lnd.xprv/chainntnfs/test_utils.go

305 lines
8.2 KiB
Go
Raw Normal View History

// +build dev
package chainntnfs
import (
"errors"
"fmt"
"io/ioutil"
"math/rand"
"os"
"os/exec"
"path/filepath"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/btcjson"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/integration/rpctest"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcwallet/chain"
"github.com/btcsuite/btcwallet/walletdb"
"github.com/lightninglabs/neutrino"
)
var (
// TrickleInterval is the interval at which the miner should trickle
// transactions to its peers. We'll set it small to ensure the miner
// propagates transactions quickly in the tests.
TrickleInterval = 10 * time.Millisecond
)
var (
NetParams = &chaincfg.RegressionNetParams
)
// randPubKeyHashScript generates a P2PKH script that pays to the public key of
// a randomly-generated private key.
func randPubKeyHashScript() ([]byte, *btcec.PrivateKey, error) {
privKey, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, nil, err
}
pubKeyHash := btcutil.Hash160(privKey.PubKey().SerializeCompressed())
addrScript, err := btcutil.NewAddressPubKeyHash(pubKeyHash, NetParams)
if err != nil {
return nil, nil, err
}
pkScript, err := txscript.PayToAddrScript(addrScript)
if err != nil {
return nil, nil, err
}
return pkScript, privKey, nil
}
// GetTestTxidAndScript generate a new test transaction and returns its txid and
// the script of the output being generated.
func GetTestTxidAndScript(h *rpctest.Harness) (*chainhash.Hash, []byte, error) {
pkScript, _, err := randPubKeyHashScript()
if err != nil {
return nil, nil, fmt.Errorf("unable to generate pkScript: %v", err)
}
output := &wire.TxOut{Value: 2e8, PkScript: pkScript}
txid, err := h.SendOutputs([]*wire.TxOut{output}, 10)
if err != nil {
return nil, nil, err
}
return txid, pkScript, nil
}
// WaitForMempoolTx waits for the txid to be seen in the miner's mempool.
func WaitForMempoolTx(miner *rpctest.Harness, txid *chainhash.Hash) error {
timeout := time.After(10 * time.Second)
trickle := time.After(2 * TrickleInterval)
for {
// Check for the harness' knowledge of the txid.
tx, err := miner.Node.GetRawTransaction(txid)
if err != nil {
jsonErr, ok := err.(*btcjson.RPCError)
if ok && jsonErr.Code == btcjson.ErrRPCNoTxInfo {
continue
}
return err
}
if tx != nil && tx.Hash().IsEqual(txid) {
break
}
select {
case <-time.After(100 * time.Millisecond):
case <-timeout:
return errors.New("timed out waiting for tx")
}
}
// To ensure any transactions propagate from the miner to the peers
// before returning, ensure we have waited for at least
// 2*trickleInterval before returning.
select {
case <-trickle:
case <-timeout:
return errors.New("timeout waiting for trickle interval. " +
"Trickle interval to large?")
}
return nil
}
// CreateSpendableOutput creates and returns an output that can be spent later
// on.
func CreateSpendableOutput(t *testing.T,
miner *rpctest.Harness) (*wire.OutPoint, *wire.TxOut, *btcec.PrivateKey) {
t.Helper()
// Create a transaction that only has one output, the one destined for
// the recipient.
pkScript, privKey, err := randPubKeyHashScript()
if err != nil {
t.Fatalf("unable to generate pkScript: %v", err)
}
output := &wire.TxOut{Value: 2e8, PkScript: pkScript}
txid, err := miner.SendOutputsWithoutChange([]*wire.TxOut{output}, 10)
if err != nil {
t.Fatalf("unable to create tx: %v", err)
}
// Mine the transaction to mark the output as spendable.
if err := WaitForMempoolTx(miner, txid); err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
return wire.NewOutPoint(txid, 0), output, privKey
}
// CreateSpendTx creates a transaction spending the specified output.
func CreateSpendTx(t *testing.T, prevOutPoint *wire.OutPoint,
prevOutput *wire.TxOut, privKey *btcec.PrivateKey) *wire.MsgTx {
t.Helper()
spendingTx := wire.NewMsgTx(1)
spendingTx.AddTxIn(&wire.TxIn{PreviousOutPoint: *prevOutPoint})
spendingTx.AddTxOut(&wire.TxOut{Value: 1e8, PkScript: prevOutput.PkScript})
sigScript, err := txscript.SignatureScript(
spendingTx, 0, prevOutput.PkScript, txscript.SigHashAll,
privKey, true,
)
if err != nil {
t.Fatalf("unable to sign tx: %v", err)
}
spendingTx.TxIn[0].SignatureScript = sigScript
return spendingTx
}
// NewMiner spawns testing harness backed by a btcd node that can serve as a
// miner.
