lnd.xprv/discovery/chan_series.go

372 lines
12 KiB
Go
Raw Normal View History

package discovery
import (
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing"
)
// ChannelGraphTimeSeries is an interface that provides time and block based
// querying into our view of the channel graph. New channels will have
// monotonically increasing block heights, and new channel updates will have
// increasing timestamps. Once we connect to a peer, we'll use the methods in
// this interface to determine if we're already in sync, or need to request
// some new information from them.
type ChannelGraphTimeSeries interface {
// HighestChanID should return the channel ID of the channel we know of
// that's furthest in the target chain. This channel will have a block
// height that's close to the current tip of the main chain as we
// know it. We'll use this to start our QueryChannelRange dance with
// the remote node.
HighestChanID(chain chainhash.Hash) (*lnwire.ShortChannelID, error)
// UpdatesInHorizon returns all known channel and node updates with an
// update timestamp between the start time and end time. We'll use this
// to catch up a remote node to the set of channel updates that they
// may have missed out on within the target chain.
UpdatesInHorizon(chain chainhash.Hash,
startTime time.Time, endTime time.Time) ([]lnwire.Message, error)
// FilterKnownChanIDs takes a target chain, and a set of channel ID's,
// and returns a filtered set of chan ID's. This filtered set of chan
// ID's represents the ID's that we don't know of which were in the
// passed superSet.
FilterKnownChanIDs(chain chainhash.Hash,
superSet []lnwire.ShortChannelID) ([]lnwire.ShortChannelID, error)
// FilterChannelRange returns the set of channels that we created
// between the start height and the end height. We'll use this to to a
// remote peer's QueryChannelRange message.
FilterChannelRange(chain chainhash.Hash,
startHeight, endHeight uint32) ([]lnwire.ShortChannelID, error)
// FetchChanAnns returns a full set of channel announcements as well as
// their updates that match the set of specified short channel ID's.
// We'll use this to reply to a QueryShortChanIDs message sent by a
// remote peer. The response will contain a unique set of
// ChannelAnnouncements, the latest ChannelUpdate for each of the
// announcements, and a unique set of NodeAnnouncements.
FetchChanAnns(chain chainhash.Hash,
shortChanIDs []lnwire.ShortChannelID) ([]lnwire.Message, error)
// FetchChanUpdates returns the latest channel update messages for the
// specified short channel ID. If no channel updates are known for the
// channel, then an empty slice will be returned.
FetchChanUpdates(chain chainhash.Hash,
shortChanID lnwire.ShortChannelID) ([]*lnwire.ChannelUpdate, error)
}
// ChanSeries is an implementation of the ChannelGraphTimeSeries
// interface backed by the channeldb ChannelGraph database. We'll provide this
// implementation to the AuthenticatedGossiper so it can properly use the
// in-protocol channel range queries to quickly and efficiently synchronize our
// channel state with all peers.
type ChanSeries struct {
graph *channeldb.ChannelGraph
}
// NewChanSeries constructs a new ChanSeries backed by a channeldb.ChannelGraph.
// The returned ChanSeries implements the ChannelGraphTimeSeries interface.
func NewChanSeries(graph *channeldb.ChannelGraph) *ChanSeries {
return &ChanSeries{
graph: graph,
}
}
// HighestChanID should return is the channel ID of the channel we know of
// that's furthest in the target chain. This channel will have a block height
// that's close to the current tip of the main chain as we know it. We'll use
// this to start our QueryChannelRange dance with the remote node.
//
// NOTE: This is part of the ChannelGraphTimeSeries interface.
func (c *ChanSeries) HighestChanID(chain chainhash.Hash) (*lnwire.ShortChannelID, error) {
chanID, err := c.graph.HighestChanID()
if err != nil {
return nil, err
}
shortChanID := lnwire.NewShortChanIDFromInt(chanID)
return &shortChanID, nil
}
// UpdatesInHorizon returns all known channel and node updates with an update
// timestamp between the start time and end time. We'll use this to catch up a
// remote node to the set of channel updates that they may have missed out on
// within the target chain.
