to
|
||
|
// forward outgoing payments can be derived.
|
||
|
//
|
||
|
// TODO(roasbeef): should be in switch instead?
|
||
|
type FeeSchema struct {
|
||
|
// TODO(rosbeef): all these should be in msat instead
|
||
|
|
||
|
// BaseFee is the base amount that will be chained for ANY payment
|
||
|
// forwarded.
|
||
|
BaseFee btcutil.Amount
|
||
|
|
||
|
// FeeRate is the rate that will be charged for forwarding payments.
|
||
|
// The fee rate has a granularity of 1/1000 th of a mili-satoshi, or a
|
||
|
// millionth of a satoshi.
|
||
|
FeeRate btcutil.Amount
|
||
|
}
|
||
|
|
||
|
// Config defines the configuration for the ChannelRouter. ALL elements within
|
||
|
// the configuration MUST be non-nil for the ChannelRouter to carry out its
|
||
|
// duties.
|
||
|
type Config struct {
|
||
|
// Graph is the channel graph that the ChannelRouter will use to gather
|
||
|
// metrics from and also to carry out path finding queries.
|
||
|
// TODO(roasbeef): make into an interface
|
||
|
Graph *channeldb.ChannelGraph
|
||
|
|
||
|
// Chain is the router's source to the most up-to-date blockchain data.
|
||
|
// All incoming advertised channels will be checked against the chain
|
||
|
// to ensure that the channels advertised are still open.
|
||
|
// TODO(roasbeef): remove after discovery service is in
|
||
|
Chain lnwallet.BlockChainIO
|
||
|
|
||
|
// Notifier is an instance of the ChainNotifier that the router uses to
|
||
|
// received notifications of incoming blocks. With each new incoming
|
||
|
// block found, the router may be able to partially prune the channel
|
||
|
// graph as channels may have been pruned.
|
||
|
// TODO(roasbeef): could possibly just replace this with an epoch
|
||
|
// channel.
|
||
|
Notifier chainntnfs.ChainNotifier
|
||
|
|
||
|
// FeeSchema is the set fee schema that will be announced on to the
|
||
|
// network.
|
||
|
// TODO(roasbeef): should either be in discovery or switch
|
||
|
FeeSchema *FeeSchema
|
||
|
|
||
|
// Broadcast is a function that is used to broadcast a particular set
|
||
|
// of messages to all peers that the daemon is connected to. If
|
||
|
// supplied, the exclude parameter indicates that the target peer should
|
||
|
// be excluded from the broadcast.
|
||
|
Broadcast func(exclude *btcec.PublicKey, msg ...lnwire.Message) error
|
||
|
|
||
|
// SendMessages is a function which allows the ChannelRouter to send a
|
||
|
// set of messages to a particular peer identified by the target public
|
||
|
// key.
|
||
|
SendMessages func(target *btcec.PublicKey, msg ...lnwire.Message) error
|
||
|
|
||
|
// TODO(roasbeef): need a SendToSwitch func
|
||
|
// * possibly lift switch into package?
|
||
|
// *
|
||
|
}
|
||
|
|
||
|
// ChannelRouter is the layer 3 router within the Lightning stack. Below the
|
||
|
// ChannelRouter is the HtlcSwitch, and below that is the Bitcoin blockchain
|
||
|
// itself. The primary role of the ChannelRouter is to respond to queries for
|
||
|
// potential routes that can support a payment amount, and also general graph
|
||
|
// reachability questions. The router will prune the channel graph
|
||
|
// automatically as new blocks are discovered which spend certain known funding
|
||
|
// outpoints, thereby closing their respective channels. Additionally, it's the
|
||
|
// duty of the router to sync up newly connected peers with the latest state of
|
||
|
// the channel graph.
|
||
|
type ChannelRouter struct {
|
||
|
sync.RWMutex
|
||
|
|
||
|
cfg *Config
|
||
|
|
||
|
self *channeldb.LightningNode
|
||
|
|
||
|
// TODO(roasbeef): make LRU, invalidate upon new block connect
|
||
|
shortestPathCache map[[33]byte][]*Route
|
||
|
nodeCache map[[33]byte]*channeldb.LightningNode
|
||
|
edgeCache map[wire.OutPoint]*channeldb.ChannelEdge
|
||
|
|
||
|
newBlocks chan *chainntnfs.BlockEpoch
|
||
|
|
||
|
networkMsgs chan *routingMsg
|
||
|
|
||
|
syncRequests chan *syncRequest
|
||
|
|
||
|
fakeSig *btcec.Signature
|
||
|
|
||
|
started uint32
|
||
|
stopped uint32
|
||
|
quit chan struct{}
|
||
|
wg sync.WaitGroup
|
||
|
}
|
||
|
|
||
|
// New creates a new instance of the ChannelRouter with the specified
|
||
|
// configuration parameters. As part of initialization, if the router detects
|
||
|
// that the channel graph isn't fully in sync with the latest UTXO (since the
|
||
|
// channel graph is a subset of the UTXO set) set, then the router will proceed
|
||
|
// to fully sync to the latest state of the UTXO set.
