2019-01-16 17:47:43 +03:00
|
|
|
package input
|
2015-12-21 02:10:24 +03:00
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
2016-06-30 22:08:27 +03:00
|
|
|
"crypto/sha256"
|
2015-12-21 02:10:24 +03:00
|
|
|
"fmt"
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
"math/big"
|
2015-12-21 02:10:24 +03:00
|
|
|
|
2017-07-30 04:01:05 +03:00
|
|
|
"golang.org/x/crypto/ripemd160"
|
2016-06-30 22:08:27 +03:00
|
|
|
|
2018-06-05 04:34:16 +03:00
|
|
|
"github.com/btcsuite/btcd/btcec"
|
|
|
|
"github.com/btcsuite/btcd/txscript"
|
|
|
|
"github.com/btcsuite/btcd/wire"
|
|
|
|
"github.com/btcsuite/btcutil"
|
2015-12-21 02:10:24 +03:00
|
|
|
)
|
|
|
|
|
2015-12-31 09:32:09 +03:00
|
|
|
var (
|
|
|
|
// TODO(roasbeef): remove these and use the one's defined in txscript
|
|
|
|
// within testnet-L.
|
2017-02-23 22:56:47 +03:00
|
|
|
|
2017-02-24 16:32:33 +03:00
|
|
|
// SequenceLockTimeSeconds is the 22nd bit which indicates the lock
|
|
|
|
// time is in seconds.
|
|
|
|
SequenceLockTimeSeconds = uint32(1 << 22)
|
2016-11-15 05:34:59 +03:00
|
|
|
)
|
|
|
|
|
2020-04-06 03:06:14 +03:00
|
|
|
// Signature is an interface for objects that can populate signatures during
|
|
|
|
// witness construction.
|
|
|
|
type Signature interface {
|
|
|
|
// Serialize returns a DER-encoded ECDSA signature.
|
|
|
|
Serialize() []byte
|
2020-04-06 03:06:38 +03:00
|
|
|
|
|
|
|
// Verify return true if the ECDSA signature is valid for the passed
|
|
|
|
// message digest under the provided public key.
|
|
|
|
Verify([]byte, *btcec.PublicKey) bool
|
2020-04-06 03:06:14 +03:00
|
|
|
}
|
|
|
|
|
2018-06-29 02:47:15 +03:00
|
|
|
// WitnessScriptHash generates a pay-to-witness-script-hash public key script
|
2016-05-04 05:45:32 +03:00
|
|
|
// paying to a version 0 witness program paying to the passed redeem script.
|
2018-06-29 02:47:15 +03:00
|
|
|
func WitnessScriptHash(witnessScript []byte) ([]byte, error) {
|
2015-12-21 02:10:24 +03:00
|
|
|
bldr := txscript.NewScriptBuilder()
|
2016-05-04 05:45:32 +03:00
|
|
|
|
|
|
|
bldr.AddOp(txscript.OP_0)
|
2017-03-16 04:56:25 +03:00
|
|
|
scriptHash := sha256.Sum256(witnessScript)
|
2016-05-04 05:45:32 +03:00
|
|
|
bldr.AddData(scriptHash[:])
|
2015-12-21 02:10:24 +03:00
|
|
|
return bldr.Script()
|
|
|
|
}
|
|
|
|
|
2018-05-31 08:10:08 +03:00
|
|
|
// GenMultiSigScript generates the non-p2sh'd multisig script for 2 of 2
|
2015-12-21 02:10:24 +03:00
|
|
|
// pubkeys.
|
2018-05-31 08:10:08 +03:00
|
|
|
func GenMultiSigScript(aPub, bPub []byte) ([]byte, error) {
|
2015-12-21 02:10:24 +03:00
|
|
|
if len(aPub) != 33 || len(bPub) != 33 {
|
|
|
|
return nil, fmt.Errorf("Pubkey size error. Compressed pubkeys only")
|
|
|
|
}
|
|
|
|
|
2015-12-29 08:55:36 +03:00
|
|
|
// Swap to sort pubkeys if needed. Keys are sorted in lexicographical
|
|
|
|
// order. The signatures within the scriptSig must also adhere to the
|
2017-05-11 03:43:11 +03:00
|
|
|
// order, ensuring that the signatures for each public key appears in
|
|
|
|
// the proper order on the stack.
|
2017-09-12 18:47:37 +03:00
|
|
|
if bytes.Compare(aPub, bPub) == 1 {
|
2015-12-21 02:10:24 +03:00
|
|
|
aPub, bPub = bPub, aPub
|
|
|
|
}
|
|
|
|
|
|
|
|
bldr := txscript.NewScriptBuilder()
|
|
|
|
bldr.AddOp(txscript.OP_2)
|
2015-12-29 08:55:36 +03:00
|
|
|
bldr.AddData(aPub) // Add both pubkeys (sorted).
|
2015-12-21 02:10:24 +03:00
|
|
|
bldr.AddData(bPub)
|
|
|
|
bldr.AddOp(txscript.OP_2)
|
|
|
|
bldr.AddOp(txscript.OP_CHECKMULTISIG)
|
|
|
|
return bldr.Script()
|
|
|
|
}
|
|
|
|
|
2016-08-13 01:37:35 +03:00
|
|
|
// GenFundingPkScript creates a redeem script, and its matching p2wsh
|
2016-05-04 05:45:32 +03:00
|
|
|
// output for the funding transaction.
|
2016-08-13 01:37:35 +03:00
|
|
|
func GenFundingPkScript(aPub, bPub []byte, amt int64) ([]byte, *wire.TxOut, error) {
|
2016-05-04 05:45:32 +03:00
|
|
|
// As a sanity check, ensure that the passed amount is above zero.
|
|
|
|
if amt <= 0 {
|
2015-12-29 08:55:36 +03:00
|
|
|
return nil, nil, fmt.Errorf("can't create FundTx script with " +
|
2016-05-04 05:45:32 +03:00
|
|
|
"zero, or negative coins")
|
2015-12-21 02:10:24 +03:00
|
|
|
}
|
|
|
|
|
2016-05-04 05:45:32 +03:00
|
|
|
// First, create the 2-of-2 multi-sig script itself.
|
2018-05-31 08:10:08 +03:00
|
|
|
witnessScript, err := GenMultiSigScript(aPub, bPub)
|
2015-12-21 02:10:24 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, nil, err
|
|
|
|
}
|
2016-02-05 23:33:22 +03:00
|
|
|
|
2016-05-04 05:45:32 +03:00
|
|
|
// With the 2-of-2 script in had, generate a p2wsh script which pays
|
|
|
|
// to the funding script.
|
2018-06-29 02:47:15 +03:00
|
|
|
pkScript, err := WitnessScriptHash(witnessScript)
|
2015-12-21 02:10:24 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, nil, err
|
|
|
|
}
|
|
|
|
|
2016-10-16 02:02:09 +03:00
|
|
|
return witnessScript, wire.NewTxOut(amt, pkScript), nil
|
2015-12-21 02:10:24 +03:00
|
|
|
}
|
|
|
|
|
2016-09-09 03:04:08 +03:00
|
|
|
// SpendMultiSig generates the witness stack required to redeem the 2-of-2 p2wsh
|
2015-12-29 08:55:36 +03:00
|
|
|
// multi-sig output.
|
2020-04-06 03:07:01 +03:00
|
|
|
func SpendMultiSig(witnessScript, pubA []byte, sigA Signature,
|
|
|
|
pubB []byte, sigB Signature) [][]byte {
|
|
|
|
|
2016-05-04 05:45:32 +03:00
|
|
|
witness := make([][]byte, 4)
|
2015-12-21 02:10:24 +03:00
|
|
|
|
2016-05-04 05:45:32 +03:00
|
|
|
// When spending a p2wsh multi-sig script, rather than an OP_0, we add
|
|
|
|
// a nil stack element to eat the extra pop.
|
|
|
|
witness[0] = nil
|
2015-12-21 02:10:24 +03:00
|
|
|
|
2016-10-16 02:02:09 +03:00
|
|
|
// When initially generating the witnessScript, we sorted the serialized
|
2016-02-05 23:33:22 +03:00
|
|
|
// public keys in descending order. So we do a quick comparison in order
|
2016-10-16 02:02:09 +03:00
|
|
|
// ensure the signatures appear on the Script Virtual Machine stack in
|
2016-02-05 23:33:22 +03:00
|
|
|
// the correct order.
|
2017-09-12 18:54:14 +03:00
|
|
|
if bytes.Compare(pubA, pubB) == 1 {
|
2020-04-06 03:07:01 +03:00
|
|
|
witness[1] = append(sigB.Serialize(), byte(txscript.SigHashAll))
|
|
|
|
witness[2] = append(sigA.Serialize(), byte(txscript.SigHashAll))
|
2016-02-05 23:33:22 +03:00
|
|
|
} else {
|
2020-04-06 03:07:01 +03:00
|
|
|
witness[1] = append(sigA.Serialize(), byte(txscript.SigHashAll))
|
|
|
|
witness[2] = append(sigB.Serialize(), byte(txscript.SigHashAll))
|
2016-02-05 23:33:22 +03:00
|
|
|
}
|
2015-12-21 02:10:24 +03:00
|
|
|
|
2017-01-13 08:01:50 +03:00
|
|
|
// Finally, add the preimage as the last witness element.
|
2016-10-16 02:02:09 +03:00
|
|
|
witness[3] = witnessScript
|
2015-12-21 02:10:24 +03:00
|
|
|
|
2016-05-04 05:45:32 +03:00
|
|
|
return witness
|
2015-12-21 02:10:24 +03:00
|
|
|
}
|
2015-12-21 06:47:29 +03:00
|
|
|
|
2016-11-15 05:34:59 +03:00
|
|
|
// FindScriptOutputIndex finds the index of the public key script output
|
|
|
|
// matching 'script'. Additionally, a boolean is returned indicating if a
|
|
|
|
// matching output was found at all.
|
|
|
|
//
|
2015-12-29 08:55:36 +03:00
|
|
|
// NOTE: The search stops after the first matching script is found.
