154 lines
4.6 KiB
Go
154 lines
4.6 KiB
Go
|
package htlcswitch
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"crypto/sha256"
|
||
|
"encoding/hex"
|
||
|
"sync"
|
||
|
|
||
|
"github.com/go-errors/errors"
|
||
|
"github.com/lightningnetwork/lnd/lnwire"
|
||
|
)
|
||
|
|
||
|
// circuitKey uniquely identifies an active circuit between two open channels.
|
||
|
// Currently, the payment hash is used to uniquely identify each circuit.
|
||
|
type circuitKey [sha256.Size]byte
|
||
|
|
||
|
// String represent the circuit key in string format.
|
||
|
func (k *circuitKey) String() string {
|
||
|
return hex.EncodeToString(k[:])
|
||
|
}
|
||
|
|
||
|
// paymentCircuit is used by htlc switch subsystem in order to determine
|
||
|
// backward path for settle/fail htlc messages. A payment circuit will be
|
||
|
// created once a channel link forwards the htlc add request and removed when we
|
||
|
// receive settle/fail htlc message.
|
||
|
//
|
||
|
// NOTE: In current implementation of htlc switch, the payment circuit might be
|
||
|
// uniquely identified by payment hash but in future we implement the payment
|
||
|
// fragmentation which makes possible for number of payments to have
|
||
|
// identical payments hashes, but different source or destination.
|
||
|
//
|
||
|
// For example if Alice(A) want to send 2BTC to Bob(B), then payment will be
|
||
|
// split on two parts and node N3 will have circuit with the same payment hash,
|
||
|
// and destination, but different channel source (N1,N2).
|
||
|
//
|
||
|
// 1BTC N1 1BTC
|
||
|
// + --------- o --------- +
|
||
|
// 2BTC | | 2BTC
|
||
|
// A o ------ o N0 N3 o ------ o B
|
||
|
// | |
|
||
|
// + --------- o --------- +
|
||
|
// 1BTC N2 1BTC
|
||
|
//
|
||
|
type paymentCircuit struct {
|
||
|
// PaymentHash used as unique identifier of payment.
|
||
|
PaymentHash circuitKey
|
||
|
|
||
|
// Src identifies the channel from which add htlc request is came from
|
||
|
// and to which settle/fail htlc request will be returned back. Once the
|
||
|
// switch forwards the settle/fail message to the src the circuit is
|
||
|
// considered to be completed.
|
||
|
// TODO(andrew.shvv) use short channel id instead.
|
||
|
Src lnwire.ChannelID
|
||
|
|
||
|
// Dest identifies the channel to which we propagate the htlc add
|
||
|
// update and from which we are expecting to receive htlc settle/fail
|
||
|
// request back.
|
||
|
// TODO(andrew.shvv) use short channel id instead.
|
||
|
Dest lnwire.ChannelID
|
||
|
|
||
|
// RefCount is used to count the circuits with the same circuit key.
|
||
|
RefCount int
|
||
|
}
|
||
|
|
||
|
// newPaymentCircuit creates new payment circuit instance.
|
||
|
func newPaymentCircuit(src, dest lnwire.ChannelID, key circuitKey) *paymentCircuit {
|
||
|
return &paymentCircuit{
|
||
|
Src: src,
|
||
|
Dest: dest,
|
||
|
PaymentHash: key,
|
||
|
RefCount: 1,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// isEqual checks the equality of two payment circuits.
|
||
|
func (a *paymentCircuit) isEqual(b *paymentCircuit) bool {
|
||
|
return bytes.Equal(a.PaymentHash[:], b.PaymentHash[:]) &&
|
||
|
a.Src == b.Src &&
|
||
|
a.Dest == b.Dest
|
||
|
}
|
||
|
|
||
|
// circuitMap is a thread safe storage of circuits. Each circuit key (payment
|
||
|
// hash) might have numbers of circuits corresponding to it
|
||
|
// because of future payment fragmentation, now every circuit might be uniquely
|
||
|
// identified by payment hash (1-1 mapping).
|
||
|
//
|
||
|
// NOTE: Also we have the htlc debug mode and in this mode we have the same
|
||
|
// payment hash for all htlcs.
|
||
|
// TODO(andrew.shvv) make it persistent
|
||
|
type circuitMap struct {
|
||
|
mutex sync.RWMutex
|
||
|
circuits map[circuitKey]*paymentCircuit
|
||
|
}
|
||
|
|
||
|
// newCircuitMap initialized circuit map with previously stored circuits and
|
||
|
// return circuit map instance.
|
||
|
func newCircuitMap() *circuitMap {
|
||
|
return &circuitMap{
|
||
|
circuits: make(map[circuitKey]*paymentCircuit),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// add function adds circuit in circuit map.
|
||
|
func (m *circuitMap) add(circuit *paymentCircuit) error {
|
||
|
m.mutex.Lock()
|
||
|
defer m.mutex.Unlock()
|
||
|
|
||
|
// Examine the circuit map to see if this
|
||
|
// circuit is already in use or not. If so,
|
||
|
// then we'll simply increment the reference
|
||
|
// count. Otherwise, we'll create a new circuit
|
||
|
// from scratch.
|
||
|
// TODO(roasbeef): include dest+src+amt in key
|
||
|
if c, ok := m.circuits[circuit.PaymentHash]; ok {
|
||
|
c.RefCount++
|
||
|
} else {
|
||
|
m.circuits[circuit.PaymentHash] = circuit
|
||
|
}
|
||
|
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// remove function removes circuit from map.
|
||
|
func (m *circuitMap) remove(key circuitKey) (
|
||
|
*paymentCircuit, error) {
|
||
|
|
||
|
m.mutex.Lock()
|
||
|
defer m.mutex.Unlock()
|
||
|
|
||
|
if circuit, ok := m.circuits[key]; ok {
|
||
|
if circuit.RefCount--; circuit.RefCount == 0 {
|
||
|
delete(m.circuits, key)
|
||
|
}
|
||
|
return circuit, nil
|
||
|
}
|
||
|
|
||
|
return nil, errors.Errorf("can't find circuit"+
|
||
|
" for key %v", key)
|
||
|
}
|
||
|
|
||
|
// pending returns number of circuits which are waiting for to be completed
|
||
|
// (settle/fail responses to be received)
|
||
|
func (m *circuitMap) pending() int {
|
||
|
m.mutex.RLock()
|
||
|
defer m.mutex.RUnlock()
|
||
|
|
||
|
var length int
|
||
|
for _, circuits := range m.circuits {
|
||
|
length += circuits.RefCount
|
||
|
}
|
||
|
|
||
|
return length
|
||
|
}
|