|
||
|
func New(cfg Config) (*ChannelRouter, error) {
|
||
|
// TODO(roasbeef): remove this place holder after sigs are properly
|
||
|
// stored in the graph.
|
||
|
s := "30450221008ce2bc69281ce27da07e6683571319d18e949ddfa2965fb6caa" +
|
||
|
"1bf0314f882d70220299105481d63e0f4bc2a88121167221b6700d72a0e" +
|
||
|
"ad154c03be696a292d24ae"
|
||
|
fakeSigHex, err := hex.DecodeString(s)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
fakeSig, err := btcec.ParseSignature(fakeSigHex, btcec.S256())
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
self, err := cfg.Graph.SourceNode()
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
return &ChannelRouter{
|
||
|
cfg: &cfg,
|
||
|
self: self,
|
||
|
fakeSig: fakeSig,
|
||
|
networkMsgs: make(chan *routingMsg),
|
||
|
syncRequests: make(chan *syncRequest),
|
||
|
quit: make(chan struct{}),
|
||
|
}, nil
|
||
|
}
|
||
|
|
||
|
// Start launches all the goroutines the ChannelRouter requires to carry out
|
||
|
// its duties. If the router has already been started, then this method is a
|
||
|
// noop.
|
||
|
func (r *ChannelRouter) Start() error {
|
||
|
if !atomic.CompareAndSwapUint32(&r.started, 0, 1) {
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
log.Tracef("Channel Router starting")
|
||
|
|
||
|
// First we register for new notifications of newly discovered blocks.
|
||
|
// We do this immediately so we'll later be able to consume any/all
|
||
|
// blocks which were discovered as we prune the channel graph using a
|
||
|
// snapshot of the chain state.
|
||
|
blockEpochs, err := r.cfg.Notifier.RegisterBlockEpochNtfn()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
r.newBlocks = blockEpochs.Epochs
|
||
|
|
||
|
// Before we begin normal operation of the router, we first need to
|
||
|
// synchronize the channel graph to the latest state of the UTXO set.
|
||
|
if err := r.syncGraphWithChain(); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
r.wg.Add(1)
|
||
|
go r.networkHandler()
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Stop signals the ChannelRouter to gracefully halt all routines. This method
|
||
|
// will *block* until all goroutines have excited. If the channel router has
|
||
|
// already stopped then this method will return immediately.
|
||
|
func (r *ChannelRouter) Stop() error {
|
||
|
if !atomic.CompareAndSwapUint32(&r.stopped, 0, 1) {
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
log.Infof("Channel Router shutting down")
|
||
|
|
||
|
close(r.quit)
|
||
|
r.wg.Wait()
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// syncGraphWithChain attempts to synchronize the current channel graph with
|
||
|
// the latest UTXO set state. This process involves pruning from the channel
|
||
|
// graph any channels which have been closed by spending their funding output
|
||
|
// since we've been down.
|
||
|
func (r *ChannelRouter) syncGraphWithChain() error {
|
||
|
// First, we'll need to check to see if we're already in sync with the
|
||
|
// latest state of the UTXO set.
|
||
|
bestHash, bestHeight, err := r.cfg.Chain.GetBestBlock()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
pruneHash, pruneHeight, err := r.cfg.Graph.PruneTip()
|
||
|
if err != nil {
|
||
|
switch {
|
||
|
// If the graph has never been pruned, or hasn't fully been
|
||
|
// created yet, then we don't treat this as an explicit error.
|
||
|
case err == channeldb.ErrGraphNeverPruned:
|
||
|
case err == channeldb.ErrGraphNotFound:
|
||
|
default:
|
||
|
return err
|
||
|
}
|
||
|
}
|
||
|
|
||
|
log.Infof("Prune tip for Channel Graph: height=%v, hash=%v", pruneHeight,
|
||
|
pruneHash)
|
||
|
|
||
|
switch {
|
||
|
|
||
|
// If the graph has never been pruned, then we can exit early as this
|
||
|
// entails it's being created for the first time and hasn't seen any
|
||
|
// block or created channels.