|
2016-08-13 01:37:35 +03:00
|
|
|
func FindScriptOutputIndex(tx *wire.MsgTx, script []byte) (bool, uint32) {
|
2015-12-21 06:47:29 +03:00
|
|
|
found := false
|
|
|
|
index := uint32(0)
|
|
|
|
for i, txOut := range tx.TxOut {
|
|
|
|
if bytes.Equal(txOut.PkScript, script) {
|
|
|
|
found = true
|
|
|
|
index = uint32(i)
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return found, index
|
|
|
|
}
|
2015-12-31 09:32:09 +03:00
|
|
|
|
2018-10-03 19:22:12 +03:00
|
|
|
// Ripemd160H calculates the ripemd160 of the passed byte slice. This is used to
|
2017-07-30 04:01:05 +03:00
|
|
|
// calculate the intermediate hash for payment pre-images. Payment hashes are
|
|
|
|
// the result of ripemd160(sha256(paymentPreimage)). As a result, the value
|
|
|
|
// passed in should be the sha256 of the payment hash.
|
2018-10-03 19:22:12 +03:00
|
|
|
func Ripemd160H(d []byte) []byte {
|
2017-07-30 04:01:05 +03:00
|
|
|
h := ripemd160.New()
|
|
|
|
h.Write(d)
|
|
|
|
return h.Sum(nil)
|
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// SenderHTLCScript constructs the public key script for an outgoing HTLC
|
2017-07-30 04:01:05 +03:00
|
|
|
// output payment for the sender's version of the commitment transaction. The
|
|
|
|
// possible script paths from this output include:
|
|
|
|
//
|
|
|
|
// * The sender timing out the HTLC using the second level HTLC timeout
|
|
|
|
// transaction.
|
|
|
|
// * The receiver of the HTLC claiming the output on-chain with the payment
|
|
|
|
// preimage.
|
|
|
|
// * The receiver of the HTLC sweeping all the funds in the case that a
|
|
|
|
// revoked commitment transaction bearing this HTLC was broadcast.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
//
|
2020-03-06 18:11:45 +03:00
|
|
|
// If confirmedSpend=true, a 1 OP_CSV check will be added to the non-revocation
|
|
|
|
// cases, to allow sweeping only after confirmation.
|
|
|
|
//
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// Possible Input Scripts:
|
2017-07-30 04:01:05 +03:00
|
|
|
// SENDR: <0> <sendr sig> <recvr sig> <0> (spend using HTLC timeout transaction)
|
|
|
|
// RECVR: <recvr sig> <preimage>
|
|
|
|
// REVOK: <revoke sig> <revoke key>
|
2016-07-23 04:52:36 +03:00
|
|
|
// * receiver revoke
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
//
|
2017-07-30 04:01:05 +03:00
|
|
|
// OP_DUP OP_HASH160 <revocation key hash160> OP_EQUAL
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_IF
|
2017-07-30 04:01:05 +03:00
|
|
|
// OP_CHECKSIG
|
|
|
|
// OP_ELSE
|
2017-11-15 07:36:00 +03:00
|
|
|
// <recv htlc key>
|
2017-07-30 04:01:05 +03:00
|
|
|
// OP_SWAP OP_SIZE 32 OP_EQUAL
|
|
|
|
// OP_NOTIF
|
2017-11-15 07:36:00 +03:00
|
|
|
// OP_DROP 2 OP_SWAP <sender htlc key> 2 OP_CHECKMULTISIG
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_ELSE
|
2017-07-30 04:01:05 +03:00
|
|
|
// OP_HASH160 <ripemd160(payment hash)> OP_EQUALVERIFY
|
2017-11-11 01:18:03 +03:00
|
|
|
// OP_CHECKSIG
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_ENDIF
|
2020-03-06 18:11:45 +03:00
|
|
|
// [1 OP_CHECKSEQUENCEVERIFY OP_DROP] <- if allowing confirmed spend only.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_ENDIF
|
2019-01-16 17:47:43 +03:00
|
|
|
func SenderHTLCScript(senderHtlcKey, receiverHtlcKey,
|
2020-03-06 18:11:45 +03:00
|
|
|
revocationKey *btcec.PublicKey, paymentHash []byte,
|
|
|
|
confirmedSpend bool) ([]byte, error) {
|
2015-12-31 09:32:09 +03:00
|
|
|
|
|
|
|
builder := txscript.NewScriptBuilder()
|
|
|
|
|
2017-07-30 04:01:05 +03:00
|
|
|
// The opening operations are used to determine if this is the receiver
|
|
|
|
// of the HTLC attempting to sweep all the funds due to a contract
|
|
|
|
// breach. In this case, they'll place the revocation key at the top of
|
|
|
|
// the stack.
|
|
|
|
builder.AddOp(txscript.OP_DUP)
|
|
|
|
builder.AddOp(txscript.OP_HASH160)
|
|
|
|
builder.AddData(btcutil.Hash160(revocationKey.SerializeCompressed()))
|
|
|
|
builder.AddOp(txscript.OP_EQUAL)
|
|
|
|
|
|
|
|
// If the hash matches, then this is the revocation clause. The output
|
|
|
|
// can be spent if the check sig operation passes.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
builder.AddOp(txscript.OP_IF)
|
2017-07-30 04:01:05 +03:00
|
|
|
builder.AddOp(txscript.OP_CHECKSIG)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:01:05 +03:00
|
|
|
// Otherwise, this may either be the receiver of the HTLC claiming with
|
|
|
|
// the pre-image, or the sender of the HTLC sweeping the output after
|
|
|
|
// it has timed out.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
builder.AddOp(txscript.OP_ELSE)
|
|
|
|
|
2017-07-30 04:01:05 +03:00
|
|
|
// We'll do a bit of set up by pushing the receiver's key on the top of
|
|
|
|
// the stack. This will be needed later if we decide that this is the
|
|
|
|
// sender activating the time out clause with the HTLC timeout
|
|
|
|
// transaction.
|
2017-11-15 07:36:00 +03:00
|
|
|
builder.AddData(receiverHtlcKey.SerializeCompressed())
|
2015-12-31 09:32:09 +03:00
|
|
|
|
2017-07-30 04:01:05 +03:00
|
|
|
// Atm, the top item of the stack is the receiverKey's so we use a swap
|
|
|
|
// to expose what is either the payment pre-image or a signature.
|
|
|
|
builder.AddOp(txscript.OP_SWAP)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:01:05 +03:00
|
|
|
// With the top item swapped, check if it's 32 bytes. If so, then this
|
|
|
|
// *may* be the payment pre-image.
|
|
|
|
builder.AddOp(txscript.OP_SIZE)
|
|
|
|
builder.AddInt64(32)
|
|
|
|
builder.AddOp(txscript.OP_EQUAL)
|
|
|
|
|
|
|
|
// If it isn't then this might be the sender of the HTLC activating the
|
|
|
|
// time out clause.
|
|
|
|
builder.AddOp(txscript.OP_NOTIF)
|
|
|
|
|
|
|
|
// We'll drop the OP_IF return value off the top of the stack so we can
|
|
|
|
// reconstruct the multi-sig script used as an off-chain covenant. If
|
|
|
|
// two valid signatures are provided, ten then output will be deemed as
|
|
|
|
// spendable.
|
|
|
|
builder.AddOp(txscript.OP_DROP)
|
|
|
|
builder.AddOp(txscript.OP_2)
|
|
|
|
builder.AddOp(txscript.OP_SWAP)
|
2017-11-15 07:36:00 +03:00
|
|
|
builder.AddData(senderHtlcKey.SerializeCompressed())
|
2017-07-30 04:01:05 +03:00
|
|
|
builder.AddOp(txscript.OP_2)
|
|
|
|
builder.AddOp(txscript.OP_CHECKMULTISIG)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:01:05 +03:00
|
|
|
// Otherwise, then the only other case is that this is the receiver of
|
|
|
|
// the HTLC sweeping it on-chain with the payment pre-image.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
builder.AddOp(txscript.OP_ELSE)
|
2015-12-31 09:32:09 +03:00
|
|
|
|
2017-07-30 04:01:05 +03:00
|
|
|
// Hash the top item of the stack and compare it with the hash160 of
|
|
|
|
// the payment hash, which is already the sha256 of the payment
|
|
|
|
// pre-image. By using this little trick we're able save space on-chain
|
|
|
|
// as the witness includes a 20-byte hash rather than a 32-byte hash.
|
|
|
|
builder.AddOp(txscript.OP_HASH160)
|
2018-10-03 19:22:12 +03:00
|
|
|
builder.AddData(Ripemd160H(paymentHash))
|
2017-07-30 04:01:05 +03:00
|
|
|
builder.AddOp(txscript.OP_EQUALVERIFY)
|
|
|
|
|
2017-09-25 23:28:30 +03:00
|
|
|
// This checks the receiver's signature so that a third party with
|
|
|
|
// knowledge of the payment preimage still cannot steal the output.
|
|
|
|
builder.AddOp(txscript.OP_CHECKSIG)
|
|
|
|
|
2017-07-30 04:01:05 +03:00
|
|
|
// Close out the OP_IF statement above.
|
|
|
|
builder.AddOp(txscript.OP_ENDIF)
|
2015-12-31 09:32:09 +03:00
|
|
|
|
2020-03-06 18:11:45 +03:00
|
|
|
// Add 1 block CSV delay if a confirmation is required for the
|
|
|
|
// non-revocation clauses.
|
|
|
|
if confirmedSpend {
|
|
|
|
builder.AddOp(txscript.OP_1)
|
|
|
|
builder.AddOp(txscript.OP_CHECKSEQUENCEVERIFY)
|
|
|
|
builder.AddOp(txscript.OP_DROP)
|
|
|
|
}
|
|
|
|
|
2017-07-30 04:01:05 +03:00
|
|
|
// Close out the OP_IF statement at the top of the script.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
builder.AddOp(txscript.OP_ENDIF)
|
|
|
|
|
2015-12-31 09:32:09 +03:00
|
|
|
return builder.Script()
|
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// SenderHtlcSpendRevokeWithKey constructs a valid witness allowing the receiver of an
|
2017-07-30 04:03:56 +03:00
|
|
|
// HTLC to claim the output with knowledge of the revocation private key in the
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// scenario that the sender of the HTLC broadcasts a previously revoked
|
2017-07-30 04:03:56 +03:00
|
|
|
// commitment transaction. A valid spend requires knowledge of the private key
|
|
|
|
// that corresponds to their revocation base point and also the private key fro
|
|
|
|
// the per commitment point, and a valid signature under the combined public
|
|
|
|
// key.
