lnd.xprv/contractcourt/htlc_timeout_resolver.go

471 lines
15 KiB
Go
Raw Normal View History

package contractcourt
import (
"encoding/binary"
"fmt"
"io"
"github.com/btcsuite/btcd/wire"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
)
// htlcTimeoutResolver is a ContractResolver that's capable of resolving an
// outgoing HTLC. The HTLC may be on our commitment transaction, or on the
// commitment transaction of the remote party. An output on our commitment
// transaction is considered fully resolved once the second-level transaction
// has been confirmed (and reached a sufficient depth). An output on the
// commitment transaction of the remote party is resolved once we detect a
// spend of the direct HTLC output using the timeout clause.
type htlcTimeoutResolver struct {
// htlcResolution contains all the information required to properly
// resolve this outgoing HTLC.
htlcResolution lnwallet.OutgoingHtlcResolution
// outputIncubating returns true if we've sent the output to the output
// incubator (utxo nursery).
outputIncubating bool
// resolved reflects if the contract has been fully resolved or not.
resolved bool
// broadcastHeight is the height that the original contract was
// broadcast to the main-chain at. We'll use this value to bound any
// historical queries to the chain for spends/confirmations.
//
// TODO(roasbeef): wrap above into definite resolution embedding?
broadcastHeight uint32
// htlc contains information on the htlc that we are resolving on-chain.
htlc channeldb.HTLC
contractResolverKit
}
2019-11-01 13:04:28 +03:00
// newTimeoutResolver instantiates a new timeout htlc resolver.
func newTimeoutResolver(res lnwallet.OutgoingHtlcResolution,
broadcastHeight uint32, htlc channeldb.HTLC,
2019-11-01 13:04:28 +03:00
resCfg ResolverConfig) *htlcTimeoutResolver {
return &htlcTimeoutResolver{
contractResolverKit: *newContractResolverKit(resCfg),
htlcResolution: res,
broadcastHeight: broadcastHeight,
htlc: htlc,
2019-11-01 13:04:28 +03:00
}
}
// ResolverKey returns an identifier which should be globally unique for this
// particular resolver within the chain the original contract resides within.
//
// NOTE: Part of the ContractResolver interface.
func (h *htlcTimeoutResolver) ResolverKey() []byte {
// The primary key for this resolver will be the outpoint of the HTLC
// on the commitment transaction itself. If this is our commitment,
// then the output can be found within the signed timeout tx,
// otherwise, it's just the ClaimOutpoint.
var op wire.OutPoint
if h.htlcResolution.SignedTimeoutTx != nil {
op = h.htlcResolution.SignedTimeoutTx.TxIn[0].PreviousOutPoint
} else {
op = h.htlcResolution.ClaimOutpoint
}
key := newResolverID(op)
return key[:]
}
const (
// expectedRemoteWitnessSuccessSize is the expected size of the witness
// on the remote commitment transaction for an outgoing HTLC that is
// swept on-chain by them with pre-image.
expectedRemoteWitnessSuccessSize = 5
// remotePreimageIndex index within the witness on the remote
// commitment transaction that will hold they pre-image if they go to
// sweep it on chain.
remotePreimageIndex = 3
// localPreimageIndex is the index within the witness on the local
// commitment transaction for an outgoing HTLC that will hold the
// pre-image if the remote party sweeps it.
localPreimageIndex = 1
)
// claimCleanUp is a helper method that's called once the HTLC output is spent
// by the remote party. It'll extract the preimage, add it to the global cache,
// and finally send the appropriate clean up message.
func (h *htlcTimeoutResolver) claimCleanUp(
commitSpend *chainntnfs.SpendDetail) (ContractResolver, error) {
// Depending on if this is our commitment or not, then we'll be looking
// for a different witness pattern.
spenderIndex := commitSpend.SpenderInputIndex
spendingInput := commitSpend.SpendingTx.TxIn[spenderIndex]
log.Infof("%T(%v): extracting preimage! remote party spent "+
"HTLC with tx=%v", h, h.htlcResolution.ClaimOutpoint,
spew.Sdump(commitSpend.SpendingTx))
// If this is the remote party's commitment, then we'll be looking for
// them to spend using the second-level success transaction.