|
||
|
case pruneHeight == 0 || pruneHash == nil:
|
||
|
return nil
|
||
|
|
||
|
// If the block hashes and heights match exactly, then we don't need to
|
||
|
// prune the channel graph as we're already fully in sync.
|
||
|
case bestHash.IsEqual(pruneHash) && uint32(bestHeight) == pruneHeight:
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
log.Infof("Syncing channel graph from height=%v (hash=%v) to height=%v "+
|
||
|
"(hash=%v)", pruneHeight, pruneHash, bestHeight, bestHash)
|
||
|
|
||
|
// If we're not yet caught up, then we'll walk forward in the chain in
|
||
|
// the chain pruning the channel graph with each new block in the chain
|
||
|
// that hasn't yet been consumed by the channel graph.
|
||
|
var numChansClosed uint32
|
||
|
for nextHeight := pruneHeight + 1; nextHeight <= uint32(bestHeight); nextHeight++ {
|
||
|
// Using the next height, fetch the next block to use in our
|
||
|
// incremental graph pruning routine.
|
||
|
nextHash, err := r.cfg.Chain.GetBlockHash(int64(nextHeight))
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
nextBlock, err := r.cfg.Chain.GetBlock(nextHash)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// We're only interested in all prior outputs that've been
|
||
|
// spent in the block, so collate all the referenced previous
|
||
|
// outpoints within each tx and input.
|
||
|
var spentOutputs []*wire.OutPoint
|
||
|
for _, tx := range nextBlock.Transactions {
|
||
|
for _, txIn := range tx.TxIn {
|
||
|
spentOutputs = append(spentOutputs,
|
||
|
&txIn.PreviousOutPoint)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// With the spent outputs gathered, attempt to prune the
|
||
|
// channel graph, also passing in the hash+height of the block
|
||
|
// being pruned so the prune tip can be updated.
|
||
|
numClosed, err := r.cfg.Graph.PruneGraph(spentOutputs, nextHash,
|
||
|
nextHeight)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
log.Infof("Block %v (height=%v) closed %v channels",
|
||
|
nextHash, nextHeight, numClosed)
|
||
|
|
||
|
numChansClosed += numClosed
|
||
|
}
|
||
|
|
||
|
log.Infof("Graph pruning complete: %v channels we're closed since "+
|
||
|
"height %v", numChansClosed, pruneHeight)
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// networkHandler is the primary goroutine for the ChannelRouter. The roles of
|
||
|
// this goroutine include answering queries related to the state of the
|
||
|
// network, syncing up newly connected peers, and also periodically
|
||
|
// broadcasting our latest state to all connected peers.
|
||
|
//
|
||
|
// NOTE: This MUST be run as a goroutine.
|
||
|
func (r *ChannelRouter) networkHandler() {
|
||
|
defer r.wg.Done()
|
||
|
|
||
|
var announcementBatch []lnwire.Message
|
||
|
|
||
|
trickleTimer := time.NewTicker(time.Millisecond * 300)
|
||
|
defer trickleTimer.Stop()
|
||
|
|
||
|
for {
|
||
|
select {
|
||
|
// A new fully validated network message has just arrived. As a
|
||
|
// result we'll modify the channel graph accordingly depending
|
||
|
// on the exact type of the message.
|
||
|
case netMsg := <-r.networkMsgs:
|
||
|
// TODO(roasbeef): this loop would mostly be moved to
|
||
|
// the discovery service
|
||
|
|
||
|
// Process the network announcement to determine if this
|
||
|
// is either a new announcement from our PoV or an
|
||
|
// update to a prior vertex/edge we previously
|
||
|
// accepted.
|
||
|
accepted := r.processNetworkAnnouncement(netMsg.msg)
|
||
|
|
||
|
// If the update was accepted, then add it to our next
|
||
|
// announcement batch to be broadcast once the trickle
|
||
|
// timer ticks gain.
|
||
|
if accepted {
|
||
|
announcementBatch = append(announcementBatch, netMsg.msg)
|
||
|
}
|
||
|
|
||
|
// TODO(roasbeef): remove all unconnected vertexes
|
||
|
// after N blocks pass with no corresponding
|
||
|
// announcements.
|
||
|
|
||
|
// A new block has arrived, so we can prune the channel graph
|
||
|
// of any channels which were closed in the block.
|
||
|
case newBlock, ok := <-r.newBlocks:
|
||
|
// If the channel has been closed, then this indicates
|
||
|
// the daemon is shutting down, so we exit ourselves.