|
2019-01-16 17:47:43 +03:00
|
|
|
func SenderHtlcSpendRevokeWithKey(signer Signer, signDesc *SignDescriptor,
|
2017-07-30 04:03:56 +03:00
|
|
|
revokeKey *btcec.PublicKey, sweepTx *wire.MsgTx) (wire.TxWitness, error) {
|
|
|
|
|
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2017-07-30 04:03:56 +03:00
|
|
|
// The stack required to sweep a revoke HTLC output consists simply of
|
|
|
|
// the exact witness stack as one of a regular p2wkh spend. The only
|
|
|
|
// difference is that the keys used were derived in an adversarial
|
|
|
|
// manner in order to encode the revocation contract into a sig+key
|
|
|
|
// pair.
|
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 3))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2017-07-30 04:03:56 +03:00
|
|
|
witnessStack[1] = revokeKey.SerializeCompressed()
|
|
|
|
witnessStack[2] = signDesc.WitnessScript
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2017-09-06 23:50:06 +03:00
|
|
|
// SenderHtlcSpendRevoke constructs a valid witness allowing the receiver of an
|
|
|
|
// HTLC to claim the output with knowledge of the revocation private key in the
|
|
|
|
// scenario that the sender of the HTLC broadcasts a previously revoked
|
|
|
|
// commitment transaction. This method first derives the appropriate revocation
|
|
|
|
// key, and requires that the provided SignDescriptor has a local revocation
|
|
|
|
// basepoint and commitment secret in the PubKey and DoubleTweak fields,
|
|
|
|
// respectively.
|
|
|
|
func SenderHtlcSpendRevoke(signer Signer, signDesc *SignDescriptor,
|
|
|
|
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
|
|
|
|
|
2018-02-18 02:09:51 +03:00
|
|
|
if signDesc.KeyDesc.PubKey == nil {
|
|
|
|
return nil, fmt.Errorf("cannot generate witness with nil " +
|
|
|
|
"KeyDesc pubkey")
|
|
|
|
}
|
|
|
|
|
2017-09-06 23:50:06 +03:00
|
|
|
// Derive the revocation key using the local revocation base point and
|
|
|
|
// commitment point.
|
2018-02-18 02:09:51 +03:00
|
|
|
revokeKey := DeriveRevocationPubkey(
|
|
|
|
signDesc.KeyDesc.PubKey,
|
|
|
|
signDesc.DoubleTweak.PubKey(),
|
|
|
|
)
|
2017-09-06 23:50:06 +03:00
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
return SenderHtlcSpendRevokeWithKey(signer, signDesc, revokeKey, sweepTx)
|
2017-09-06 23:50:06 +03:00
|
|
|
}
|
|
|
|
|
2018-01-17 04:57:03 +03:00
|
|
|
// SenderHtlcSpendRedeem constructs a valid witness allowing the receiver of an
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// HTLC to redeem the pending output in the scenario that the sender broadcasts
|
|
|
|
// their version of the commitment transaction. A valid spend requires
|
2017-07-30 04:03:56 +03:00
|
|
|
// knowledge of the payment preimage, and a valid signature under the receivers
|
|
|
|
// public key.
|
2018-01-17 04:57:03 +03:00
|
|
|
func SenderHtlcSpendRedeem(signer Signer, signDesc *SignDescriptor,
|
2017-07-30 04:03:56 +03:00
|
|
|
sweepTx *wire.MsgTx, paymentPreimage []byte) (wire.TxWitness, error) {
|
|
|
|
|
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2019-05-10 18:14:19 +03:00
|
|
|
// The stack required to spend this output is simply the signature
|
2017-07-30 04:03:56 +03:00
|
|
|
// generated above under the receiver's public key, and the payment
|
|
|
|
// pre-image.
|
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 3))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
witnessStack[1] = paymentPreimage
|
2017-07-30 04:03:56 +03:00
|
|
|
witnessStack[2] = signDesc.WitnessScript
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// SenderHtlcSpendTimeout constructs a valid witness allowing the sender of an
|
2017-07-30 04:03:56 +03:00
|
|
|
// HTLC to activate the time locked covenant clause of a soon to be expired
|
|
|
|
// HTLC. This script simply spends the multi-sig output using the
|
|
|
|
// pre-generated HTLC timeout transaction.
|
2020-04-06 03:06:14 +03:00
|
|
|
func SenderHtlcSpendTimeout(receiverSig Signature,
|
2020-03-06 18:11:47 +03:00
|
|
|
receiverSigHash txscript.SigHashType, signer Signer,
|
|
|
|
signDesc *SignDescriptor, htlcTimeoutTx *wire.MsgTx) (
|
|
|
|
wire.TxWitness, error) {
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:03:56 +03:00
|
|
|
sweepSig, err := signer.SignOutputRaw(htlcTimeoutTx, signDesc)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// We place a zero as the first item of the evaluated witness stack in
|
2017-07-30 04:03:56 +03:00
|
|
|
// order to force Script execution to the HTLC timeout clause. The
|
2019-05-10 18:14:19 +03:00
|
|
|
// second zero is required to consume the extra pop due to a bug in the
|
2017-07-30 04:03:56 +03:00
|
|
|
// original OP_CHECKMULTISIG.
|
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 5))
|
|
|
|
witnessStack[0] = nil
|
2020-04-06 03:06:14 +03:00
|
|
|
witnessStack[1] = append(receiverSig.Serialize(), byte(receiverSigHash))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[2] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2017-07-30 04:03:56 +03:00
|
|
|
witnessStack[3] = nil
|
|
|
|
witnessStack[4] = signDesc.WitnessScript
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// ReceiverHTLCScript constructs the public key script for an incoming HTLC
|
2017-07-30 04:06:57 +03:00
|
|
|
// output payment for the receiver's version of the commitment transaction. The
|
|
|
|
// possible execution paths from this script include:
|
2018-02-07 06:13:07 +03:00
|
|
|
// * The receiver of the HTLC uses its second level HTLC transaction to
|
2017-07-30 04:06:57 +03:00
|
|
|
// advance the state of the HTLC into the delay+claim state.
|
|
|
|
// * The sender of the HTLC sweeps all the funds of the HTLC as a breached
|
|
|
|
// commitment was broadcast.
|
|
|
|
// * The sender of the HTLC sweeps the HTLC on-chain after the timeout period
|
|
|
|
// of the HTLC has passed.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
//
|
2020-03-06 18:11:45 +03:00
|
|
|
// If confirmedSpend=true, a 1 OP_CSV check will be added to the non-revocation
|
|
|
|
// cases, to allow sweeping only after confirmation.
|
|
|
|
//
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// Possible Input Scripts:
|
2017-11-15 07:36:00 +03:00
|
|
|
// RECVR: <0> <sender sig> <recvr sig> <preimage> (spend using HTLC success transaction)
|
2017-07-30 04:06:57 +03:00
|
|
|
// REVOK: <sig> <key>
|
|
|
|
// SENDR: <sig> 0
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
//
|
2017-07-30 04:06:57 +03:00
|
|
|
//
|
|
|
|
// OP_DUP OP_HASH160 <revocation key hash160> OP_EQUAL
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_IF
|
2017-07-30 04:06:57 +03:00
|
|
|
// OP_CHECKSIG
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_ELSE
|
2017-11-15 07:36:00 +03:00
|
|
|
// <sendr htlc key>
|
2017-07-30 04:06:57 +03:00
|
|
|
// OP_SWAP OP_SIZE 32 OP_EQUAL
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_IF
|
2017-07-30 04:06:57 +03:00
|
|
|
// OP_HASH160 <ripemd160(payment hash)> OP_EQUALVERIFY
|
2017-11-15 07:36:00 +03:00
|
|
|
// 2 OP_SWAP <recvr htlc key> 2 OP_CHECKMULTISIG
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_ELSE
|
2017-07-30 04:06:57 +03:00
|
|
|
// OP_DROP <cltv expiry> OP_CHECKLOCKTIMEVERIFY OP_DROP
|
|
|
|
// OP_CHECKSIG
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_ENDIF
|
2020-03-06 18:11:45 +03:00
|
|
|
// [1 OP_CHECKSEQUENCEVERIFY OP_DROP] <- if allowing confirmed spend only.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_ENDIF
|
2019-01-16 17:47:43 +03:00
|
|
|
func ReceiverHTLCScript(cltvExpiry uint32, senderHtlcKey,
|
2017-11-15 07:36:00 +03:00
|
|
|
receiverHtlcKey, revocationKey *btcec.PublicKey,
|
2020-03-06 18:11:45 +03:00
|
|
|
paymentHash []byte, confirmedSpend bool) ([]byte, error) {
|
2015-12-31 09:32:09 +03:00
|
|
|
|
|
|
|
builder := txscript.NewScriptBuilder()
|
|
|
|
|
2017-07-30 04:06:57 +03:00
|
|
|
// The opening operations are used to determine if this is the sender
|
|
|
|
// of the HTLC attempting to sweep all the funds due to a contract
|
|
|
|
// breach. In this case, they'll place the revocation key at the top of
|
|
|
|
// the stack.
|
|
|
|
builder.AddOp(txscript.OP_DUP)
|
|
|
|
builder.AddOp(txscript.OP_HASH160)
|
|
|
|
builder.AddData(btcutil.Hash160(revocationKey.SerializeCompressed()))
|
|
|
|
builder.AddOp(txscript.OP_EQUAL)
|
2015-12-31 09:32:09 +03:00
|
|
|
|
2017-07-30 04:06:57 +03:00
|
|
|
// If the hash matches, then this is the revocation clause. The output
|
|
|
|
// can be spent if the check sig operation passes.
|
|
|
|
builder.AddOp(txscript.OP_IF)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
builder.AddOp(txscript.OP_CHECKSIG)
|
2015-12-31 09:32:09 +03:00
|
|
|
|
2017-07-30 04:06:57 +03:00
|
|
|
// Otherwise, this may either be the receiver of the HTLC starting the
|
|
|
|
// claiming process via the second level HTLC success transaction and
|
|
|
|
// the pre-image, or the sender of the HTLC sweeping the output after
|
|
|
|
// it has timed out.
|
2015-12-31 09:32:09 +03:00
|
|
|
builder.AddOp(txscript.OP_ELSE)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:06:57 +03:00
|
|
|
// We'll do a bit of set up by pushing the sender's key on the top of
|
|
|
|
// the stack. This will be needed later if we decide that this is the
|
|
|
|
// receiver transitioning the output to the claim state using their
|
|
|
|
// second-level HTLC success transaction.
