lnd.xprv/chainntnfs/interface_test.go

1135 lines
32 KiB
Go
Raw Normal View History

package chainntnfs_test
import (
"bytes"
"fmt"
"io/ioutil"
"log"
"os"
"path/filepath"
"sync"
"testing"
"time"
"github.com/lightninglabs/neutrino"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcwallet/walletdb"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg"
"github.com/roasbeef/btcd/integration/rpctest"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
// Required to auto-register the btcd backed ChainNotifier
// implementation.
_ "github.com/lightningnetwork/lnd/chainntnfs/btcdnotify"
// Required to auto-register the neutrino backed ChainNotifier
// implementation.
_ "github.com/lightningnetwork/lnd/chainntnfs/neutrinonotify"
_ "github.com/roasbeef/btcwallet/walletdb/bdb" // Required to register the boltdb walletdb implementation.
)
var (
testPrivKey = []byte{
0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda,
0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17,
0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d,
0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9,
}
netParams = &chaincfg.SimNetParams
privKey, pubKey = btcec.PrivKeyFromBytes(btcec.S256(), testPrivKey)
addrPk, _ = btcutil.NewAddressPubKey(pubKey.SerializeCompressed(),
netParams)
testAddr = addrPk.AddressPubKeyHash()
)
func getTestTxId(miner *rpctest.Harness) (*chainhash.Hash, error) {
script, err := txscript.PayToAddrScript(testAddr)
if err != nil {
return nil, err
}
outputs := []*wire.TxOut{
2017-02-23 22:02:08 +03:00
{
Value: 2e8,
PkScript: script,
},
}
return miner.SendOutputs(outputs, 10)
}
func testSingleConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
// We'd like to test the case of being notified once a txid reaches
// a *single* confirmation.
//
// So first, let's send some coins to "ourself", obtainig a txid.
// We're spending from a coinbase output here, so we use the dedicated
// function.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Now that we have a txid, register a confirmation notiication with
// the chainntfn source.
numConfs := uint32(1)
confIntent, err := notifier.RegisterConfirmationsNtfn(txid, numConfs,
uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// Now generate a single block, the transaction should be included which
// should trigger a notification event.
blockHash, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
select {
case confInfo := <-confIntent.Confirmed:
// Finally, we'll verify that the tx index returned is the exact same
// as the tx index of the transaction within the block itself.
msgBlock, err := miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to fetch block: %v", err)
}
block := btcutil.NewBlock(msgBlock)
specifiedTxHash, err := block.TxHash(int(confInfo.TxIndex))
if err != nil {
t.Fatalf("unable to index into block: %v", err)
}
if !specifiedTxHash.IsEqual(txid) {
t.Fatalf("mismatched tx indexes: expected %v, got %v",
txid, specifiedTxHash)
}
case <-time.After(20 * time.Second):
t.Fatalf("confirmation notification never received")
}
}
func testMultiConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
// We'd like to test the case of being notified once a txid reaches
// N confirmations, where N > 1.
//
// Again, we'll begin by creating a fresh transaction, so we can obtain
// a fresh txid.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test addr: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
numConfs := uint32(6)
confIntent, err := notifier.RegisterConfirmationsNtfn(txid, numConfs,
uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// Now generate a six blocks. The transaction should be included in the
// first block, which will be built upon by the other 5 blocks.
if _, err := miner.Node.Generate(6); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// TODO(roasbeef): reduce all timeouts after neutrino sync tightended
// up
select {
case <-confIntent.Confirmed:
break
case <-time.After(20 * time.Second):
t.Fatalf("confirmation notification never received")
}
}
func testBatchConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
// We'd like to test a case of serving notifiations to multiple
// clients, each requesting to be notified once a txid receives
// various numbers of confirmations.
confSpread := [6]uint32{1, 2, 3, 6, 20, 22}
confIntents := make([]*chainntnfs.ConfirmationEvent, len(confSpread))
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Create a new txid spending miner coins for each confirmation entry
// in confSpread, we collect each conf intent into a slice so we can
// verify they're each notified at the proper number of confirmations
// below.