|
||
|
if !ok {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
block, err := r.cfg.Chain.GetBlock(newBlock.Hash)
|
||
|
if err != nil {
|
||
|
log.Errorf("unable to get block: %v", err)
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
log.Infof("Pruning channel graph using block %v (height=%v)",
|
||
|
newBlock.Hash, newBlock.Height)
|
||
|
|
||
|
// We're only interested in all prior outputs that've
|
||
|
// been spent in the block, so collate all the
|
||
|
// referenced previous outpoints within each tx and
|
||
|
// input.
|
||
|
var spentOutputs []*wire.OutPoint
|
||
|
for _, tx := range block.Transactions {
|
||
|
for _, txIn := range tx.TxIn {
|
||
|
spentOutputs = append(spentOutputs,
|
||
|
&txIn.PreviousOutPoint)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// With the spent outputs gathered, attempt to prune
|
||
|
// the channel graph, also passing in the hash+height
|
||
|
// of the block being pruned so the prune tip can be
|
||
|
// updated.
|
||
|
numClosed, err := r.cfg.Graph.PruneGraph(spentOutputs,
|
||
|
newBlock.Hash, uint32(newBlock.Height))
|
||
|
if err != nil {
|
||
|
log.Errorf("unable to prune routing table: %v", err)
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
log.Infof("Block %v (height=%v) closed %v channels",
|
||
|
newBlock.Hash, newBlock.Height, numClosed)
|
||
|
|
||
|
// The trickle timer has ticked, which indicates we should
|
||
|
// flush to the network the pending batch of new announcements
|
||
|
// we've received since the last trickle tick.
|
||
|
case <-trickleTimer.C:
|
||
|
// If the current announcement batch is nil, then we
|
||
|
// have no further work here.
|
||
|
if len(announcementBatch) == 0 {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
log.Infof("Broadcasting batch of %v new announcements",
|
||
|
len(announcementBatch))
|
||
|
|
||
|
// If we have new things to announce then broadcast
|
||
|
// then to all our immediately connected peers.
|
||
|
err := r.cfg.Broadcast(nil, announcementBatch...)
|
||
|
if err != nil {
|
||
|
log.Errorf("unable to send batch announcement: %v", err)
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// If we we're able to broadcast the current batch
|
||
|
// successfully, then we reset the batch for a new
|
||
|
// round of announcements.
|
||
|
announcementBatch = nil
|
||
|
|
||
|
// We've just received a new request to synchronize a peer with
|
||
|
// our latest graph state. This indicates that a peer has just
|
||
|
// connected for the first time, so for now we dump our entire
|
||
|
// graph and allow them to sift through the (subjectively) new
|
||
|
// information on their own.
|
||
|
case syncReq := <-r.syncRequests:
|
||
|
nodePub := syncReq.node.SerializeCompressed()
|
||
|
log.Infof("Synchronizing channel graph with %x", nodePub)
|
||
|
|
||
|
if err := r.syncChannelGraph(syncReq); err != nil {
|
||
|
log.Errorf("unable to sync graph state with %x: %v",
|
||
|
nodePub, err)
|
||
|
}
|
||
|
|
||
|
// The router has been signalled to exit, to we exit our main
|
||
|
// loop so the wait group can be decremented.
|
||
|
case <-r.quit:
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// processNetworkAnnouncement processes a new network relate authenticated
|
||
|
// channel or node announcement. If the update didn't affect the internal state
|
||
|
// of the draft due to either being out of date, invalid, or redundant, then
|
||
|
// false is returned. Otherwise, true is returned indicating that the caller
|
||
|
// may want to batch this request to be broadcast to immediate peers during th
|
||
|
// next announcement epoch.
|
||
|
func (r *ChannelRouter) processNetworkAnnouncement(msg lnwire.Message) bool {
|
||
|
switch msg := msg.(type) {
|
||
|
|
||
|
// A new node announcement has arrived which either presents a new
|
||
|
// node, or a node updating previously advertised information.
|
||
|
case *lnwire.NodeAnnouncement:
|
||
|
// Before proceeding ensure that we aren't already away of this
|
||
|
// node, and if we are then this is a newer update that we
|
||
|
// known of.
|
||
|
lastUpdate, exists, err := r.cfg.Graph.HasLightningNode(msg.NodeID)
|
||
|
if err != nil {
|
||
|
log.Errorf("Unable to query for the existence of node: %v",
|
||
|
err)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// If we've reached this pint then we're aware of th vertex
|
||
|
// being advertised. So we now check if the new message has a
|
||
|
// new time stamp, if not then we won't accept the new data as
|
||
|
// it would override newer data.