var preimageBytes []byte
if h.htlcResolution.SignedTimeoutTx == nil {
// The witness stack when the remote party sweeps the output to
// them looks like:
//
// * <0> <sender sig> <recvr sig> <preimage> <witness script>
preimageBytes = spendingInput.Witness[remotePreimageIndex]
} else {
// Otherwise, they'll be spending directly from our commitment
// output. In which case the witness stack looks like:
//
// * <sig> <preimage> <witness script>
preimageBytes = spendingInput.Witness[localPreimageIndex]
}
preimage, err := lntypes.MakePreimage(preimageBytes)
if err != nil {
return nil, fmt.Errorf("unable to create pre-image from "+
"witness: %v", err)
}
log.Infof("%T(%v): extracting preimage=%v from on-chain "+
"spend!", h, h.htlcResolution.ClaimOutpoint, preimage)
// With the preimage obtained, we can now add it to the global cache.
if err := h.PreimageDB.AddPreimages(preimage); err != nil {
log.Errorf("%T(%v): unable to add witness to cache",
h, h.htlcResolution.ClaimOutpoint)
}
var pre [32]byte
copy(pre[:], preimage[:])
// Finally, we'll send the clean up message, mark ourselves as
// resolved, then exit.
if err := h.DeliverResolutionMsg(ResolutionMsg{
SourceChan: h.ShortChanID,
HtlcIndex: h.htlc.HtlcIndex,
PreImage: &pre,
}); err != nil {
return nil, err
}
h.resolved = true
return nil, h.Checkpoint(h)
}
// chainDetailsToWatch returns the output and script which we use to watch for
// spends from the direct HTLC output on the commitment transaction.
//
// TODO(joostjager): output already set properly in
// lnwallet.newOutgoingHtlcResolution? And script too?
func (h *htlcTimeoutResolver) chainDetailsToWatch() (*wire.OutPoint, []byte, error) {
// If there's no timeout transaction, then the claim output is the
// output directly on the commitment transaction, so we'll just use
// that.
if h.htlcResolution.SignedTimeoutTx == nil {
outPointToWatch := h.htlcResolution.ClaimOutpoint
scriptToWatch := h.htlcResolution.SweepSignDesc.Output.PkScript
return &outPointToWatch, scriptToWatch, nil
}
// If this is the remote party's commitment, then we'll need to grab
// watch the output that our timeout transaction points to. We can
// directly grab the outpoint, then also extract the witness script
// (the last element of the witness stack) to re-construct the pkScript
// we need to watch.
outPointToWatch := h.htlcResolution.SignedTimeoutTx.TxIn[0].PreviousOutPoint
witness := h.htlcResolution.SignedTimeoutTx.TxIn[0].Witness
scriptToWatch, err := input.WitnessScriptHash(witness[len(witness)-1])
if err != nil {
return nil, nil, err
}
return &outPointToWatch, scriptToWatch, nil
}
// isSuccessSpend returns true if the passed spend on the specified commitment
// is a success spend that reveals the pre-image or not.
func isSuccessSpend(spend *chainntnfs.SpendDetail, localCommit bool) bool {
// Based on the spending input index and transaction, obtain the
// witness that tells us what type of spend this is.
spenderIndex := spend.SpenderInputIndex
spendingInput := spend.SpendingTx.TxIn[spenderIndex]
spendingWitness := spendingInput.Witness
// If this is the remote commitment then the only possible spends for
// outgoing HTLCs are:
//
// RECVR: <0> <sender sig> <recvr sig> <preimage> (2nd level success spend)
// REVOK: <sig> <key>
// SENDR: <sig> 0
//
// In this case, if 5 witness elements are present (factoring the
// witness script), and the 3rd element is the size of the pre-image,
// then this is a remote spend. If not, then we swept it ourselves, or
// revoked their output.