for i, numConfs := range confSpread {
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test addr: %v", err)
}
confIntent, err := notifier.RegisterConfirmationsNtfn(txid,
numConfs, uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
confIntents[i] = confIntent
}
initialConfHeight := uint32(currentHeight + 1)
// Now, for each confirmation intent, generate the delta number of blocks
// needed to trigger the confirmation notification. A goroutine is
// spawned in order to verify the proper notification is triggered.
for i, numConfs := range confSpread {
var blocksToGen uint32
// If this is the last instance, manually index to generate the
// proper block delta in order to avoid a panic.
if i == len(confSpread)-1 {
blocksToGen = confSpread[len(confSpread)-1] - confSpread[len(confSpread)-2]
} else {
blocksToGen = confSpread[i+1] - confSpread[i]
}
// Generate the number of blocks necessary to trigger this
// current confirmation notification.
if _, err := miner.Node.Generate(blocksToGen); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
select {
case conf := <-confIntents[i].Confirmed:
// All of the notifications above were originally
// confirmed in the same block. The returned
// notification should list the initial confirmation
// height rather than the height they were _fully_
// confirmed.
if conf.BlockHeight != initialConfHeight {
t.Fatalf("notification has incorrect initial "+
"conf height: expected %v, got %v",
initialConfHeight, conf.BlockHeight)
}
continue
case <-time.After(20 * time.Second):
t.Fatalf("confirmation notification never received: %v", numConfs)
}
}
}
func createSpendableOutput(miner *rpctest.Harness,
t *testing.T) (*wire.OutPoint, []byte) {
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test addr: %v", err)
}
// Mine a single block which should include that txid above.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// Now that we have the txid, fetch the transaction itself.
wrappedTx, err := miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get new tx: %v", err)
}
tx := wrappedTx.MsgTx()
// Locate the output index sent to us. We need this so we can construct
// a spending txn below.
outIndex := -1
var pkScript []byte
for i, txOut := range tx.TxOut {
if bytes.Contains(txOut.PkScript, testAddr.ScriptAddress()) {
pkScript = txOut.PkScript
outIndex = i
break
}
}
if outIndex == -1 {
t.Fatalf("unable to locate new output")
}
return wire.NewOutPoint(txid, uint32(outIndex)), pkScript
}
func createSpendTx(outpoint *wire.OutPoint, pkScript []byte,
t *testing.T) *wire.MsgTx {
spendingTx := wire.NewMsgTx(1)
spendingTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *outpoint,
})
spendingTx.AddTxOut(&wire.TxOut{
Value: 1e8,
PkScript: pkScript,
})
sigScript, err := txscript.SignatureScript(spendingTx, 0, pkScript,
txscript.SigHashAll, privKey, true)
if err != nil {
t.Fatalf("unable to sign tx: %v", err)
}
spendingTx.TxIn[0].SignatureScript = sigScript
return spendingTx
}
func testSpendNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
// We'd like to test the spend notifications for all ChainNotifier
// concrete implementations.
//
// To do so, we first create a new output to our test target address.
outpoint, pkScript := createSpendableOutput(miner, t)
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Now that we have a output index and the pkScript, register for a
// spentness notification for the newly created output with multiple
// clients in order to ensure the implementation can support
// multi-client spend notifications.
const numClients = 5
spendClients := make([]*chainntnfs.SpendEvent, numClients)
for i := 0; i < numClients; i++ {
spentIntent, err := notifier.RegisterSpendNtfn(outpoint,
uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register for spend ntfn: %v", err)
}
spendClients[i] = spentIntent
}
// Next, create a new transaction spending that output.
spendingTx := createSpendTx(outpoint, pkScript, t)
// Broadcast our spending transaction.