|
||
|
msgTimestamp := time.Unix(int64(msg.Timestamp), 0)
|
||
|
if exists && lastUpdate.After(msgTimestamp) ||
|
||
|
lastUpdate.Equal(msgTimestamp) {
|
||
|
|
||
|
log.Debugf("Ignoring outdated announcement for %x",
|
||
|
msg.NodeID.SerializeCompressed())
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
node := &channeldb.LightningNode{
|
||
|
LastUpdate: msgTimestamp,
|
||
|
Address: msg.Address,
|
||
|
PubKey: msg.NodeID,
|
||
|
Alias: msg.Alias.String(),
|
||
|
}
|
||
|
|
||
|
if err = r.cfg.Graph.AddLightningNode(node); err != nil {
|
||
|
log.Errorf("unable to add node %v: %v", msg.NodeID, err)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
log.Infof("Updated vertex data for node=%x",
|
||
|
msg.NodeID.SerializeCompressed())
|
||
|
|
||
|
// A new channel announcement has arrived, this indicates the
|
||
|
// *creation* of a new channel within the graph. This only advertises
|
||
|
// the existence of a channel and not yet the routing policies in
|
||
|
// either direction of the channel.
|
||
|
case *lnwire.ChannelAnnouncement:
|
||
|
// Prior to processing the announcement we first check if we
|
||
|
// already know of this channel, if so, then we can exit early.
|
||
|
channelID := msg.ChannelID.ToUint64()
|
||
|
_, _, exists, err := r.cfg.Graph.HasChannelEdge(channelID)
|
||
|
if err != nil && err != channeldb.ErrGraphNoEdgesFound {
|
||
|
log.Errorf("unable to check for edge existence: %v", err)
|
||
|
return false
|
||
|
} else if exists {
|
||
|
log.Debugf("Ignoring announcement for known chan_id=%v",
|
||
|
channelID)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Before we can add the channel to the channel graph, we need
|
||
|
// to obtain the full funding outpoint that's encoded within
|
||
|
// the channel ID.
|
||
|
fundingPoint, err := r.fetchChanPoint(&msg.ChannelID)
|
||
|
if err != nil {
|
||
|
log.Errorf("unable to fetch chan point for chan_id=%v: %v",
|
||
|
channelID, err)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Now that we have the funding outpoint of the channel, ensure
|
||
|
// that it hasn't yet been spent. If so, then this channel has
|
||
|
// been closed so we'll ignore it.
|
||
|
if _, err := r.cfg.Chain.GetUtxo(&fundingPoint.Hash,
|
||
|
fundingPoint.Index); err != nil {
|
||
|
log.Errorf("unable to fetch utxo for chan_id=%v: %v",
|
||
|
channelID, err)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// TODO(roasbeef): also add capacity here two instead of on the
|
||
|
// directed edges.
|
||
|
err = r.cfg.Graph.AddChannelEdge(msg.FirstNodeID,
|
||
|
msg.SecondNodeID, fundingPoint, channelID)
|
||
|
if err != nil {
|
||
|
log.Errorf("unable to add channel: %v", err)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
log.Infof("New channel discovered! Link "+
|
||
|
"connects %x and %x with ChannelPoint(%v), chan_id=%v",
|
||
|
msg.FirstNodeID.SerializeCompressed(),
|
||
|
msg.SecondNodeID.SerializeCompressed(),
|
||
|
fundingPoint, channelID)
|
||
|
|
||
|
// A new authenticated channel update has has arrived, this indicates
|
||
|
// that the directional information for an already known channel has
|
||
|
// been updated. All updates are signed and validated before reaching
|
||
|
// us, so we trust the data to be legitimate.
|
||
|
case *lnwire.ChannelUpdateAnnouncement:
|
||
|
chanID := msg.ChannelID.ToUint64()
|
||
|
edge1Timestamp, edge2Timestamp, _, err := r.cfg.Graph.HasChannelEdge(chanID)
|
||
|
if err != nil && err != channeldb.ErrGraphNoEdgesFound {
|
||
|
log.Errorf("unable to check for edge existence: %v", err)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// As edges are directional edge node has a unique policy for
|
||
|
// the direction of th edge they control. Therefore we first
|
||
|
// check if we already have the most up to date information for
|
||
|
// that edge. If so, then we can exit early.
|
||
|
updateTimestamp := time.Unix(int64(msg.Timestamp), 0)
|
||
|
switch msg.Flags {
|
||
|
|
||
|
// A flag set of 0 indicates this is an announcement for
|
||
|
// the "first" node in the channel.