//
// NOTE: This is part of the ChannelGraphTimeSeries interface.
func (c *ChanSeries) UpdatesInHorizon(chain chainhash.Hash,
startTime time.Time, endTime time.Time) ([]lnwire.Message, error) {
var updates []lnwire.Message
// First, we'll query for all the set of channels that have an update
// that falls within the specified horizon.
chansInHorizon, err := c.graph.ChanUpdatesInHorizon(
startTime, endTime,
)
if err != nil {
return nil, err
}
for _, channel := range chansInHorizon {
// If the channel hasn't been fully advertised yet, or is a
// private channel, then we'll skip it as we can't construct a
// full authentication proof if one is requested.
if channel.Info.AuthProof == nil {
continue
}
chanAnn, edge1, edge2, err := CreateChanAnnouncement(
channel.Info.AuthProof, channel.Info, channel.Policy1,
channel.Policy2,
)
if err != nil {
return nil, err
}
updates = append(updates, chanAnn)
if edge1 != nil {
updates = append(updates, edge1)
}
if edge2 != nil {
updates = append(updates, edge2)
}
}
// Next, we'll send out all the node announcements that have an update
// within the horizon as well. We send these second to ensure that they
// follow any active channels they have.
nodeAnnsInHorizon, err := c.graph.NodeUpdatesInHorizon(
startTime, endTime,
)
if err != nil {
return nil, err
}
for _, nodeAnn := range nodeAnnsInHorizon {
// Ensure we only forward nodes that are publicly advertised to
// prevent leaking information about nodes.
isNodePublic, err := c.graph.IsPublicNode(nodeAnn.PubKeyBytes)
if err != nil {
log.Errorf("Unable to determine if node %x is "+
"advertised: %v", nodeAnn.PubKeyBytes, err)
continue
}
if !isNodePublic {
log.Tracef("Skipping forwarding announcement for "+
"node %x due to being unadvertised",
nodeAnn.PubKeyBytes)
continue
}
nodeUpdate, err := nodeAnn.NodeAnnouncement(true)
if err != nil {
return nil, err
}
updates = append(updates, nodeUpdate)
}
return updates, nil
}
// FilterKnownChanIDs takes a target chain, and a set of channel ID's, and
// returns a filtered set of chan ID's. This filtered set of chan ID's
// represents the ID's that we don't know of which were in the passed superSet.
//
// NOTE: This is part of the ChannelGraphTimeSeries interface.
func (c *ChanSeries) FilterKnownChanIDs(chain chainhash.Hash,
superSet []lnwire.ShortChannelID) ([]lnwire.ShortChannelID, error) {
chanIDs := make([]uint64, 0, len(superSet))
for _, chanID := range superSet {
chanIDs = append(chanIDs, chanID.ToUint64())
}
newChanIDs, err := c.graph.FilterKnownChanIDs(chanIDs)
if err != nil {
return nil, err
}
filteredIDs := make([]lnwire.ShortChannelID, 0, len(newChanIDs))
for _, chanID := range newChanIDs {
filteredIDs = append(
filteredIDs, lnwire.NewShortChanIDFromInt(chanID),
)
}
return filteredIDs, nil
}
// FilterChannelRange returns the set of channels that we created between the
// start height and the end height. We'll use this respond to a remote peer's
// QueryChannelRange message.
//
// NOTE: This is part of the ChannelGraphTimeSeries interface.
func (c *ChanSeries) FilterChannelRange(chain chainhash.Hash,
startHeight, endHeight uint32) ([]lnwire.ShortChannelID, error) {
chansInRange, err := c.graph.FilterChannelRange(startHeight, endHeight)
if err != nil {
return nil, err
}
chanResp := make([]lnwire.ShortChannelID, 0, len(chansInRange))
for _, chanID := range chansInRange {
chanResp = append(
chanResp, lnwire.NewShortChanIDFromInt(chanID),
)
}
return chanResp, nil
}
// FetchChanAnns returns a full set of channel announcements as well as their
// updates that match the set of specified short channel ID's. We'll use this
// to reply to a QueryShortChanIDs message sent by a remote peer. The response
// will contain a unique set of ChannelAnnouncements, the latest ChannelUpdate
// for each of the announcements, and a unique set of NodeAnnouncements.