func NewMiner(t *testing.T, extraArgs []string, createChain bool,
spendableOutputs uint32) (*rpctest.Harness, func()) {
t.Helper()
// Add the trickle interval argument to the extra args.
trickle := fmt.Sprintf("--trickleinterval=%v", TrickleInterval)
extraArgs = append(extraArgs, trickle)
node, err := rpctest.New(NetParams, nil, extraArgs, "")
if err != nil {
t.Fatalf("unable to create backend node: %v", err)
}
if err := node.SetUp(createChain, spendableOutputs); err != nil {
node.TearDown()
t.Fatalf("unable to set up backend node: %v", err)
}
return node, func() { node.TearDown() }
}
// NewBitcoindBackend spawns a new bitcoind node that connects to a miner at the
// specified address. The txindex boolean can be set to determine whether the
// backend node should maintain a transaction index. A connection to the newly
// spawned bitcoind node is returned.
func NewBitcoindBackend(t *testing.T, minerAddr string,
txindex bool) (*chain.BitcoindConn, func()) {
t.Helper()
tempBitcoindDir, err := ioutil.TempDir("", "bitcoind")
if err != nil {
t.Fatalf("unable to create temp dir: %v", err)
}
rpcPort := rand.Intn(65536-1024) + 1024
zmqBlockHost := "ipc:///" + tempBitcoindDir + "/blocks.socket"
zmqTxHost := "ipc:///" + tempBitcoindDir + "/tx.socket"
args := []string{
"-connect=" + minerAddr,
"-datadir=" + tempBitcoindDir,
"-regtest",
"-rpcauth=weks:469e9bb14ab2360f8e226efed5ca6fd$507c670e800a952" +
"84294edb5773b05544b220110063096c221be9933c82d38e1",
fmt.Sprintf("-rpcport=%d", rpcPort),
"-disablewallet",
"-zmqpubrawblock=" + zmqBlockHost,
"-zmqpubrawtx=" + zmqTxHost,
}
if txindex {
args = append(args, "-txindex")
}
bitcoind := exec.Command("bitcoind", args...)
if err := bitcoind.Start(); err != nil {
os.RemoveAll(tempBitcoindDir)
t.Fatalf("unable to start bitcoind: %v", err)
}
// Wait for the bitcoind instance to start up.
time.Sleep(time.Second)
host := fmt.Sprintf("127.0.0.1:%d", rpcPort)
conn, err := chain.NewBitcoindConn(
NetParams, host, "weks", "weks", zmqBlockHost, zmqTxHost,
100*time.Millisecond,
)
if err != nil {
bitcoind.Process.Kill()
bitcoind.Wait()
os.RemoveAll(tempBitcoindDir)
t.Fatalf("unable to establish connection to bitcoind: %v", err)
}
if err := conn.Start(); err != nil {
bitcoind.Process.Kill()
bitcoind.Wait()
os.RemoveAll(tempBitcoindDir)
t.Fatalf("unable to establish connection to bitcoind: %v", err)
}
return conn, func() {
conn.Stop()
bitcoind.Process.Kill()
bitcoind.Wait()
os.RemoveAll(tempBitcoindDir)
}
}
// NewNeutrinoBackend spawns a new neutrino node that connects to a miner at
// the specified address.
func NewNeutrinoBackend(t *testing.T, minerAddr string) (*neutrino.ChainService, func()) {
t.Helper()
spvDir, err := ioutil.TempDir("", "neutrino")
if err != nil {
t.Fatalf("unable to create temp dir: %v", err)
}
dbName := filepath.Join(spvDir, "neutrino.db")
spvDatabase, err := walletdb.Create("bdb", dbName, true)
if err != nil {
os.RemoveAll(spvDir)
t.Fatalf("unable to create walletdb: %v", err)
}
// Create an instance of neutrino connected to the running btcd
// instance.
spvConfig := neutrino.Config{
DataDir: spvDir,
Database: spvDatabase,
ChainParams: *NetParams,
ConnectPeers: []string{minerAddr},
}
spvNode, err := neutrino.NewChainService(spvConfig)
if err != nil {
os.RemoveAll(spvDir)
spvDatabase.Close()
t.Fatalf("unable to create neutrino: %v", err)
}
// We'll also wait for the instance to sync up fully to the chain
// generated by the btcd instance.
spvNode.Start()
for !spvNode.IsCurrent() {
time.Sleep(time.Millisecond * 100)
}
return spvNode, func() {
spvNode.Stop()
spvDatabase.Close()
os.RemoveAll(spvDir)
}
}