|
2017-11-15 07:36:00 +03:00
|
|
|
builder.AddData(senderHtlcKey.SerializeCompressed())
|
2017-07-30 04:06:57 +03:00
|
|
|
|
|
|
|
// Atm, the top item of the stack is the sender's key so we use a swap
|
|
|
|
// to expose what is either the payment pre-image or something else.
|
|
|
|
builder.AddOp(txscript.OP_SWAP)
|
|
|
|
|
|
|
|
// With the top item swapped, check if it's 32 bytes. If so, then this
|
|
|
|
// *may* be the payment pre-image.
|
|
|
|
builder.AddOp(txscript.OP_SIZE)
|
|
|
|
builder.AddInt64(32)
|
|
|
|
builder.AddOp(txscript.OP_EQUAL)
|
|
|
|
|
|
|
|
// If the item on the top of the stack is 32-bytes, then it is the
|
|
|
|
// proper size, so this indicates that the receiver of the HTLC is
|
|
|
|
// attempting to claim the output on-chain by transitioning the state
|
|
|
|
// of the HTLC to delay+claim.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
builder.AddOp(txscript.OP_IF)
|
2017-07-30 04:06:57 +03:00
|
|
|
|
|
|
|
// Next we'll hash the item on the top of the stack, if it matches the
|
|
|
|
// payment pre-image, then we'll continue. Otherwise, we'll end the
|
|
|
|
// script here as this is the invalid payment pre-image.
|
|
|
|
builder.AddOp(txscript.OP_HASH160)
|
2018-10-03 19:22:12 +03:00
|
|
|
builder.AddData(Ripemd160H(paymentHash))
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
builder.AddOp(txscript.OP_EQUALVERIFY)
|
2015-12-31 09:32:09 +03:00
|
|
|
|
2017-07-30 04:06:57 +03:00
|
|
|
// If the payment hash matches, then we'll also need to satisfy the
|
|
|
|
// multi-sig covenant by providing both signatures of the sender and
|
|
|
|
// receiver. If the convenient is met, then we'll allow the spending of
|
|
|
|
// this output, but only by the HTLC success transaction.
|
|
|
|
builder.AddOp(txscript.OP_2)
|
|
|
|
builder.AddOp(txscript.OP_SWAP)
|
2017-11-15 07:36:00 +03:00
|
|
|
builder.AddData(receiverHtlcKey.SerializeCompressed())
|
2017-07-30 04:06:57 +03:00
|
|
|
builder.AddOp(txscript.OP_2)
|
|
|
|
builder.AddOp(txscript.OP_CHECKMULTISIG)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:06:57 +03:00
|
|
|
// Otherwise, this might be the sender of the HTLC attempting to sweep
|
|
|
|
// it on-chain after the timeout.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
builder.AddOp(txscript.OP_ELSE)
|
2017-07-30 04:06:57 +03:00
|
|
|
|
|
|
|
// We'll drop the extra item (which is the output from evaluating the
|
|
|
|
// OP_EQUAL) above from the stack.
|
2015-12-31 09:32:09 +03:00
|
|
|
builder.AddOp(txscript.OP_DROP)
|
|
|
|
|
2017-07-30 04:06:57 +03:00
|
|
|
// With that item dropped off, we can now enforce the absolute
|
|
|
|
// lock-time required to timeout the HTLC. If the time has passed, then
|
|
|
|
// we'll proceed with a checksig to ensure that this is actually the
|
2017-11-15 07:36:00 +03:00
|
|
|
// sender of he original HTLC.
|
2018-02-07 06:11:11 +03:00
|
|
|
builder.AddInt64(int64(cltvExpiry))
|
2017-07-30 04:06:57 +03:00
|
|
|
builder.AddOp(txscript.OP_CHECKLOCKTIMEVERIFY)
|
|
|
|
builder.AddOp(txscript.OP_DROP)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
builder.AddOp(txscript.OP_CHECKSIG)
|
2015-12-31 09:32:09 +03:00
|
|
|
|
2017-07-30 04:06:57 +03:00
|
|
|
// Close out the inner if statement.
|
|
|
|
builder.AddOp(txscript.OP_ENDIF)
|
|
|
|
|
2020-03-06 18:11:45 +03:00
|
|
|
// Add 1 block CSV delay for non-revocation clauses if confirmation is
|
|
|
|
// required.
|
|
|
|
if confirmedSpend {
|
|
|
|
builder.AddOp(txscript.OP_1)
|
|
|
|
builder.AddOp(txscript.OP_CHECKSEQUENCEVERIFY)
|
|
|
|
builder.AddOp(txscript.OP_DROP)
|
|
|
|
}
|
|
|
|
|
2017-07-30 04:06:57 +03:00
|
|
|
// Close out the outer if statement.
|
2015-12-31 09:32:09 +03:00
|
|
|
builder.AddOp(txscript.OP_ENDIF)
|
|
|
|
|
|
|
|
return builder.Script()
|
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// ReceiverHtlcSpendRedeem constructs a valid witness allowing the receiver of
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// an HTLC to redeem the conditional payment in the event that their commitment
|
2017-07-30 04:08:40 +03:00
|
|
|
// transaction is broadcast. This clause transitions the state of the HLTC
|
|
|
|
// output into the delay+claim state by activating the off-chain covenant bound
|
|
|
|
// by the 2-of-2 multi-sig output. The HTLC success timeout transaction being
|
|
|
|
// signed has a relative timelock delay enforced by its sequence number. This
|
|
|
|
// delay give the sender of the HTLC enough time to revoke the output if this
|
|
|
|
// is a breach commitment transaction.
|
2020-04-06 03:06:14 +03:00
|
|
|
func ReceiverHtlcSpendRedeem(senderSig Signature,
|
2020-03-06 18:11:47 +03:00
|
|
|
senderSigHash txscript.SigHashType, paymentPreimage []byte,
|
|
|
|
signer Signer, signDesc *SignDescriptor, htlcSuccessTx *wire.MsgTx) (
|
|
|
|
wire.TxWitness, error) {
|
2017-07-30 04:08:40 +03:00
|
|
|
|
|
|
|
// First, we'll generate a signature for the HTLC success transaction.
|
|
|
|
// The signDesc should be signing with the public key used as the
|
|
|
|
// receiver's public key and also the correct single tweak.
|
|
|
|
sweepSig, err := signer.SignOutputRaw(htlcSuccessTx, signDesc)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2017-07-30 04:08:40 +03:00
|
|
|
// The final witness stack is used the provide the script with the
|
|
|
|
// payment pre-image, and also execute the multi-sig clause after the
|
|
|
|
// pre-images matches. We add a nil item at the bottom of the stack in
|
|
|
|
// order to consume the extra pop within OP_CHECKMULTISIG.
|
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 5))
|
|
|
|
witnessStack[0] = nil
|
2020-04-06 03:06:14 +03:00
|
|
|
witnessStack[1] = append(senderSig.Serialize(), byte(senderSigHash))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[2] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2017-07-30 04:08:40 +03:00
|
|
|
witnessStack[3] = paymentPreimage
|
|
|
|
witnessStack[4] = signDesc.WitnessScript
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// ReceiverHtlcSpendRevokeWithKey constructs a valid witness allowing the sender of an
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// HTLC within a previously revoked commitment transaction to re-claim the
|
|
|
|
// pending funds in the case that the receiver broadcasts this revoked
|
|
|
|
// commitment transaction.
|
2019-01-16 17:47:43 +03:00
|
|
|
func ReceiverHtlcSpendRevokeWithKey(signer Signer, signDesc *SignDescriptor,
|
2017-07-30 04:08:40 +03:00
|
|
|
revokeKey *btcec.PublicKey, sweepTx *wire.MsgTx) (wire.TxWitness, error) {
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:08:40 +03:00
|
|
|
// First, we'll generate a signature for the sweep transaction. The
|
|
|
|
// signDesc should be signing with the public key used as the fully
|
|
|
|
// derived revocation public key and also the correct double tweak
|
|
|
|
// value.
|
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// We place a zero, then one as the first items in the evaluated
|
|
|
|
// witness stack in order to force script execution to the HTLC
|
|
|
|
// revocation clause.
|
2017-07-30 04:08:40 +03:00
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 3))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2017-07-30 04:08:40 +03:00
|
|
|
witnessStack[1] = revokeKey.SerializeCompressed()
|
|
|
|
witnessStack[2] = signDesc.WitnessScript
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2017-09-06 23:50:06 +03:00
|
|
|
// ReceiverHtlcSpendRevoke constructs a valid witness allowing the sender of an
|
|
|
|
// HTLC within a previously revoked commitment transaction to re-claim the
|
|
|
|
// pending funds in the case that the receiver broadcasts this revoked
|
|
|
|
// commitment transaction. This method first derives the appropriate revocation
|
|
|
|
// key, and requires that the provided SignDescriptor has a local revocation
|
|
|
|
// basepoint and commitment secret in the PubKey and DoubleTweak fields,
|
|
|
|
// respectively.
|
|
|
|
func ReceiverHtlcSpendRevoke(signer Signer, signDesc *SignDescriptor,
|
|
|
|
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
|
|
|
|
|
2018-02-18 02:09:51 +03:00
|
|
|
if signDesc.KeyDesc.PubKey == nil {
|
|
|
|
return nil, fmt.Errorf("cannot generate witness with nil " +
|
|
|
|
"KeyDesc pubkey")
|
|
|
|
}
|
|
|
|
|
2017-09-06 23:50:06 +03:00
|
|
|
// Derive the revocation key using the local revocation base point and
|
|
|
|
// commitment point.
|
2018-02-18 02:09:51 +03:00
|
|
|
revokeKey := DeriveRevocationPubkey(
|
|
|
|
signDesc.KeyDesc.PubKey,
|
|
|
|
signDesc.DoubleTweak.PubKey(),
|
|
|
|
)
|
2017-09-06 23:50:06 +03:00
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
return ReceiverHtlcSpendRevokeWithKey(signer, signDesc, revokeKey, sweepTx)
|
2017-09-06 23:50:06 +03:00
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// ReceiverHtlcSpendTimeout constructs a valid witness allowing the sender of
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// an HTLC to recover the pending funds after an absolute timeout in the
|
|
|
|
// scenario that the receiver of the HTLC broadcasts their version of the
|
2018-01-17 04:59:43 +03:00
|
|
|
// commitment transaction. If the caller has already set the lock time on the
|
2018-02-07 06:11:11 +03:00
|
|
|
// spending transaction, than a value of -1 can be passed for the cltvExpiry
|
2018-01-17 04:59:43 +03:00
|
|
|
// value.