spenderSha, err := miner.Node.SendRawTransaction(spendingTx, true)
if err != nil {
2017-08-11 07:15:36 +03:00
t.Fatalf("unable to broadcast tx: %v", err)
}
// Now we mine a single block, which should include our spend. The
// notification should also be sent off.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
_, currentHeight, err = miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// For each event we registered for above, we create a goroutine which
// will listen on the event channel, passing it proxying each
2017-08-11 07:15:36 +03:00
// notification into a single which will be examined below.
spentNtfn := make(chan *chainntnfs.SpendDetail, numClients)
for i := 0; i < numClients; i++ {
go func(c *chainntnfs.SpendEvent) {
spentNtfn <- <-c.Spend
}(spendClients[i])
}
for i := 0; i < numClients; i++ {
select {
case ntfn := <-spentNtfn:
// We've received the spend nftn. So now verify all the
// fields have been set properly.
if *ntfn.SpentOutPoint != *outpoint {
t.Fatalf("ntfn includes wrong output, reports "+
"%v instead of %v",
ntfn.SpentOutPoint, outpoint)
}
if !bytes.Equal(ntfn.SpenderTxHash[:], spenderSha[:]) {
t.Fatalf("ntfn includes wrong spender tx sha, "+
2017-08-11 07:15:36 +03:00
"reports %v instead of %v",
ntfn.SpenderTxHash[:], spenderSha[:])
}
if ntfn.SpenderInputIndex != 0 {
t.Fatalf("ntfn includes wrong spending input "+
"index, reports %v, should be %v",
ntfn.SpenderInputIndex, 0)
}
if ntfn.SpendingHeight != currentHeight {
t.Fatalf("ntfn has wrong spending height: "+
"expected %v, got %v", currentHeight,
ntfn.SpendingHeight)
}
case <-time.After(30 * time.Second):
t.Fatalf("spend ntfn never received")
}
}
}
func testBlockEpochNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
// We'd like to test the case of multiple registered clients receiving
// block epoch notifications.
const numBlocks = 10
const numClients = 5
var wg sync.WaitGroup
// Create numClients clients which will listen for block notifications. We
// expect each client to receive 10 notifications for each of the ten
// blocks we generate below. So we'll use a WaitGroup to synchronize the
// test.
for i := 0; i < numClients; i++ {
epochClient, err := notifier.RegisterBlockEpochNtfn()
if err != nil {
t.Fatalf("unable to register for epoch notification")
}
wg.Add(numBlocks)
go func() {
for i := 0; i < numBlocks; i++ {
<-epochClient.Epochs
wg.Done()
}
}()
}
epochsSent := make(chan struct{})
go func() {
wg.Wait()
close(epochsSent)
}()
// Now generate 10 blocks, the clients above should each receive 10
// notifications, thereby unblocking the goroutine above.
if _, err := miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
select {
case <-epochsSent:
case <-time.After(30 * time.Second):
t.Fatalf("all notifications not sent")
}
}
func testMultiClientConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
// We'd like to test the case of a multiple clients registered to
// receive a confirmation notification for the same transaction.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
var wg sync.WaitGroup
const (
numConfsClients = 5
numConfs = 1
)
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Register for a conf notification for the above generated txid with
// numConfsClients distinct clients.
for i := 0; i < numConfsClients; i++ {
confClient, err := notifier.RegisterConfirmationsNtfn(txid,
numConfs, uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register for confirmation: %v", err)
}
wg.Add(1)
go func() {
<-confClient.Confirmed
wg.Done()
}()
}
confsSent := make(chan struct{})
go func() {
wg.Wait()
close(confsSent)
}()
// Finally, generate a single block which should trigger the unblocking
// of all numConfsClients blocked on the channel read above.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
select {
case <-confsSent:
case <-time.After(30 * time.Second):
t.Fatalf("all confirmation notifications not sent")
}
}
// Tests the case in which a confirmation notification is requested for a
// transaction that has already been included in a block. In this case, the
// confirmation notification should be dispatched immediately.