//
// NOTE: This is part of the ChannelGraphTimeSeries interface.
func (c *ChanSeries) FetchChanAnns(chain chainhash.Hash,
shortChanIDs []lnwire.ShortChannelID) ([]lnwire.Message, error) {
chanIDs := make([]uint64, 0, len(shortChanIDs))
for _, chanID := range shortChanIDs {
chanIDs = append(chanIDs, chanID.ToUint64())
}
channels, err := c.graph.FetchChanInfos(chanIDs)
if err != nil {
return nil, err
}
// We'll use this map to ensure we don't send the same node
// announcement more than one time as one node may have many channel
// anns we'll need to send.
nodePubsSent := make(map[routing.Vertex]struct{})
chanAnns := make([]lnwire.Message, 0, len(channels)*3)
for _, channel := range channels {
// If the channel doesn't have an authentication proof, then we
// won't send it over as it may not yet be finalized, or be a
// non-advertised channel.
if channel.Info.AuthProof == nil {
continue
}
chanAnn, edge1, edge2, err := CreateChanAnnouncement(
channel.Info.AuthProof, channel.Info, channel.Policy1,
channel.Policy2,
)
if err != nil {
return nil, err
}
chanAnns = append(chanAnns, chanAnn)
if edge1 != nil {
chanAnns = append(chanAnns, edge1)
// If this edge has a validated node announcement, that
// we haven't yet sent, then we'll send that as well.
nodePub := channel.Policy1.Node.PubKeyBytes
hasNodeAnn := channel.Policy1.Node.HaveNodeAnnouncement
if _, ok := nodePubsSent[nodePub]; !ok && hasNodeAnn {
nodeAnn, err := channel.Policy1.Node.NodeAnnouncement(true)
if err != nil {
return nil, err
}
chanAnns = append(chanAnns, nodeAnn)
nodePubsSent[nodePub] = struct{}{}
}
}
if edge2 != nil {
chanAnns = append(chanAnns, edge2)
// If this edge has a validated node announcement, that
// we haven't yet sent, then we'll send that as well.
nodePub := channel.Policy2.Node.PubKeyBytes
hasNodeAnn := channel.Policy2.Node.HaveNodeAnnouncement
if _, ok := nodePubsSent[nodePub]; !ok && hasNodeAnn {
nodeAnn, err := channel.Policy2.Node.NodeAnnouncement(true)
if err != nil {
return nil, err
}
chanAnns = append(chanAnns, nodeAnn)
nodePubsSent[nodePub] = struct{}{}
}
}
}
return chanAnns, nil
}
// FetchChanUpdates returns the latest channel update messages for the
// specified short channel ID. If no channel updates are known for the channel,
// then an empty slice will be returned.
//
// NOTE: This is part of the ChannelGraphTimeSeries interface.
func (c *ChanSeries) FetchChanUpdates(chain chainhash.Hash,
shortChanID lnwire.ShortChannelID) ([]*lnwire.ChannelUpdate, error) {
chanInfo, e1, e2, err := c.graph.FetchChannelEdgesByID(
shortChanID.ToUint64(),
)
if err != nil {
return nil, err
}
chanUpdates := make([]*lnwire.ChannelUpdate, 0, 2)
if e1 != nil {
chanUpdate := &lnwire.ChannelUpdate{
ChainHash: chanInfo.ChainHash,
ShortChannelID: shortChanID,
Timestamp: uint32(e1.LastUpdate.Unix()),
MessageFlags: e1.MessageFlags,
ChannelFlags: e1.ChannelFlags,
TimeLockDelta: e1.TimeLockDelta,
HtlcMinimumMsat: e1.MinHTLC,
BaseFee: uint32(e1.FeeBaseMSat),
FeeRate: uint32(e1.FeeProportionalMillionths),
ExtraOpaqueData: e1.ExtraOpaqueData,
}
chanUpdate.Signature, err = lnwire.NewSigFromRawSignature(e1.SigBytes)
if err != nil {
return nil, err
}
chanUpdates = append(chanUpdates, chanUpdate)
}
if e2 != nil {
chanUpdate := &lnwire.ChannelUpdate{
ChainHash: chanInfo.ChainHash,
ShortChannelID: shortChanID,
Timestamp: uint32(e2.LastUpdate.Unix()),
MessageFlags: e2.MessageFlags,
ChannelFlags: e2.ChannelFlags,
TimeLockDelta: e2.TimeLockDelta,
HtlcMinimumMsat: e2.MinHTLC,
BaseFee: uint32(e2.FeeBaseMSat),
FeeRate: uint32(e2.FeeProportionalMillionths),
ExtraOpaqueData: e2.ExtraOpaqueData,
}
chanUpdate.Signature, err = lnwire.NewSigFromRawSignature(e2.SigBytes)
if err != nil {
return nil, err
}
chanUpdates = append(chanUpdates, chanUpdate)
}
return chanUpdates, nil
}
// A compile-time assertion to ensure that ChanSeries meets the
// ChannelGraphTimeSeries interface.
var _ ChannelGraphTimeSeries = (*ChanSeries)(nil)