|
2017-07-30 04:08:40 +03:00
|
|
|
//
|
|
|
|
// NOTE: The target input of the passed transaction MUST NOT have a final
|
|
|
|
// sequence number. Otherwise, the OP_CHECKLOCKTIMEVERIFY check will fail.
|
2019-01-16 17:47:43 +03:00
|
|
|
func ReceiverHtlcSpendTimeout(signer Signer, signDesc *SignDescriptor,
|
2018-01-17 04:59:43 +03:00
|
|
|
sweepTx *wire.MsgTx, cltvExpiry int32) (wire.TxWitness, error) {
|
|
|
|
|
|
|
|
// If the caller set a proper timeout value, then we'll apply it
|
|
|
|
// directly to the transaction.
|
|
|
|
if cltvExpiry != -1 {
|
|
|
|
// The HTLC output has an absolute time period before we are
|
|
|
|
// permitted to recover the pending funds. Therefore we need to
|
|
|
|
// set the locktime on this sweeping transaction in order to
|
|
|
|
// pass Script verification.
|
|
|
|
sweepTx.LockTime = uint32(cltvExpiry)
|
|
|
|
}
|
2017-07-30 04:08:40 +03:00
|
|
|
|
|
|
|
// With the lock time on the transaction set, we'll not generate a
|
|
|
|
// signature for the sweep transaction. The passed sign descriptor
|
|
|
|
// should be created using the raw public key of the sender (w/o the
|
|
|
|
// single tweak applied), and the single tweak set to the proper value
|
|
|
|
// taking into account the current state's point.
|
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 3))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2017-07-30 04:08:40 +03:00
|
|
|
witnessStack[1] = nil
|
|
|
|
witnessStack[2] = signDesc.WitnessScript
|
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// SecondLevelHtlcScript is the uniform script that's used as the output for
|
2017-07-30 04:18:16 +03:00
|
|
|
// the second-level HTLC transactions. The second level transaction act as a
|
2018-04-18 05:02:04 +03:00
|
|
|
// sort of covenant, ensuring that a 2-of-2 multi-sig output can only be
|
2017-07-30 04:18:16 +03:00
|
|
|
// spent in a particular way, and to a particular output.
|
|
|
|
//
|
|
|
|
// Possible Input Scripts:
|
|
|
|
// * To revoke an HTLC output that has been transitioned to the claim+delay
|
|
|
|
// state:
|
|
|
|
// * <revoke sig> 1
|
|
|
|
//
|
|
|
|
// * To claim and HTLC output, either with a pre-image or due to a timeout:
|
|
|
|
// * <delay sig> 0
|
|
|
|
//
|
|
|
|
// OP_IF
|
|
|
|
// <revoke key>
|
|
|
|
// OP_ELSE
|
|
|
|
// <delay in blocks>
|
|
|
|
// OP_CHECKSEQUENCEVERIFY
|
|
|
|
// OP_DROP
|
|
|
|
// <delay key>
|
|
|
|
// OP_ENDIF
|
|
|
|
// OP_CHECKSIG
|
|
|
|
//
|
|
|
|
// TODO(roasbeef): possible renames for second-level
|
|
|
|
// * transition?
|
|
|
|
// * covenant output
|
2019-01-16 17:47:43 +03:00
|
|
|
func SecondLevelHtlcScript(revocationKey, delayKey *btcec.PublicKey,
|
2017-07-30 04:18:16 +03:00
|
|
|
csvDelay uint32) ([]byte, error) {
|
|
|
|
|
|
|
|
builder := txscript.NewScriptBuilder()
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:18:16 +03:00
|
|
|
// If this is the revocation clause for this script is to be executed,
|
|
|
|
// the spender will push a 1, forcing us to hit the true clause of this
|
|
|
|
// if statement.
|
|
|
|
builder.AddOp(txscript.OP_IF)
|
|
|
|
|
|
|
|
// If this this is the revocation case, then we'll push the revocation
|
|
|
|
// public key on the stack.
|
|
|
|
builder.AddData(revocationKey.SerializeCompressed())
|
|
|
|
|
|
|
|
// Otherwise, this is either the sender or receiver of the HTLC
|
|
|
|
// attempting to claim the HTLC output.
|
|
|
|
builder.AddOp(txscript.OP_ELSE)
|
|
|
|
|
|
|
|
// In order to give the other party time to execute the revocation
|
|
|
|
// clause above, we require a relative timeout to pass before the
|
|
|
|
// output can be spent.
|
|
|
|
builder.AddInt64(int64(csvDelay))
|
|
|
|
builder.AddOp(txscript.OP_CHECKSEQUENCEVERIFY)
|
|
|
|
builder.AddOp(txscript.OP_DROP)
|
|
|
|
|
|
|
|
// If the relative timelock passes, then we'll add the delay key to the
|
|
|
|
// stack to ensure that we properly authenticate the spending party.
|
|
|
|
builder.AddData(delayKey.SerializeCompressed())
|
|
|
|
|
|
|
|
// Close out the if statement.
|
|
|
|
builder.AddOp(txscript.OP_ENDIF)
|
|
|
|
|
|
|
|
// In either case, we'll ensure that only either the party possessing
|
|
|
|
// the revocation private key, or the delay private key is able to
|
|
|
|
// spend this output.
|
|
|
|
builder.AddOp(txscript.OP_CHECKSIG)
|
|
|
|
|
|
|
|
return builder.Script()
|
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// HtlcSpendSuccess spends a second-level HTLC output. This function is to be
|
2017-07-30 04:18:16 +03:00
|
|
|
// used by the sender of an HTLC to claim the output after a relative timeout
|
2017-08-16 03:53:40 +03:00
|
|
|
// or the receiver of the HTLC to claim on-chain with the pre-image.
|
2019-01-16 17:47:43 +03:00
|
|
|
func HtlcSpendSuccess(signer Signer, signDesc *SignDescriptor,
|
2017-07-30 04:18:16 +03:00
|
|
|
sweepTx *wire.MsgTx, csvDelay uint32) (wire.TxWitness, error) {
|
|
|
|
|
|
|
|
// We're required to wait a relative period of time before we can sweep
|
|
|
|
// the output in order to allow the other party to contest our claim of
|
|
|
|
// validity to this version of the commitment transaction.
|
2019-01-16 17:47:43 +03:00
|
|
|
sweepTx.TxIn[0].Sequence = LockTimeToSequence(false, csvDelay)
|
2017-07-30 04:18:16 +03:00
|
|
|
|
|
|
|
// Finally, OP_CSV requires that the version of the transaction
|
|
|
|
// spending a pkscript with OP_CSV within it *must* be >= 2.
|
|
|
|
sweepTx.Version = 2
|
|
|
|
|
|
|
|
// As we mutated the transaction, we'll re-calculate the sighashes for
|
|
|
|
// this instance.
|
|
|
|
signDesc.SigHashes = txscript.NewTxSigHashes(sweepTx)
|
|
|
|
|
2018-04-18 05:02:04 +03:00
|
|
|
// With the proper sequence and version set, we'll now sign the timeout
|
2017-07-30 04:18:16 +03:00
|
|
|
// transaction using the passed signed descriptor. In order to generate
|
|
|
|
// a valid signature, then signDesc should be using the base delay
|
|
|
|
// public key, and the proper single tweak bytes.
|
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2017-07-30 04:18:16 +03:00
|
|
|
// We set a zero as the first element the witness stack (ignoring the
|
|
|
|
// witness script), in order to force execution to the second portion
|
|
|
|
// of the if clause.
|
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 3))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2017-05-18 21:58:19 +03:00
|
|
|
witnessStack[1] = nil
|
2017-07-30 04:18:16 +03:00
|
|
|
witnessStack[2] = signDesc.WitnessScript
|
|
|
|
|
2017-10-02 06:55:39 +03:00
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// HtlcSpendRevoke spends a second-level HTLC output. This function is to be
|
2018-01-21 06:57:34 +03:00
|
|
|
// used by the sender or receiver of an HTLC to claim the HTLC after a revoked
|
|
|
|
// commitment transaction was broadcast.
|
2019-01-16 17:47:43 +03:00
|
|
|
func HtlcSpendRevoke(signer Signer, signDesc *SignDescriptor,
|
2018-01-21 06:57:34 +03:00
|
|
|
revokeTx *wire.MsgTx) (wire.TxWitness, error) {
|
|
|
|
|
|
|
|
// We don't need any spacial modifications to the transaction as this
|
|
|
|
// is just sweeping a revoked HTLC output. So we'll generate a regular
|
|
|
|
// witness signature.
|
|
|
|
sweepSig, err := signer.SignOutputRaw(revokeTx, signDesc)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// We set a one as the first element the witness stack (ignoring the
|
|
|
|
// witness script), in order to force execution to the revocation
|
|
|
|
// clause in the second level HTLC script.
|
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 3))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2018-01-21 06:57:34 +03:00
|
|
|
witnessStack[1] = []byte{1}
|
|
|
|
witnessStack[2] = signDesc.WitnessScript
|
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2018-01-17 04:57:03 +03:00
|
|
|
// HtlcSecondLevelSpend exposes the public witness generation function for
|
|
|
|
// spending an HTLC success transaction, either due to an expiring time lock or
|
|
|
|
// having had the payment preimage. This method is able to spend any
|
|
|
|
// second-level HTLC transaction, assuming the caller sets the locktime or
|
|
|
|
// seqno properly.
|
|
|
|
//
|
2017-10-02 06:55:39 +03:00
|
|
|
// NOTE: The caller MUST set the txn version, sequence number, and sign
|
|
|
|
// descriptor's sig hash cache before invocation.
|
2018-01-17 04:57:03 +03:00
|
|
|
func HtlcSecondLevelSpend(signer Signer, signDesc *SignDescriptor,
|
2017-10-02 06:55:39 +03:00
|
|
|
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
|
|
|
|
|
2018-04-18 05:02:04 +03:00
|
|
|
// With the proper sequence and version set, we'll now sign the timeout
|
2017-10-02 06:55:39 +03:00
|
|
|
// transaction using the passed signed descriptor. In order to generate
|
|
|
|
// a valid signature, then signDesc should be using the base delay
|
|
|
|
// public key, and the proper single tweak bytes.