func testTxConfirmedBeforeNtfnRegistration(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
// First, let's send some coins to "ourself", obtaining a txid. We're
// spending from a coinbase output here, so we use the dedicated
// function.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
// Now generate one block. The notifier must check older blocks when
// the confirmation event is registered below to ensure that the TXID
// hasn't already been included in the chain, otherwise the
// notification will never be sent.
blockHash, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Now that we have a txid, register a confirmation notification with
// the chainntfn source.
numConfs := uint32(1)
confIntent, err := notifier.RegisterConfirmationsNtfn(txid, numConfs,
uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
select {
case confInfo := <-confIntent.Confirmed:
// Finally, we'll verify that the tx index returned is the exact same
// as the tx index of the transaction within the block itself.
msgBlock, err := miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to fetch block: %v", err)
}
block := btcutil.NewBlock(msgBlock)
specifiedTxHash, err := block.TxHash(int(confInfo.TxIndex))
if err != nil {
t.Fatalf("unable to index into block: %v", err)
}
if !specifiedTxHash.IsEqual(txid) {
t.Fatalf("mismatched tx indexes: expected %v, got %v",
txid, specifiedTxHash)
}
// We'll also ensure that the block height has been set
// properly.
if confInfo.BlockHeight != uint32(currentHeight) {
t.Fatalf("incorrect block height: expected %v, got %v",
confInfo.BlockHeight, currentHeight)
}
break
case <-time.After(20 * time.Second):
t.Fatalf("confirmation notification never received")
}
// Next, we want to test fully dispatching the notification for a
// transaction that has been *partially* confirmed. So we'll create
// another test txid.
txid, err = getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
_, currentHeight, err = miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// We'll request 6 confirmations for the above generated txid, but we
// will generate the confirmations in chunks.
numConfs = 6
time.Sleep(time.Second * 2)
// First, generate 2 confirmations.
if _, err := miner.Node.Generate(2); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
time.Sleep(time.Second * 2)
// Next, register for the notification *after* the transition has
// already been partially confirmed.
confIntent, err = notifier.RegisterConfirmationsNtfn(txid, numConfs,
uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// We shouldn't receive a notification at this point, as the
// transaction hasn't yet been fully confirmed.
select {
case <-confIntent.Confirmed:
t.Fatalf("received confirmation notification but shouldn't " +
"have")
default:
// Expected case
}
// With the notification registered, generate another 3 blocks, this
// shouldn't yet dispatch the notification.
if _, err := miner.Node.Generate(3); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
select {
case <-confIntent.Confirmed:
t.Fatalf("received confirmation notification but shouldn't " +
"have")
default:
// Expected case
}
// Finally, we'll mine the final block which should dispatch the
// notification.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
select {
case <-confIntent.Confirmed:
break
case <-time.After(30 * time.Second):
t.Fatalf("confirmation notification never received")
}
}
// Test the case of a notification consumer having forget or being delayed in
// checking for a confirmation. This should not cause the notifier to stop
// working
func testLazyNtfnConsumer(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
// Create a transaction to be notified about. We'll register for
// notifications on this transaction but won't be prompt in checking them
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
numConfs := uint32(3)
// Add a block right before registering, this makes race conditions
// between the historical dispatcher and the normal dispatcher more obvious
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
firstConfIntent, err := notifier.RegisterConfirmationsNtfn(txid, numConfs,
uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// Generate another 2 blocks, this should dispatch the confirm notification
if _, err := miner.Node.Generate(2); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Now make another transaction, just because we haven't checked to see
// if the first transaction has confirmed doesn't mean that we shouldn't
// be able to see if this transaction confirms first
txid, err = getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
_, currentHeight, err = miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
numConfs = 1
secondConfIntent, err := notifier.RegisterConfirmationsNtfn(txid, numConfs,
uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
select {
case <-secondConfIntent.Confirmed:
// Successfully receive the second notification
break
case <-time.After(30 * time.Second):
t.Fatalf("Second confirmation notification never received")
}
// Make sure the first tx confirmed successfully
select {
case <-firstConfIntent.Confirmed:
break
case <-time.After(30 * time.Second):
t.Fatalf("First confirmation notification never received")
}
}
// Tests the case in which a spend notification is requested for a spend that
// has already been included in a block. In this case, the spend notification
// should be dispatched immediately.
func testSpendBeforeNtfnRegistration(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
// We'd like to test the spend notifications for all ChainNotifier
// concrete implementations.