|
||
|
case 0:
|
||
|
if edge1Timestamp.After(updateTimestamp) ||
|
||
|
edge1Timestamp.Equal(updateTimestamp) {
|
||
|
|
||
|
log.Debugf("Ignoring announcement (flags=%v) "+
|
||
|
"for known chan_id=%v", msg.Flags,
|
||
|
chanID)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Similarly, a flag set of 1 indicates this is an
|
||
|
// announcement for the "second" node in the channel.
|
||
|
case 1:
|
||
|
if edge2Timestamp.After(updateTimestamp) ||
|
||
|
edge2Timestamp.Equal(updateTimestamp) {
|
||
|
|
||
|
log.Debugf("Ignoring announcement (flags=%v) "+
|
||
|
"for known chan_id=%v", msg.Flags,
|
||
|
chanID)
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Before we can update the channel information, we need to get
|
||
|
// the UTXO itself so we can store the proper capacity.
|
||
|
chanPoint, err := r.fetchChanPoint(&msg.ChannelID)
|
||
|
if err != nil {
|
||
|
log.Errorf("unable to fetch chan point: %v", err)
|
||
|
return false
|
||
|
}
|
||
|
utxo, err := r.cfg.Chain.GetUtxo(&chanPoint.Hash,
|
||
|
chanPoint.Index)
|
||
|
if err != nil {
|
||
|
log.Errorf("unable to fetch utxo for chan_id=%v: %v",
|
||
|
chanID, err)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// TODO(roasbeef): should be msat here
|
||
|
chanUpdate := &channeldb.ChannelEdge{
|
||
|
ChannelID: chanID,
|
||
|
ChannelPoint: *chanPoint,
|
||
|
LastUpdate: updateTimestamp,
|
||
|
Flags: msg.Flags,
|
||
|
Expiry: msg.Expiry,
|
||
|
MinHTLC: btcutil.Amount(msg.HtlcMinimumMstat),
|
||
|
FeeBaseMSat: btcutil.Amount(msg.FeeBaseMstat),
|
||
|
FeeProportionalMillionths: btcutil.Amount(msg.FeeProportionalMillionths),
|
||
|
// TODO(roasbeef): this is a hack, needs to be removed
|
||
|
// after commitment fees are dynamic.
|
||
|
Capacity: btcutil.Amount(utxo.Value) - 5000,
|
||
|
}
|
||
|
|
||
|
err = r.cfg.Graph.UpdateEdgeInfo(chanUpdate)
|
||
|
if err != nil {
|
||
|
log.Errorf("unable to add channel: %v", err)
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
log.Infof("New channel update applied: %v",
|
||
|
spew.Sdump(chanUpdate))
|
||
|
}
|
||
|
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
// syncRequest represents a request from an outside sub-system to the wallet to
|
||
|
// sync a new node to the latest graph state.
|
||
|
type syncRequest struct {
|
||
|
node *btcec.PublicKey
|
||
|
}
|
||
|
|
||
|
// SynchronizeNode sends a message to the ChannelRouter indicating it should
|
||
|
// synchronize routing state with the target node. This method is to be
|
||
|
// utilized when a node connections for the first time to provide it with the
|
||
|
// latest channel graph state.
|
||
|
func (r *ChannelRouter) SynchronizeNode(pub *btcec.PublicKey) {
|
||
|
select {
|
||
|
case r.syncRequests <- &syncRequest{
|
||
|
node: pub,
|
||
|
}:
|
||
|
case <-r.quit:
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// syncChannelGraph attempts to synchronize the target node in the syncReq to
|
||
|
// the latest channel graph state. In order to accomplish this, (currently) the
|
||
|
// entire graph is read from disk, then serialized to the format defined within
|
||
|
// the current wire protocol. This cache of graph data is then sent directly to
|
||
|
// the target node.
|
||
|
func (r *ChannelRouter) syncChannelGraph(syncReq *syncRequest) error {
|
||
|
targetNode := syncReq.node
|
||
|
|
||
|
// TODO(roasbeef): need to also store sig data in db
|
||
|
// * will be nice when we switch to pairing sigs would only need one ^_^
|
||
|
|
||
|
// We'll collate all the gathered routing messages into a single slice
|
||
|
// containing all the messages to be sent to the target peer.
|
||
|
var announceMessages []lnwire.Message
|
||
|
|
||
|
// First run through all the vertexes in the graph, retrieving the data
|
||
|
// for the announcement we originally retrieved.
