lnd.xprv/lnwire/accept_channel.go

155 lines
5.2 KiB
Go
Raw Normal View History

package lnwire
import (
"io"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcutil"
)
// AcceptChannel is the message Bob sends to Alice after she initiates the
// single funder channel workflow via a AcceptChannel message. Once Alice
// receives Bob's response, then she has all the items necessary to construct
// the funding transaction, and both commitment transactions.
type AcceptChannel struct {
// PendingChannelID serves to uniquely identify the future channel
// created by the initiated single funder workflow.
PendingChannelID [32]byte
// DustLimit is the specific dust limit the sender of this message
// would like enforced on their version of the commitment transaction.
// Any output below this value will be "trimmed" from the commitment
// transaction, with the amount of the HTLC going to dust.
DustLimit btcutil.Amount
// MaxValueInFlight represents the maximum amount of coins that can be
// pending within the channel at any given time. If the amount of funds
// in limbo exceeds this amount, then the channel will be failed.
//
// TODO(roasbeef): is msat
MaxValueInFlight btcutil.Amount
// ChannelReserve is the amount of BTC that the receiving party MUST
// maintain a balance above at all times. This is a safety mechanism to
// ensure that both sides always have skin in the game during the
// channel's lifetime.
ChannelReserve btcutil.Amount
// MinAcceptDepth is the minimum depth that the initiator of the
// channel should wait before considering the channel open.
MinAcceptDepth uint32
// HtlcMinimum is the smallest HTLC that the sender of this message
// will accept.
//
// TODO(roasbeef): is msat
HtlcMinimum uint32
// CsvDelay is the number of blocks to use for the relative time lock
// in the pay-to-self output of both commitment transactions.
CsvDelay uint16
// MaxAcceptedHTLCs is the total number of incoming HTLC's that the
// sender of this channel will accept.
//
// TODO(roasbeef): acks the initiator's, same with max in flight?
MaxAcceptedHTLCs uint16
// FundingKey is the key that should be used on behalf of the sender
// within the 2-of-2 multi-sig output that it contained within the
// funding transaction.
FundingKey *btcec.PublicKey
// RevocationPoint is the base revocation point for the sending party.
// Any commitment transaction belonging to the receiver of this message
// should use this key and their per-commitment point to derive the
// revocation key for the commitment transaction.
RevocationPoint *btcec.PublicKey
// PaymentPoint is the base payment point for the sending party. This
// key should be combined with the per commitment point for a
// particular commitment state in order to create the key that should
// be used in any output that pays directly to the sending party, and
// also within the HTLC covenant transactions.
PaymentPoint *btcec.PublicKey
// DelayedPaymentPoint is the delay point for the sending party. This
// key should be combined with the per commitment point to derive the
// keys that are used in outputs of the sender's commitment transaction
// where they claim funds.
DelayedPaymentPoint *btcec.PublicKey
// FirstCommitmentPoint is the first commitment point for the sending
// party. This value should be combined with the receiver's revocation
// base point in order to derive the revocation keys that are placed
// within the commitment transaction of the sender.
FirstCommitmentPoint *btcec.PublicKey
}
// A compile time check to ensure AcceptChannel implements the lnwire.Message
// interface.
var _ Message = (*AcceptChannel)(nil)
// Encode serializes the target AcceptChannel into the passed io.Writer
// implementation. Serialization will observe the rules defined by the passed
// protocol version.
//
// This is part of the lnwire.Message interface.
func (a *AcceptChannel) Encode(w io.Writer, pver uint32) error {
return writeElements(w,
a.PendingChannelID[:],
a.DustLimit,
a.MaxValueInFlight,
a.ChannelReserve,
a.MinAcceptDepth,
a.HtlcMinimum,
a.CsvDelay,
a.MaxAcceptedHTLCs,
a.FundingKey,
a.RevocationPoint,
a.PaymentPoint,
a.DelayedPaymentPoint,
a.FirstCommitmentPoint,
)
}
// Decode deserializes the serialized AcceptChannel stored in the passed
// io.Reader into the target AcceptChannel using the deserialization rules
// defined by the passed protocol version.
//
// This is part of the lnwire.Message interface.
func (a *AcceptChannel) Decode(r io.Reader, pver uint32) error {
return readElements(r,
a.PendingChannelID[:],
&a.DustLimit,
&a.MaxValueInFlight,
&a.ChannelReserve,
&a.MinAcceptDepth,
&a.HtlcMinimum,
&a.CsvDelay,
&a.MaxAcceptedHTLCs,
&a.FundingKey,
&a.RevocationPoint,
&a.PaymentPoint,
&a.DelayedPaymentPoint,
&a.FirstCommitmentPoint,
)
}
// MsgType returns the MessageType code which uniquely identifies this message
// as a AcceptChannel on the wire.
//
// This is part of the lnwire.Message interface.
func (a *AcceptChannel) MsgType() MessageType {
return MsgAcceptChannel
}
// MaxPayloadLength returns the maximum allowed payload length for a
// AcceptChannel message.
//
// This is part of the lnwire.Message interface.
func (a *AcceptChannel) MaxPayloadLength(uint32) uint32 {
// 32 + (8 * 3) + (4 * 2) + (2 * 2) + (33 * 5)
return 233
}