lnd.xprv/tor/controller.go

524 lines
16 KiB
Go
Raw Normal View History

package tor
import (
"bytes"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"encoding/hex"
"errors"
"fmt"
"io/ioutil"
"net/textproto"
"os"
"strconv"
"strings"
"sync/atomic"
)
const (
// success is the Tor Control response code representing a successful
// request.
success = 250
// nonceLen is the length of a nonce generated by either the controller
// or the Tor server
nonceLen = 32
// cookieLen is the length of the authentication cookie.
cookieLen = 32
// ProtocolInfoVersion is the `protocolinfo` version currently supported
// by the Tor server.
ProtocolInfoVersion = 1
// MinTorVersion is the minimum supported version that the Tor server
// must be running on. This is needed in order to create v3 onion
// services through Tor's control port.
MinTorVersion = "0.3.3.6"
)
var (
// serverKey is the key used when computing the HMAC-SHA256 of a message
// from the server.
serverKey = []byte("Tor safe cookie authentication " +
"server-to-controller hash")
// controllerKey is the key used when computing the HMAC-SHA256 of a
// message from the controller.
controllerKey = []byte("Tor safe cookie authentication " +
"controller-to-server hash")
)
// Controller is an implementation of the Tor Control protocol. This is used in
// order to communicate with a Tor server. Its only supported method of
// authentication is the SAFECOOKIE method.
//
// NOTE: The connection to the Tor server must be authenticated before
// proceeding to send commands. Otherwise, the connection will be closed.
//
// TODO:
// * if adding support for more commands, extend this with a command queue?
// * place under sub-package?
// * support async replies from the server
type Controller struct {
// started is used atomically in order to prevent multiple calls to
// Start.
started int32
// stopped is used atomically in order to prevent multiple calls to
// Stop.
stopped int32
// conn is the underlying connection between the controller and the
// Tor server. It provides read and write methods to simplify the
// text-based messages within the connection.
conn *textproto.Conn
// controlAddr is the host:port the Tor server is listening locally for
// controller connections on.
controlAddr string
// version is the current version of the Tor server.
version string
}
// NewController returns a new Tor controller that will be able to interact with
// a Tor server.
func NewController(controlAddr string) *Controller {
return &Controller{controlAddr: controlAddr}
}
// Start establishes and authenticates the connection between the controller and
// a Tor server. Once done, the controller will be able to send commands and
// expect responses.
func (c *Controller) Start() error {
if !atomic.CompareAndSwapInt32(&c.started, 0, 1) {
return nil
}
conn, err := textproto.Dial("tcp", c.controlAddr)
if err != nil {
return fmt.Errorf("unable to connect to Tor server: %v", err)
}
c.conn = conn
return c.authenticate()
}
// Stop closes the connection between the controller and the Tor server.
func (c *Controller) Stop() error {
if !atomic.CompareAndSwapInt32(&c.stopped, 0, 1) {
return nil
}
return c.conn.Close()
}
// sendCommand sends a command to the Tor server and returns its response, as a
// single space-delimited string, and code.
func (c *Controller) sendCommand(command string) (int, string, error) {
if err := c.conn.Writer.PrintfLine(command); err != nil {
return 0, "", err
}
// We'll use ReadResponse as it has built-in support for multi-line
// text protocol responses.
code, reply, err := c.conn.Reader.ReadResponse(success)
if err != nil {
return code, reply, err
}
return code, reply, nil
}
// parseTorReply parses the reply from the Tor server after receving a command
// from a controller. This will parse the relevent reply parameters into a map
// of keys and values.
func parseTorReply(reply string) map[string]string {
params := make(map[string]string)
// Replies can either span single or multiple lines, so we'll default
// to stripping whitespace and newlines in order to retrieve the
// individual contents of it. The -1 indicates that we want this to span
// across all instances of a newline.
contents := strings.Split(strings.Replace(reply, "\n", " ", -1), " ")
for _, content := range contents {
// Each parameter within the reply should be of the form
// "KEY=VALUE". If the parameter doesn't contain "=", then we
// can assume it does not provide any other relevant information
// already known.