|
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// We set a zero as the first element the witness stack (ignoring the
|
|
|
|
// witness script), in order to force execution to the second portion
|
|
|
|
// of the if clause.
|
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 3))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(txscript.SigHashAll))
|
2017-10-02 06:55:39 +03:00
|
|
|
witnessStack[1] = nil
|
|
|
|
witnessStack[2] = signDesc.WitnessScript
|
|
|
|
|
2017-07-30 04:18:16 +03:00
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2019-01-16 17:47:43 +03:00
|
|
|
// LockTimeToSequence converts the passed relative locktime to a sequence
|
2016-02-06 07:24:17 +03:00
|
|
|
// number in accordance to BIP-68.
|
|
|
|
// See: https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
|
|
|
|
// * (Compatibility)
|
2019-01-16 17:47:43 +03:00
|
|
|
func LockTimeToSequence(isSeconds bool, locktime uint32) uint32 {
|
2016-02-06 07:24:17 +03:00
|
|
|
if !isSeconds {
|
2016-08-26 02:25:23 +03:00
|
|
|
// The locktime is to be expressed in confirmations.
|
|
|
|
return locktime
|
2016-02-06 07:24:17 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
// Set the 22nd bit which indicates the lock time is in seconds, then
|
|
|
|
// shift the locktime over by 9 since the time granularity is in
|
|
|
|
// 512-second intervals (2^9). This results in a max lock-time of
|
|
|
|
// 33,554,431 seconds, or 1.06 years.
|
|
|
|
return SequenceLockTimeSeconds | (locktime >> 9)
|
|
|
|
}
|
|
|
|
|
2018-06-29 02:47:15 +03:00
|
|
|
// CommitScriptToSelf constructs the public key script for the output on the
|
2016-01-02 23:10:14 +03:00
|
|
|
// commitment transaction paying to the "owner" of said commitment transaction.
|
2017-01-13 08:01:50 +03:00
|
|
|
// If the other party learns of the preimage to the revocation hash, then they
|
2016-01-02 23:10:14 +03:00
|
|
|
// can claim all the settled funds in the channel, plus the unsettled funds.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
//
|
|
|
|
// Possible Input Scripts:
|
|
|
|
// REVOKE: <sig> 1
|
2017-02-04 02:28:13 +03:00
|
|
|
// SENDRSWEEP: <sig> <emptyvector>
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
//
|
|
|
|
// Output Script:
|
|
|
|
// OP_IF
|
2017-08-22 08:49:24 +03:00
|
|
|
// <revokeKey>
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_ELSE
|
2017-08-22 08:49:24 +03:00
|
|
|
// <numRelativeBlocks> OP_CHECKSEQUENCEVERIFY OP_DROP
|
|
|
|
// <timeKey>
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// OP_ENDIF
|
2017-08-22 08:49:24 +03:00
|
|
|
// OP_CHECKSIG
|
2018-06-29 02:47:15 +03:00
|
|
|
func CommitScriptToSelf(csvTimeout uint32, selfKey, revokeKey *btcec.PublicKey) ([]byte, error) {
|
2016-11-15 05:34:59 +03:00
|
|
|
// This script is spendable under two conditions: either the
|
|
|
|
// 'csvTimeout' has passed and we can redeem our funds, or they can
|
|
|
|
// produce a valid signature with the revocation public key. The
|
|
|
|
// revocation public key will *only* be known to the other party if we
|
|
|
|
// have divulged the revocation hash, allowing them to homomorphically
|
|
|
|
// derive the proper private key which corresponds to the revoke public
|
|
|
|
// key.
|
2015-12-31 09:32:09 +03:00
|
|
|
builder := txscript.NewScriptBuilder()
|
|
|
|
|
|
|
|
builder.AddOp(txscript.OP_IF)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
|
|
|
// If a valid signature using the revocation key is presented, then
|
|
|
|
// allow an immediate spend provided the proper signature.
|
|
|
|
builder.AddData(revokeKey.SerializeCompressed())
|
|
|
|
|
2015-12-31 09:32:09 +03:00
|
|
|
builder.AddOp(txscript.OP_ELSE)
|
|
|
|
|
|
|
|
// Otherwise, we can re-claim our funds after a CSV delay of
|
|
|
|
// 'csvTimeout' timeout blocks, and a valid signature.
|
|
|
|
builder.AddInt64(int64(csvTimeout))
|
2017-05-03 10:48:50 +03:00
|
|
|
builder.AddOp(txscript.OP_CHECKSEQUENCEVERIFY)
|
2017-08-22 08:49:24 +03:00
|
|
|
builder.AddOp(txscript.OP_DROP)
|
|
|
|
builder.AddData(selfKey.SerializeCompressed())
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2015-12-31 09:32:09 +03:00
|
|
|
builder.AddOp(txscript.OP_ENDIF)
|
|
|
|
|
2017-08-22 08:49:24 +03:00
|
|
|
// Finally, we'll validate the signature against the public key that's
|
|
|
|
// left on the top of the stack.
|
|
|
|
builder.AddOp(txscript.OP_CHECKSIG)
|
|
|
|
|
2015-12-31 09:32:09 +03:00
|
|
|
return builder.Script()
|
|
|
|
}
|
|
|
|
|
2016-09-09 03:04:08 +03:00
|
|
|
// CommitSpendTimeout constructs a valid witness allowing the owner of a
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// particular commitment transaction to spend the output returning settled
|
2016-09-10 23:48:36 +03:00
|
|
|
// funds back to themselves after a relative block timeout. In order to
|
|
|
|
// properly spend the transaction, the target input's sequence number should be
|
|
|
|
// set accordingly based off of the target relative block timeout within the
|
|
|
|
// redeem script. Additionally, OP_CSV requires that the version of the
|
|
|
|
// transaction spending a pkscript with OP_CSV within it *must* be >= 2.
|
2016-09-09 03:04:08 +03:00
|
|
|
func CommitSpendTimeout(signer Signer, signDesc *SignDescriptor,
|
2016-09-10 23:48:36 +03:00
|
|
|
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
|
2016-09-09 03:04:08 +03:00
|
|
|
|
2016-09-10 23:48:36 +03:00
|
|
|
// Ensure the transaction version supports the validation of sequence
|
|
|
|
// locks and CSV semantics.
|
|
|
|
if sweepTx.Version < 2 {
|
|
|
|
return nil, fmt.Errorf("version of passed transaction MUST "+
|
|
|
|
"be >= 2, not %v", sweepTx.Version)
|
|
|
|
}
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
|
|
|
// With the sequence number in place, we're now able to properly sign
|
|
|
|
// off on the sweep transaction.
|
2016-09-09 03:04:08 +03:00
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2017-02-04 02:28:13 +03:00
|
|
|
// Place an empty byte as the first item in the evaluated witness stack
|
|
|
|
// to force script execution to the timeout spend clause. We need to
|
|
|
|
// place an empty byte in order to ensure our script is still valid
|
|
|
|
// from the PoV of nodes that are enforcing minimal OP_IF/OP_NOTIF.
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 3))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2017-02-04 02:28:13 +03:00
|
|
|
witnessStack[1] = nil
|
2016-10-16 02:02:09 +03:00
|
|
|
witnessStack[2] = signDesc.WitnessScript
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2016-11-19 02:23:26 +03:00
|
|
|
// CommitSpendRevoke constructs a valid witness allowing a node to sweep the
|
2017-01-13 08:01:50 +03:00
|
|
|
// settled output of a malicious counterparty who broadcasts a revoked
|
2016-11-15 05:34:59 +03:00
|
|
|
// commitment transaction.
|
2017-07-30 04:18:16 +03:00
|
|
|
//
|
|
|
|
// NOTE: The passed SignDescriptor should include the raw (untweaked)
|
|
|
|
// revocation base public key of the receiver and also the proper double tweak
|
|
|
|
// value based on the commitment secret of the revoked commitment.
|
2016-11-19 02:23:26 +03:00
|
|
|
func CommitSpendRevoke(signer Signer, signDesc *SignDescriptor,
|
|
|
|
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2016-11-19 02:23:26 +03:00
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// Place a 1 as the first item in the evaluated witness stack to
|
|
|
|
// force script execution to the revocation clause.
|
|
|
|
witnessStack := wire.TxWitness(make([][]byte, 3))
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
witnessStack[1] = []byte{1}
|
2016-11-19 02:23:26 +03:00
|
|
|
witnessStack[2] = signDesc.WitnessScript
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2016-11-19 02:23:26 +03:00
|
|
|
// CommitSpendNoDelay constructs a valid witness allowing a node to spend their
|
2019-08-01 06:02:52 +03:00
|
|
|
// settled no-delay output on the counterparty's commitment transaction. If the
|
|
|
|
// tweakless field is true, then we'll omit the set where we tweak the pubkey
|
|
|
|
// with a random set of bytes, and use it directly in the witness stack.
|
2017-07-30 04:18:16 +03:00
|
|
|
//
|
|
|
|
// NOTE: The passed SignDescriptor should include the raw (untweaked) public
|
|
|
|
// key of the receiver and also the proper single tweak value based on the
|
|
|
|
// current commitment point.
|
2016-11-19 02:23:26 +03:00
|
|
|
func CommitSpendNoDelay(signer Signer, signDesc *SignDescriptor,
|
2019-08-01 06:02:52 +03:00
|
|
|
sweepTx *wire.MsgTx, tweakless bool) (wire.TxWitness, error) {
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2018-02-18 02:09:51 +03:00
|
|
|
if signDesc.KeyDesc.PubKey == nil {
|
|
|
|
return nil, fmt.Errorf("cannot generate witness with nil " +
|
|
|
|
"KeyDesc pubkey")
|
|
|
|
}
|
|
|
|
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// This is just a regular p2wkh spend which looks something like:
|
|
|
|
// * witness: <sig> <pubkey>
|
2017-07-31 06:23:24 +03:00
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
2017-07-31 06:23:24 +03:00
|
|
|
// Finally, we'll manually craft the witness. The witness here is the
|
2019-08-01 06:02:52 +03:00
|
|
|
// exact same as a regular p2wkh witness, depending on the value of the
|
|
|
|
// tweakless bool.
|
2017-07-31 06:23:24 +03:00
|
|
|
witness := make([][]byte, 2)
|
2020-04-06 03:06:38 +03:00
|
|
|
witness[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2019-08-01 06:02:52 +03:00
|
|
|
|
|
|
|
switch tweakless {
|
|
|
|
// If we're tweaking the key, then we use the tweaked public key as the
|
|
|
|
// last item in the witness stack which was originally used to created
|
|
|
|
// the pkScript we're spending.