if !localCommit {
return len(spendingWitness) == expectedRemoteWitnessSuccessSize &&
len(spendingWitness[remotePreimageIndex]) == lntypes.HashSize
}
// Otherwise, for our commitment, the only possible spends for an
// outgoing HTLC are:
//
// SENDR: <0> <sendr sig> <recvr sig> <0> (2nd level timeout)
// RECVR: <recvr sig> <preimage>
// REVOK: <revoke sig> <revoke key>
//
// So the only success case has the pre-image as the 2nd (index 1)
// element in the witness.
return len(spendingWitness[localPreimageIndex]) == lntypes.HashSize
}
// Resolve kicks off full resolution of an outgoing HTLC output. If it's our
// commitment, it isn't resolved until we see the second level HTLC txn
// confirmed. If it's the remote party's commitment, we don't resolve until we
// see a direct sweep via the timeout clause.
//
// NOTE: Part of the ContractResolver interface.
func (h *htlcTimeoutResolver) Resolve() (ContractResolver, error) {
// If we're already resolved, then we can exit early.
if h.resolved {
return nil, nil
}
// If we haven't already sent the output to the utxo nursery, then
// we'll do so now.
if !h.outputIncubating {
log.Tracef("%T(%v): incubating htlc output", h,
h.htlcResolution.ClaimOutpoint)
err := h.IncubateOutputs(
h.ChanPoint, nil, &h.htlcResolution, nil,
h.broadcastHeight,
)
if err != nil {
return nil, err
}
h.outputIncubating = true
if err := h.Checkpoint(h); err != nil {
log.Errorf("unable to Checkpoint: %v", err)
return nil, err
}
}
// waitForOutputResolution waits for the HTLC output to be fully
// resolved. The output is considered fully resolved once it has been
// spent, and the spending transaction has been fully confirmed.
waitForOutputResolution := func() error {
// We first need to register to see when the HTLC output itself
// has been spent by a confirmed transaction.
spendNtfn, err := h.Notifier.RegisterSpendNtfn(
&h.htlcResolution.ClaimOutpoint,
h.htlcResolution.SweepSignDesc.Output.PkScript,
h.broadcastHeight,
)
if err != nil {
return err
}
select {
case _, ok := <-spendNtfn.Spend:
if !ok {
return errResolverShuttingDown
}
2019-11-06 15:31:13 +03:00
case <-h.quit:
return errResolverShuttingDown
}
return nil
}
// Now that we've handed off the HTLC to the nursery, we'll watch for a
// spend of the output, and make our next move off of that. Depending
// on if this is our commitment, or the remote party's commitment,
// we'll be watching a different outpoint and script.
outpointToWatch, scriptToWatch, err := h.chainDetailsToWatch()
if err != nil {
return nil, err
}
spendNtfn, err := h.Notifier.RegisterSpendNtfn(
outpointToWatch, scriptToWatch, h.broadcastHeight,
)
if err != nil {
return nil, err
}
log.Infof("%T(%v): waiting for HTLC output %v to be spent"+
"fully confirmed", h, h.htlcResolution.ClaimOutpoint,
outpointToWatch)
// We'll block here until either we exit, or the HTLC output on the
// commitment transaction has been spent.
var (
spend *chainntnfs.SpendDetail
ok bool
)
select {
case spend, ok = <-spendNtfn.Spend:
if !ok {
return nil, errResolverShuttingDown
}
2019-11-06 15:31:13 +03:00
case <-h.quit:
return nil, errResolverShuttingDown
}
// If the spend reveals the pre-image, then we'll enter the clean up
// workflow to pass the pre-image back to the incoming link, add it to
// the witness cache, and exit.
if isSuccessSpend(spend, h.htlcResolution.SignedTimeoutTx != nil) {
log.Infof("%T(%v): HTLC has been swept with pre-image by "+
"remote party during timeout flow! Adding pre-image to "+
"witness cache", h.htlcResolution.ClaimOutpoint)
return h.claimCleanUp(spend)
}
log.Infof("%T(%v): resolving htlc with incoming fail msg, fully "+
"confirmed", h, h.htlcResolution.ClaimOutpoint)
// At this point, the second-level transaction is sufficiently
// confirmed, or a transaction directly spending the output is.