//
// To do so, we first create a new output to our test target address.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test addr: %v", err)
}
// Mine a single block which should include that txid above.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// Now that we have the txid, fetch the transaction itself.
wrappedTx, err := miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get new tx: %v", err)
}
tx := wrappedTx.MsgTx()
// Locate the output index sent to us. We need this so we can construct
// a spending txn below.
outIndex := -1
var pkScript []byte
for i, txOut := range tx.TxOut {
if bytes.Contains(txOut.PkScript, testAddr.ScriptAddress()) {
pkScript = txOut.PkScript
outIndex = i
break
}
}
if outIndex == -1 {
t.Fatalf("unable to locate new output")
}
// Now that we've found the output index, register for a spentness
// notification for the newly created output.
outpoint := wire.NewOutPoint(txid, uint32(outIndex))
// Next, create a new transaction spending that output.
spendingTx := wire.NewMsgTx(1)
spendingTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *outpoint,
})
spendingTx.AddTxOut(&wire.TxOut{
Value: 1e8,
PkScript: pkScript,
})
sigScript, err := txscript.SignatureScript(spendingTx, 0, pkScript,
txscript.SigHashAll, privKey, true)
if err != nil {
t.Fatalf("unable to sign tx: %v", err)
}
spendingTx.TxIn[0].SignatureScript = sigScript
// Broadcast our spending transaction.
spenderSha, err := miner.Node.SendRawTransaction(spendingTx, true)
if err != nil {
t.Fatalf("unable to brodacst tx: %v", err)
}
// Now we mine an additional block, which should include our spend.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
_, currentHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Now, we register to be notified of a spend that has already
// happened. The notifier should dispatch a spend notification
// immediately.
spentIntent, err := notifier.RegisterSpendNtfn(outpoint,
uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register for spend ntfn: %v", err)
}
spentNtfn := make(chan *chainntnfs.SpendDetail)
go func() {
spentNtfn <- <-spentIntent.Spend
}()
select {
case ntfn := <-spentNtfn:
// We've received the spend nftn. So now verify all the fields
// have been set properly.
if *ntfn.SpentOutPoint != *outpoint {
t.Fatalf("ntfn includes wrong output, reports %v instead of %v",
ntfn.SpentOutPoint, outpoint)
}
if !bytes.Equal(ntfn.SpenderTxHash[:], spenderSha[:]) {
t.Fatalf("ntfn includes wrong spender tx sha, reports %v intead of %v",
ntfn.SpenderTxHash[:], spenderSha[:])
}
if ntfn.SpenderInputIndex != 0 {
t.Fatalf("ntfn includes wrong spending input index, reports %v, should be %v",
ntfn.SpenderInputIndex, 0)
}
case <-time.After(30 * time.Second):
t.Fatalf("spend ntfn never received")
}
}
func testCancelSpendNtfn(node *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
// We'd like to test that once a spend notification is registered, it
// can be cancelled before the notification is dispatched.
// First, we'll start by creating a new output that we can spend
// ourselves.
outpoint, pkScript := createSpendableOutput(node, t)
_, currentHeight, err := node.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current height: %v", err)
}
// Create two clients that each registered to the spend notification.