|
|
|
|
case false:
|
|
|
|
witness[1] = TweakPubKeyWithTweak(
|
|
|
|
signDesc.KeyDesc.PubKey, signDesc.SingleTweak,
|
|
|
|
).SerializeCompressed()
|
|
|
|
|
|
|
|
// Otherwise, we can just use the raw pubkey, since there's no random
|
|
|
|
// value to be combined.
|
|
|
|
case true:
|
|
|
|
witness[1] = signDesc.KeyDesc.PubKey.SerializeCompressed()
|
|
|
|
}
|
2017-07-31 06:23:24 +03:00
|
|
|
|
|
|
|
return witness, nil
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
}
|
|
|
|
|
2020-03-06 18:11:45 +03:00
|
|
|
// CommitScriptUnencumbered constructs the public key script on the commitment
|
|
|
|
// transaction paying to the "other" party. The constructed output is a normal
|
|
|
|
// p2wkh output spendable immediately, requiring no contestation period.
|
|
|
|
func CommitScriptUnencumbered(key *btcec.PublicKey) ([]byte, error) {
|
|
|
|
// This script goes to the "other" party, and is spendable immediately.
|
|
|
|
builder := txscript.NewScriptBuilder()
|
|
|
|
builder.AddOp(txscript.OP_0)
|
|
|
|
builder.AddData(btcutil.Hash160(key.SerializeCompressed()))
|
|
|
|
|
|
|
|
return builder.Script()
|
|
|
|
}
|
|
|
|
|
|
|
|
// CommitScriptToRemoteConfirmed constructs the script for the output on the
|
|
|
|
// commitment transaction paying to the remote party of said commitment
|
|
|
|
// transaction. The money can only be spend after one confirmation.
|
|
|
|
//
|
|
|
|
// Possible Input Scripts:
|
|
|
|
// SWEEP: <sig>
|
|
|
|
//
|
|
|
|
// Output Script:
|
|
|
|
// <key> OP_CHECKSIGVERIFY
|
|
|
|
// 1 OP_CHECKSEQUENCEVERIFY
|
|
|
|
func CommitScriptToRemoteConfirmed(key *btcec.PublicKey) ([]byte, error) {
|
|
|
|
builder := txscript.NewScriptBuilder()
|
|
|
|
|
|
|
|
// Only the given key can spend the output.
|
|
|
|
builder.AddData(key.SerializeCompressed())
|
|
|
|
builder.AddOp(txscript.OP_CHECKSIGVERIFY)
|
|
|
|
|
|
|
|
// Check that the it has one confirmation.
|
|
|
|
builder.AddOp(txscript.OP_1)
|
|
|
|
builder.AddOp(txscript.OP_CHECKSEQUENCEVERIFY)
|
|
|
|
|
|
|
|
return builder.Script()
|
|
|
|
}
|
|
|
|
|
|
|
|
// CommitSpendToRemoteConfirmed constructs a valid witness allowing a node to
|
|
|
|
// spend their settled output on the counterparty's commitment transaction when
|
|
|
|
// it has one confirmetion. This is used for the anchor channel type. The
|
|
|
|
// spending key will always be non-tweaked for this output type.
|
|
|
|
func CommitSpendToRemoteConfirmed(signer Signer, signDesc *SignDescriptor,
|
|
|
|
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
|
|
|
|
|
|
|
|
if signDesc.KeyDesc.PubKey == nil {
|
|
|
|
return nil, fmt.Errorf("cannot generate witness with nil " +
|
|
|
|
"KeyDesc pubkey")
|
|
|
|
}
|
|
|
|
|
|
|
|
// Similar to non delayed output, only a signature is needed.
|
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// Finally, we'll manually craft the witness. The witness here is the
|
|
|
|
// signature and the redeem script.
|
|
|
|
witnessStack := make([][]byte, 2)
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2020-03-06 18:11:45 +03:00
|
|
|
witnessStack[1] = signDesc.WitnessScript
|
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2020-03-06 18:11:46 +03:00
|
|
|
// CommitScriptAnchor constructs the script for the anchor output spendable by
|
|
|
|
// the given key immediately, or by anyone after 16 confirmations.
|
|
|
|
//
|
|
|
|
// Possible Input Scripts:
|
|
|
|
// By owner: <sig>
|
|
|
|
// By anyone (after 16 conf): <emptyvector>
|
|
|
|
//
|
|
|
|
// Output Script:
|
|
|
|
// <funding_pubkey> OP_CHECKSIG OP_IFDUP
|
|
|
|
// OP_NOTIF
|
|
|
|
// OP_16 OP_CSV
|
|
|
|
// OP_ENDIF
|
|
|
|
func CommitScriptAnchor(key *btcec.PublicKey) ([]byte, error) {
|
|
|
|
builder := txscript.NewScriptBuilder()
|
|
|
|
|
|
|
|
// Spend immediately with key.
|
|
|
|
builder.AddData(key.SerializeCompressed())
|
|
|
|
builder.AddOp(txscript.OP_CHECKSIG)
|
|
|
|
|
|
|
|
// Duplicate the value if true, since it will be consumed by the NOTIF.
|
|
|
|
builder.AddOp(txscript.OP_IFDUP)
|
|
|
|
|
|
|
|
// Otherwise spendable by anyone after 16 confirmations.
|
|
|
|
builder.AddOp(txscript.OP_NOTIF)
|
|
|
|
builder.AddOp(txscript.OP_16)
|
|
|
|
builder.AddOp(txscript.OP_CHECKSEQUENCEVERIFY)
|
|
|
|
builder.AddOp(txscript.OP_ENDIF)
|
|
|
|
|
|
|
|
return builder.Script()
|
|
|
|
}
|
|
|
|
|
|
|
|
// CommitSpendAnchor constructs a valid witness allowing a node to spend their
|
|
|
|
// anchor output on the commitment transaction using their funding key. This is
|
|
|
|
// used for the anchor channel type.
|
|
|
|
func CommitSpendAnchor(signer Signer, signDesc *SignDescriptor,
|
|
|
|
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
|
|
|
|
|
|
|
|
if signDesc.KeyDesc.PubKey == nil {
|
|
|
|
return nil, fmt.Errorf("cannot generate witness with nil " +
|
|
|
|
"KeyDesc pubkey")
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create a signature.
|
|
|
|
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// The witness here is just a signature and the redeem script.
|
|
|
|
witnessStack := make([][]byte, 2)
|
2020-04-06 03:06:38 +03:00
|
|
|
witnessStack[0] = append(sweepSig.Serialize(), byte(signDesc.HashType))
|
2020-03-06 18:11:46 +03:00
|
|
|
witnessStack[1] = signDesc.WitnessScript
|
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// CommitSpendAnchorAnyone constructs a witness allowing anyone to spend the
|
|
|
|
// anchor output after it has gotten 16 confirmations. Since no signing is
|
|
|
|
// required, only knowledge of the redeem script is necessary to spend it.
|
|
|
|
func CommitSpendAnchorAnyone(script []byte) (wire.TxWitness, error) {
|
|
|
|
// The witness here is just the redeem script.
|
|
|
|
witnessStack := make([][]byte, 2)
|
|
|
|
witnessStack[0] = nil
|
|
|
|
witnessStack[1] = script
|
|
|
|
|
|
|
|
return witnessStack, nil
|
|
|
|
}
|
|
|
|
|
2017-07-30 04:00:23 +03:00
|
|
|
// SingleTweakBytes computes set of bytes we call the single tweak. The purpose
|
|
|
|
// of the single tweak is to randomize all regular delay and payment base
|
|
|
|
// points. To do this, we generate a hash that binds the commitment point to
|
|
|
|
// the pay/delay base point. The end end results is that the basePoint is
|
|
|
|
// tweaked as follows:
|
|
|
|
//
|
|
|
|
// * key = basePoint + sha256(commitPoint || basePoint)*G
|
|
|
|
func SingleTweakBytes(commitPoint, basePoint *btcec.PublicKey) []byte {
|
|
|
|
h := sha256.New()
|
|
|
|
h.Write(commitPoint.SerializeCompressed())
|
|
|
|
h.Write(basePoint.SerializeCompressed())
|
|
|
|
return h.Sum(nil)
|
|
|
|
}
|
|
|
|
|
|
|
|
// TweakPubKey tweaks a public base point given a per commitment point. The per
|
|
|
|
// commitment point is a unique point on our target curve for each commitment
|
|
|
|
// transaction. When tweaking a local base point for use in a remote commitment
|
|
|
|
// transaction, the remote party's current per commitment point is to be used.
|
|
|
|
// The opposite applies for when tweaking remote keys. Precisely, the following
|
|
|
|
// operation is used to "tweak" public keys:
|
|
|
|
//
|
|
|
|
// tweakPub := basePoint + sha256(commitPoint || basePoint) * G
|
|
|
|
// := G*k + sha256(commitPoint || basePoint)*G
|
2017-09-25 21:25:58 +03:00
|
|
|
// := G*(k + sha256(commitPoint || basePoint))
|
2017-07-30 04:00:23 +03:00
|
|
|
//
|
|
|
|
// Therefore, if a party possess the value k, the private key of the base
|
2019-05-10 18:14:19 +03:00
|
|
|
// point, then they are able to derive the proper private key for the
|
|
|
|
// revokeKey by computing:
|
2017-07-30 04:00:23 +03:00
|
|
|
//
|
|
|
|
// revokePriv := k + sha256(commitPoint || basePoint) mod N
|
|
|
|
//
|
|
|
|
// Where N is the order of the sub-group.
|
|
|
|
//
|
2017-09-25 21:25:58 +03:00
|
|
|
// The rationale for tweaking all public keys used within the commitment
|
|
|
|
// contracts is to ensure that all keys are properly delinearized to avoid any
|
2017-07-30 04:00:23 +03:00
|
|
|
// funny business when jointly collaborating to compute public and private
|
|
|
|
// keys. Additionally, the use of the per commitment point ensures that each
|
|
|
|
// commitment state houses a unique set of keys which is useful when creating
|
|
|
|
// blinded channel outsourcing protocols.