|
||
|
var numNodes uint32
|
||
|
if err := r.cfg.Graph.ForEachNode(func(node *channeldb.LightningNode) error {
|
||
|
alias, err := lnwire.NewAlias(node.Alias)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
ann := &lnwire.NodeAnnouncement{
|
||
|
Signature: r.fakeSig,
|
||
|
Timestamp: uint32(node.LastUpdate.Unix()),
|
||
|
Address: node.Address,
|
||
|
NodeID: node.PubKey,
|
||
|
Alias: alias,
|
||
|
}
|
||
|
announceMessages = append(announceMessages, ann)
|
||
|
|
||
|
numNodes++
|
||
|
|
||
|
return nil
|
||
|
}); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// With the vertexes gathered, we'll no retrieve the initial
|
||
|
// announcement, as well as the latest channel update announcement for
|
||
|
// both of the directed edges that make up the channel.
|
||
|
// TODO(roasbeef): multi-sig keys should also be stored in DB
|
||
|
var numEdges uint32
|
||
|
if err := r.cfg.Graph.ForEachChannel(func(e1, e2 *channeldb.ChannelEdge) error {
|
||
|
chanID := lnwire.NewChanIDFromInt(e1.ChannelID)
|
||
|
chanAnn := &lnwire.ChannelAnnouncement{
|
||
|
FirstNodeSig: r.fakeSig,
|
||
|
SecondNodeSig: r.fakeSig,
|
||
|
ChannelID: chanID,
|
||
|
FirstBitcoinSig: r.fakeSig,
|
||
|
SecondBitcoinSig: r.fakeSig,
|
||
|
FirstNodeID: e1.Node.PubKey,
|
||
|
SecondNodeID: e2.Node.PubKey,
|
||
|
FirstBitcoinKey: e1.Node.PubKey,
|
||
|
SecondBitcoinKey: e2.Node.PubKey,
|
||
|
}
|
||
|
|
||
|
chanUpdate1 := &lnwire.ChannelUpdateAnnouncement{
|
||
|
Signature: r.fakeSig,
|
||
|
ChannelID: chanID,
|
||
|
Timestamp: uint32(e1.LastUpdate.Unix()),
|
||
|
Flags: 0,
|
||
|
Expiry: e1.Expiry,
|
||
|
HtlcMinimumMstat: uint32(e1.MinHTLC),
|
||
|
FeeBaseMstat: uint32(e1.FeeBaseMSat),
|
||
|
FeeProportionalMillionths: uint32(e1.FeeProportionalMillionths),
|
||
|
}
|
||
|
chanUpdate2 := &lnwire.ChannelUpdateAnnouncement{
|
||
|
Signature: r.fakeSig,
|
||
|
ChannelID: chanID,
|
||
|
Timestamp: uint32(e2.LastUpdate.Unix()),
|
||
|
Flags: 1,
|
||
|
Expiry: e2.Expiry,
|
||
|
HtlcMinimumMstat: uint32(e2.MinHTLC),
|
||
|
FeeBaseMstat: uint32(e2.FeeBaseMSat),
|
||
|
FeeProportionalMillionths: uint32(e2.FeeProportionalMillionths),
|
||
|
}
|
||
|
|
||
|
numEdges++
|
||
|
|
||
|
announceMessages = append(announceMessages, chanAnn)
|
||
|
announceMessages = append(announceMessages, chanUpdate1)
|
||
|
announceMessages = append(announceMessages, chanUpdate2)
|
||
|
return nil
|
||
|
}); err != nil && err != channeldb.ErrGraphNoEdgesFound {
|
||
|
log.Errorf("unable to sync edges w/ peer: %v", err)
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
log.Infof("Syncing channel graph state with %x, sending %v "+
|
||
|
"nodes and %v edges", targetNode.SerializeCompressed(),
|
||
|
numNodes, numEdges)
|
||
|
|
||
|
// With all the announcement messages gathered, send them all in a
|
||
|
// single batch to the target peer.
|
||
|
return r.cfg.SendMessages(targetNode, announceMessages...)
|
||
|
}
|
||
|
|
||
|
// fetchChanPoint retrieves the original outpoint which is encoded within the
|
||
|
// channelID.
|
||
|
func (r *ChannelRouter) fetchChanPoint(chanID *lnwire.ChannelID) (*wire.OutPoint, error) {
|
||
|
// First fetch the block hash by the block number encoded, then use
|
||
|
// that hash to fetch the block itself.