// We'll cancel the notification for the first client and leave the
// notification for the second client enabled.
const numClients = 2
spendClients := make([]*chainntnfs.SpendEvent, numClients)
for i := 0; i < numClients; i++ {
spentIntent, err := notifier.RegisterSpendNtfn(outpoint,
uint32(currentHeight))
if err != nil {
t.Fatalf("unable to register for spend ntfn: %v", err)
}
spendClients[i] = spentIntent
}
// Next, create a new transaction spending that output.
spendingTx := createSpendTx(outpoint, pkScript, t)
// Before we broadcast the spending transaction, we'll cancel the
// notification of the first client.
spendClients[1].Cancel()
// Broadcast our spending transaction.
spenderSha, err := node.Node.SendRawTransaction(spendingTx, true)
if err != nil {
t.Fatalf("unable to brodacst tx: %v", err)
}
// Now we mine a single block, which should include our spend. The
// notification should also be sent off.
if _, err := node.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// However, the spend notification for the first client should have
// been dispatched.
select {
case ntfn := <-spendClients[0].Spend:
// We've received the spend nftn. So now verify all the
// fields have been set properly.
if *ntfn.SpentOutPoint != *outpoint {
t.Fatalf("ntfn includes wrong output, reports "+
"%v instead of %v",
ntfn.SpentOutPoint, outpoint)
}
if !bytes.Equal(ntfn.SpenderTxHash[:], spenderSha[:]) {
t.Fatalf("ntfn includes wrong spender tx sha, "+
"reports %v intead of %v",
ntfn.SpenderTxHash[:], spenderSha[:])
}
if ntfn.SpenderInputIndex != 0 {
t.Fatalf("ntfn includes wrong spending input "+
"index, reports %v, should be %v",
ntfn.SpenderInputIndex, 0)
}
case <-time.After(20 * time.Second):
t.Fatalf("spend ntfn never received")
}
// However, The spend notification of the second client should NOT have
// been dispatched.
select {
case _, ok := <-spendClients[1].Spend:
if ok {
t.Fatalf("spend ntfn should have been cancelled")
}
case <-time.After(20 * time.Second):
t.Fatalf("spend ntfn never cancelled")
}
}
func testCancelEpochNtfn(node *rpctest.Harness, notifier chainntnfs.ChainNotifier,
t *testing.T) {
// We'd like to ensure that once a client cancels their block epoch
// notifications, no further notifications are sent over the channel
// if/when new blocks come in.
const numClients = 2
epochClients := make([]*chainntnfs.BlockEpochEvent, numClients)
for i := 0; i < numClients; i++ {
epochClient, err := notifier.RegisterBlockEpochNtfn()
if err != nil {
t.Fatalf("unable to register for epoch notification")
}
epochClients[i] = epochClient
}
// Now before we mine any blocks, cancel the notification for the first
// epoch client.
epochClients[0].Cancel()
// Now mine a single block, this should trigger the logic to dispatch
// epoch notifications.
if _, err := node.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// The epoch notification for the first client shouldn't have been
// dispatched.
select {
case _, ok := <-epochClients[0].Epochs:
if ok {
t.Fatalf("epoch notification should've been cancelled")
}
case <-time.After(2 * time.Second):
t.Fatalf("epoch notification not sent")
}
// However, the epoch notification for the second client should have
// been dispatched as normal.
select {
case _, ok := <-epochClients[1].Epochs:
if !ok {
t.Fatalf("epoch was cancelled")
}
case <-time.After(20 * time.Second):
t.Fatalf("epoch notification not sent")
}
}
type testCase struct {
name string
test func(node *rpctest.Harness, notifier chainntnfs.ChainNotifier, t *testing.T)
}
var ntfnTests = []testCase{
{
name: "single conf ntfn",
test: testSingleConfirmationNotification,
},
{
name: "multi conf ntfn",
test: testMultiConfirmationNotification,
},
{
name: "batch conf ntfn",
test: testBatchConfirmationNotification,
},
{
name: "multi client conf",
test: testMultiClientConfirmationNotification,
},
{
name: "spend ntfn",
test: testSpendNotification,
},
{
name: "block epoch",
test: testBlockEpochNotification,
},
{
name: "historical conf dispatch",
test: testTxConfirmedBeforeNtfnRegistration,
},
{
name: "historical spend dispatch",
test: testSpendBeforeNtfnRegistration,
},
{
name: "cancel spend ntfn",
test: testCancelSpendNtfn,
},
{
name: "cancel epoch ntfn",
test: testCancelEpochNtfn,
},
{
name: "lazy ntfn consumer",
test: testLazyNtfnConsumer,
},
}
// TestInterfaces tests all registered interfaces with a unified set of tests
// which exercise each of the required methods found within the ChainNotifier
// interface.