|
|
|
|
//
|
|
|
|
// TODO(roasbeef): should be using double-scalar mult here
|
|
|
|
func TweakPubKey(basePoint, commitPoint *btcec.PublicKey) *btcec.PublicKey {
|
|
|
|
tweakBytes := SingleTweakBytes(commitPoint, basePoint)
|
2017-09-25 23:05:49 +03:00
|
|
|
return TweakPubKeyWithTweak(basePoint, tweakBytes)
|
2017-07-30 04:00:23 +03:00
|
|
|
}
|
|
|
|
|
2017-07-31 03:42:35 +03:00
|
|
|
// TweakPubKeyWithTweak is the exact same as the TweakPubKey function, however
|
|
|
|
// it accepts the raw tweak bytes directly rather than the commitment point.
|
|
|
|
func TweakPubKeyWithTweak(pubKey *btcec.PublicKey, tweakBytes []byte) *btcec.PublicKey {
|
2017-09-25 23:05:49 +03:00
|
|
|
curve := btcec.S256()
|
|
|
|
tweakX, tweakY := curve.ScalarBaseMult(tweakBytes)
|
2017-07-31 03:42:35 +03:00
|
|
|
|
2017-09-25 23:05:49 +03:00
|
|
|
// TODO(roasbeef): check that both passed on curve?
|
|
|
|
x, y := curve.Add(pubKey.X, pubKey.Y, tweakX, tweakY)
|
2017-07-31 03:42:35 +03:00
|
|
|
return &btcec.PublicKey{
|
|
|
|
X: x,
|
|
|
|
Y: y,
|
2017-09-25 23:05:49 +03:00
|
|
|
Curve: curve,
|
2017-07-31 03:42:35 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-07-31 04:22:38 +03:00
|
|
|
// TweakPrivKey tweaks the private key of a public base point given a per
|
2017-07-30 04:00:23 +03:00
|
|
|
// commitment point. The per commitment secret is the revealed revocation
|
|
|
|
// secret for the commitment state in question. This private key will only need
|
|
|
|
// to be generated in the case that a channel counter party broadcasts a
|
|
|
|
// revoked state. Precisely, the following operation is used to derive a
|
|
|
|
// tweaked private key:
|
|
|
|
//
|
|
|
|
// * tweakPriv := basePriv + sha256(commitment || basePub) mod N
|
|
|
|
//
|
|
|
|
// Where N is the order of the sub-group.
|
|
|
|
func TweakPrivKey(basePriv *btcec.PrivateKey, commitTweak []byte) *btcec.PrivateKey {
|
|
|
|
// tweakInt := sha256(commitPoint || basePub)
|
|
|
|
tweakInt := new(big.Int).SetBytes(commitTweak)
|
|
|
|
|
|
|
|
tweakInt = tweakInt.Add(tweakInt, basePriv.D)
|
|
|
|
tweakInt = tweakInt.Mod(tweakInt, btcec.S256().N)
|
|
|
|
|
|
|
|
tweakPriv, _ := btcec.PrivKeyFromBytes(btcec.S256(), tweakInt.Bytes())
|
|
|
|
return tweakPriv
|
|
|
|
}
|
|
|
|
|
2016-08-13 01:37:35 +03:00
|
|
|
// DeriveRevocationPubkey derives the revocation public key given the
|
2017-01-13 08:01:50 +03:00
|
|
|
// counterparty's commitment key, and revocation preimage derived via a
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// pseudo-random-function. In the event that we (for some reason) broadcast a
|
|
|
|
// revoked commitment transaction, then if the other party knows the revocation
|
2017-01-13 08:01:50 +03:00
|
|
|
// preimage, then they'll be able to derive the corresponding private key to
|
2016-11-15 05:34:59 +03:00
|
|
|
// this private key by exploiting the homomorphism in the elliptic curve group:
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// * https://en.wikipedia.org/wiki/Group_homomorphism#Homomorphisms_of_abelian_groups
|
|
|
|
//
|
|
|
|
// The derivation is performed as follows:
|
|
|
|
//
|
2017-07-30 04:00:23 +03:00
|
|
|
// revokeKey := revokeBase * sha256(revocationBase || commitPoint) +
|
|
|
|
// commitPoint * sha256(commitPoint || revocationBase)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
//
|
2017-07-30 04:00:23 +03:00
|
|
|
// := G*(revokeBasePriv * sha256(revocationBase || commitPoint)) +
|
|
|
|
// G*(commitSecret * sha256(commitPoint || revocationBase))
|
|
|
|
//
|
|
|
|
// := G*(revokeBasePriv * sha256(revocationBase || commitPoint) +
|
|
|
|
// commitSecret * sha256(commitPoint || revocationBase))
|
|
|
|
//
|
|
|
|
// Therefore, once we divulge the revocation secret, the remote peer is able to
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// compute the proper private key for the revokeKey by computing:
|
2017-07-30 04:00:23 +03:00
|
|
|
//
|
|
|
|
// revokePriv := (revokeBasePriv * sha256(revocationBase || commitPoint)) +
|
|
|
|
// (commitSecret * sha256(commitPoint || revocationBase)) mod N
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
//
|
|
|
|
// Where N is the order of the sub-group.
|
2017-07-30 04:00:23 +03:00
|
|
|
func DeriveRevocationPubkey(revokeBase, commitPoint *btcec.PublicKey) *btcec.PublicKey {
|
|
|
|
|
|
|
|
// R = revokeBase * sha256(revocationBase || commitPoint)
|
|
|
|
revokeTweakBytes := SingleTweakBytes(revokeBase, commitPoint)
|
|
|
|
rX, rY := btcec.S256().ScalarMult(revokeBase.X, revokeBase.Y,
|
|
|
|
revokeTweakBytes)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:00:23 +03:00
|
|
|
// C = commitPoint * sha256(commitPoint || revocationBase)
|
|
|
|
commitTweakBytes := SingleTweakBytes(commitPoint, revokeBase)
|
|
|
|
cX, cY := btcec.S256().ScalarMult(commitPoint.X, commitPoint.Y,
|
|
|
|
commitTweakBytes)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
|
|
|
// Now that we have the revocation point, we add this to their commitment
|
|
|
|
// public key in order to obtain the revocation public key.
|
2017-07-30 04:00:23 +03:00
|
|
|
//
|
|
|
|
// P = R + C
|
|
|
|
revX, revY := btcec.S256().Add(rX, rY, cX, cY)
|
|
|
|
return &btcec.PublicKey{
|
|
|
|
X: revX,
|
|
|
|
Y: revY,
|
|
|
|
Curve: btcec.S256(),
|
|
|
|
}
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
}
|
|
|
|
|
2016-08-13 01:37:35 +03:00
|
|
|
// DeriveRevocationPrivKey derives the revocation private key given a node's
|
2017-01-13 08:01:50 +03:00
|
|
|
// commitment private key, and the preimage to a previously seen revocation
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
// hash. Using this derived private key, a node is able to claim the output
|
|
|
|
// within the commitment transaction of a node in the case that they broadcast
|
|
|
|
// a previously revoked commitment transaction.
|
|
|
|
//
|
2017-12-18 05:40:05 +03:00
|
|
|
// The private key is derived as follows:
|
2017-07-30 04:00:23 +03:00
|
|
|
// revokePriv := (revokeBasePriv * sha256(revocationBase || commitPoint)) +
|
|
|
|
// (commitSecret * sha256(commitPoint || revocationBase)) mod N
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
//
|
|
|
|
// Where N is the order of the sub-group.
|
2017-07-30 04:00:23 +03:00
|
|
|
func DeriveRevocationPrivKey(revokeBasePriv *btcec.PrivateKey,
|
|
|
|
commitSecret *btcec.PrivateKey) *btcec.PrivateKey {
|
|
|
|
|
|
|
|
// r = sha256(revokeBasePub || commitPoint)
|
|
|
|
revokeTweakBytes := SingleTweakBytes(revokeBasePriv.PubKey(),
|
|
|
|
commitSecret.PubKey())
|
|
|
|
revokeTweakInt := new(big.Int).SetBytes(revokeTweakBytes)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:00:23 +03:00
|
|
|
// c = sha256(commitPoint || revokeBasePub)
|
|
|
|
commitTweakBytes := SingleTweakBytes(commitSecret.PubKey(),
|
|
|
|
revokeBasePriv.PubKey())
|
|
|
|
commitTweakInt := new(big.Int).SetBytes(commitTweakBytes)
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
|
2017-07-30 04:00:23 +03:00
|
|
|
// Finally to derive the revocation secret key we'll perform the
|
|
|
|
// following operation:
|
|
|
|
//
|
|
|
|
// k = (revocationPriv * r) + (commitSecret * c) mod N
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
//
|
|
|
|
// This works since:
|
2017-07-30 04:00:23 +03:00
|
|
|
// P = (G*a)*b + (G*c)*d
|
|
|
|
// P = G*(a*b) + G*(c*d)
|
|
|
|
// P = G*(a*b + c*d)
|
|
|
|
revokeHalfPriv := revokeTweakInt.Mul(revokeTweakInt, revokeBasePriv.D)
|
|
|
|
commitHalfPriv := commitTweakInt.Mul(commitTweakInt, commitSecret.D)
|
|
|
|
|
|
|
|
revocationPriv := revokeHalfPriv.Add(revokeHalfPriv, commitHalfPriv)
|
|
|
|
revocationPriv = revocationPriv.Mod(revocationPriv, btcec.S256().N)
|
|
|
|
|
|
|
|
priv, _ := btcec.PrivKeyFromBytes(btcec.S256(), revocationPriv.Bytes())
|
|
|
|
return priv
|
lnwallet: update HTLC+commitment scripts
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
2016-06-27 21:33:59 +03:00
|
|
|
}
|
2016-06-30 22:08:27 +03:00
|
|
|
|
2017-07-30 04:00:23 +03:00
|
|
|
// ComputeCommitmentPoint generates a commitment point given a commitment
|
|
|
|
// secret. The commitment point for each state is used to randomize each key in
|
|
|
|
// the key-ring and also to used as a tweak to derive new public+private keys
|
|
|
|
// for the state.
|
|
|
|
func ComputeCommitmentPoint(commitSecret []byte) *btcec.PublicKey {
|
|
|
|
x, y := btcec.S256().ScalarBaseMult(commitSecret)
|
|
|
|
|
|
|
|
return &btcec.PublicKey{
|
|
|
|
X: x,
|
|
|
|
Y: y,
|
|
|
|
Curve: btcec.S256(),
|
|
|
|
}
|
|
|
|
}
|