|
||
|
blockNum := int64(chanID.BlockHeight)
|
||
|
blockHash, err := r.cfg.Chain.GetBlockHash(blockNum)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
fundingBlock, err := r.cfg.Chain.GetBlock(blockHash)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
// TODO(roasbeef): skipping validation here as
|
||
|
// the discovery service should handle full
|
||
|
// validate
|
||
|
|
||
|
// Finally once we have the block itself, we seek to the targeted
|
||
|
// transaction index to obtain the funding output and txid.
|
||
|
fundingTx := fundingBlock.Transactions[chanID.TxIndex]
|
||
|
return &wire.OutPoint{
|
||
|
Hash: fundingTx.TxSha(),
|
||
|
Index: uint32(chanID.TxPosition),
|
||
|
}, nil
|
||
|
}
|
||
|
|
||
|
// routingMsg couples a routing related wire message with the peer that
|
||
|
// originally sent it.
|
||
|
type routingMsg struct {
|
||
|
msg lnwire.Message
|
||
|
peer *btcec.PublicKey
|
||
|
}
|
||
|
|
||
|
// ProcessRoutingMessags sends a new routing message along with the peer that
|
||
|
// sent the routing message to the ChannelRouter. The announcement will be
|
||
|
// processed then added to a queue for batched tickled announcement to all
|
||
|
// connected peers.
|
||
|
//
|
||
|
// TODO(roasbeef): need to move to discovery package
|
||
|
func (r *ChannelRouter) ProcessRoutingMessage(msg lnwire.Message, src *btcec.PublicKey) {
|
||
|
// TODO(roasbeef): msg wrappers to add a doneChan
|
||
|
|
||
|
rMsg := &routingMsg{
|
||
|
msg: msg,
|
||
|
peer: src,
|
||
|
}
|
||
|
|
||
|
select {
|
||
|
case r.networkMsgs <- rMsg:
|
||
|
case <-r.quit:
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// FindRoute attempts to query the ChannelRouter for the "best" path to a
|
||
|
// particular target destination which is able to send `amt` after factoring in
|
||
|
// channel capacities and cumulative fees along the route.
|
||
|
func (r *ChannelRouter) FindRoute(target *btcec.PublicKey, amt btcutil.Amount) (*Route, error) {
|
||
|
dest := target.SerializeCompressed()
|
||
|
|
||
|
log.Debugf("Searching for path to %x, sending %v", dest, amt)
|
||
|
|
||
|
// We can short circuit the routing by opportunistically checking to
|
||
|
// see if the target vertex event exists in the current graph.
|
||
|
if _, exists, err := r.cfg.Graph.HasLightningNode(target); err != nil {
|
||
|
return nil, err
|
||
|
} else if !exists {
|
||
|
log.Debugf("Target %x is not in known graph", dest)
|
||
|
return nil, ErrTargetNotInNetwork
|
||
|
}
|
||
|
|
||
|
// TODO(roasbeef): add k-shortest paths
|
||
|
route, err := findRoute(r.cfg.Graph, target, amt)
|
||
|
if err != nil {
|
||
|
log.Errorf("Unable to find path: %v", err)
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
// TODO(roabseef): also create the Sphinx packet and add in the route
|
||
|
|
||
|
log.Debugf("Obtained path sending %v to %x: %v", amt, dest,
|
||
|
newLogClosure(func() string {
|
||
|
return spew.Sdump(route)
|
||
|
}),
|
||
|
)
|
||
|
|
||
|
return route, nil
|
||
|
}
|
||
|
|
||
|
// SendPayment...
|
||
|
//
|
||
|
// TODO(roasbeef): pipe through the htlcSwitch, move the payment storage info
|
||
|
// to the router, add interface for payment storage
|
||
|
// TODO(roasbeef): add version that takes a route object
|
||
|
func (r *ChannelRouter) SendPayment() error {
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// TopologyClient...
|
||
|
// TODO(roasbeef): put in discovery package?
|
||
|
type TopologyClient struct {
|
||
|
}
|
||
|
|
||
|
// TopologyChange...
|
||
|
type TopologyChange struct {
|
||
|
NewNodes []*channeldb.LinkNode
|
||
|
NewChannels []*channeldb.ChannelEdge
|
||
|
}
|
||
|
|
||
|
// notifyTopologyChange...
|
||
|
func (r *ChannelRouter) notifyTopologyChange() {
|
||
|
}
|
||
|
|
||
|
// SubscribeTopology....
|
||
|
func (r *ChannelRouter) SubscribeTopology() (*TopologyClient, error) {
|
||
|
return nil, nil
|
||
|
}
|