//
// NOTE: In the future, when additional implementations of the ChainNotifier
// interface have been implemented, in order to ensure the new concrete
// implementation is automatically tested, two steps must be undertaken. First,
// one needs add a "non-captured" (_) import from the new sub-package. This
// import should trigger an init() method within the package which registers
// the interface. Second, an additional case in the switch within the main loop
// below needs to be added which properly initializes the interface.
func TestInterfaces(t *testing.T) {
// Initialize the harness around a btcd node which will serve as our
// dedicated miner to generate blocks, cause re-orgs, etc. We'll set up
// this node with a chain length of 125, so we have plentyyy of BTC to
// play around with.
miner, err := rpctest.New(netParams, nil, nil)
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
defer miner.TearDown()
if err := miner.SetUp(true, 25); err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
rpcConfig := miner.RPCConfig()
p2pAddr := miner.P2PAddress()
log.Printf("Running %v ChainNotifier interface tests\n", len(ntfnTests))
var (
notifier chainntnfs.ChainNotifier
cleanUp func()
)
for _, notifierDriver := range chainntnfs.RegisteredNotifiers() {
notifierType := notifierDriver.NotifierType
switch notifierType {
case "btcd":
notifier, err = notifierDriver.New(&rpcConfig)
if err != nil {
t.Fatalf("unable to create %v notifier: %v",
notifierType, err)
}
case "neutrino":
spvDir, err := ioutil.TempDir("", "neutrino")
if err != nil {
t.Fatalf("unable to create temp dir: %v", err)
}
dbName := filepath.Join(spvDir, "neutrino.db")
spvDatabase, err := walletdb.Create("bdb", dbName)
if err != nil {
t.Fatalf("unable to create walletdb: %v", err)
}
// Create an instance of neutrino connected to the
// running btcd instance.
spvConfig := neutrino.Config{
DataDir: spvDir,
Database: spvDatabase,
ChainParams: *netParams,
ConnectPeers: []string{p2pAddr},
}
neutrino.WaitForMoreCFHeaders = 250 * time.Millisecond
spvNode, err := neutrino.NewChainService(spvConfig)
if err != nil {
t.Fatalf("unable to create neutrino: %v", err)
}
spvNode.Start()
cleanUp = func() {
spvDatabase.Close()
spvNode.Stop()
os.RemoveAll(spvDir)
}
// We'll also wait for the instance to sync up fully to
// the chain generated by the btcd instance.
for !spvNode.IsCurrent() {
time.Sleep(time.Millisecond * 100)
}
notifier, err = notifierDriver.New(spvNode)
if err != nil {
t.Fatalf("unable to create %v notifier: %v",
notifierType, err)
}
}
t.Logf("Running ChainNotifier interface tests for: %v", notifierType)
if err := notifier.Start(); err != nil {
t.Fatalf("unable to start notifier %v: %v",
notifierType, err)
}
for _, ntfnTest := range ntfnTests {
testName := fmt.Sprintf("%v: %v", notifierType,
ntfnTest.name)
success := t.Run(testName, func(t *testing.T) {
ntfnTest.test(miner, notifier, t)
})
if !success {
break
}
}
notifier.Stop()
if cleanUp != nil {
cleanUp()
}
cleanUp = nil
}
}