// Therefore, we can now send back our clean up message, failing the
// HTLC on the incoming link.
failureMsg := &lnwire.FailPermanentChannelFailure{}
if err := h.DeliverResolutionMsg(ResolutionMsg{
SourceChan: h.ShortChanID,
HtlcIndex: h.htlc.HtlcIndex,
Failure: failureMsg,
}); err != nil {
return nil, err
}
// Finally, if this was an output on our commitment transaction, we'll
// wait for the second-level HTLC output to be spent, and for that
// transaction itself to confirm.
if h.htlcResolution.SignedTimeoutTx != nil {
log.Infof("%T(%v): waiting for nursery to spend CSV delayed "+
"output", h, h.htlcResolution.ClaimOutpoint)
if err := waitForOutputResolution(); err != nil {
return nil, err
}
}
// With the clean up message sent, we'll now mark the contract
// resolved, and wait.
h.resolved = true
return nil, h.Checkpoint(h)
}
// Stop signals the resolver to cancel any current resolution processes, and
// suspend.
//
// NOTE: Part of the ContractResolver interface.
func (h *htlcTimeoutResolver) Stop() {
2019-11-06 15:31:13 +03:00
close(h.quit)
}
// IsResolved returns true if the stored state in the resolve is fully
// resolved. In this case the target output can be forgotten.
//
// NOTE: Part of the ContractResolver interface.
func (h *htlcTimeoutResolver) IsResolved() bool {
return h.resolved
}
// Encode writes an encoded version of the ContractResolver into the passed
// Writer.
//
// NOTE: Part of the ContractResolver interface.
func (h *htlcTimeoutResolver) Encode(w io.Writer) error {
// First, we'll write out the relevant fields of the
// OutgoingHtlcResolution to the writer.
if err := encodeOutgoingResolution(w, &h.htlcResolution); err != nil {
return err
}
// With that portion written, we can now write out the fields specific
// to the resolver itself.
if err := binary.Write(w, endian, h.outputIncubating); err != nil {
return err
}
if err := binary.Write(w, endian, h.resolved); err != nil {
return err
}
if err := binary.Write(w, endian, h.broadcastHeight); err != nil {
return err
}
if err := binary.Write(w, endian, h.htlc.HtlcIndex); err != nil {
return err
}
return nil
}
// newTimeoutResolverFromReader attempts to decode an encoded ContractResolver
// from the passed Reader instance, returning an active ContractResolver
// instance.
func newTimeoutResolverFromReader(r io.Reader, resCfg ResolverConfig) (
*htlcTimeoutResolver, error) {
h := &htlcTimeoutResolver{
contractResolverKit: *newContractResolverKit(resCfg),
}
// First, we'll read out all the mandatory fields of the
// OutgoingHtlcResolution that we store.
if err := decodeOutgoingResolution(r, &h.htlcResolution); err != nil {
return nil, err
}
// With those fields read, we can now read back the fields that are
// specific to the resolver itself.
if err := binary.Read(r, endian, &h.outputIncubating); err != nil {
return nil, err
}
if err := binary.Read(r, endian, &h.resolved); err != nil {
return nil, err
}
if err := binary.Read(r, endian, &h.broadcastHeight); err != nil {
return nil, err
}
if err := binary.Read(r, endian, &h.htlc.HtlcIndex); err != nil {
return nil, err
}
return h, nil
}
// Supplement adds additional information to the resolver that is required
// before Resolve() is called.
//
// NOTE: Part of the htlcContractResolver interface.
func (h *htlcTimeoutResolver) Supplement(htlc channeldb.HTLC) {
h.htlc = htlc
}
// HtlcPoint returns the htlc's outpoint on the commitment tx.
//
// NOTE: Part of the htlcContractResolver interface.
func (h *htlcTimeoutResolver) HtlcPoint() wire.OutPoint {
return h.htlcResolution.HtlcPoint()
}
// A compile time assertion to ensure htlcTimeoutResolver meets the
// ContractResolver interface.
var _ htlcContractResolver = (*htlcTimeoutResolver)(nil)