keyValue := strings.SplitN(content, "=", 2)
if len(keyValue) != 2 {
continue
}
key := keyValue[0]
value := keyValue[1]
params[key] = value
}
return params
}
// authenticate authenticates the connection between the controller and the
// Tor server using the SAFECOOKIE authentication method.
func (c *Controller) authenticate() error {
// Before proceeding to authenticate the connection, we'll retrieve
// the authentication cookie of the Tor server. This will be used
// throughout the authentication routine. We do this before as once the
// authentication routine has begun, it is not possible to retrieve it
// mid-way.
cookie, err := c.getAuthCookie()
if err != nil {
return fmt.Errorf("unable to retrieve authentication cookie: "+
"%v", err)
}
// Authenticating using the SAFECOOKIE authentication method is a two
// step process. We'll kick off the authentication routine by sending
// the AUTHCHALLENGE command followed by a hex-encoded 32-byte nonce.
clientNonce := make([]byte, nonceLen)
if _, err := rand.Read(clientNonce); err != nil {
return fmt.Errorf("unable to generate client nonce: %v", err)
}
cmd := fmt.Sprintf("AUTHCHALLENGE SAFECOOKIE %x", clientNonce)
_, reply, err := c.sendCommand(cmd)
if err != nil {
return err
}
// If successful, the reply from the server should be of the following
// format:
//
// "250 AUTHCHALLENGE"
// SP "SERVERHASH=" ServerHash
// SP "SERVERNONCE=" ServerNonce
// CRLF
//
// We're interested in retrieving the SERVERHASH and SERVERNONCE
// parameters, so we'll parse our reply to do so.
replyParams := parseTorReply(reply)
// Once retrieved, we'll ensure these values are of proper length when
// decoded.
serverHash, ok := replyParams["SERVERHASH"]
if !ok {
return errors.New("server hash not found in reply")
}
decodedServerHash, err := hex.DecodeString(serverHash)
if err != nil {
return fmt.Errorf("unable to decode server hash: %v", err)
}
if len(decodedServerHash) != sha256.Size {
return errors.New("invalid server hash length")
}
serverNonce, ok := replyParams["SERVERNONCE"]
if !ok {
return errors.New("server nonce not found in reply")
}
decodedServerNonce, err := hex.DecodeString(serverNonce)
if err != nil {
return fmt.Errorf("unable to decode server nonce: %v", err)
}
if len(decodedServerNonce) != nonceLen {
return errors.New("invalid server nonce length")
}
// The server hash above was constructed by computing the HMAC-SHA256
// of the message composed of the cookie, client nonce, and server
// nonce. We'll redo this computation ourselves to ensure the integrity
// and authentication of the message.
hmacMessage := bytes.Join(
[][]byte{cookie, clientNonce, decodedServerNonce}, []byte{},
)
computedServerHash := computeHMAC256(serverKey, hmacMessage)
if !hmac.Equal(computedServerHash, decodedServerHash) {
return fmt.Errorf("expected server hash %x, got %x",
decodedServerHash, computedServerHash)
}
// If the MAC check was successful, we'll proceed with the last step of
// the authentication routine. We'll now send the AUTHENTICATE command
// followed by a hex-encoded client hash constructed by computing the
// HMAC-SHA256 of the same message, but this time using the controller's
// key.
clientHash := computeHMAC256(controllerKey, hmacMessage)
if len(clientHash) != sha256.Size {
return errors.New("invalid client hash length")
}
cmd = fmt.Sprintf("AUTHENTICATE %x", clientHash)
if _, _, err := c.sendCommand(cmd); err != nil {
return err
}
return nil
}
// getAuthCookie retrieves the authentication cookie in bytes from the Tor
// server. Cookie authentication must be enabled for this to work. The boolean
func (c *Controller) getAuthCookie() ([]byte, error) {
// Retrieve the authentication methods currently supported by the Tor
// server.
authMethods, cookieFilePath, version, err := c.ProtocolInfo()
if err != nil {
return nil, err
}
// With the version retrieved, we'll cache it now in case it needs to be
// used later on.
c.version = version
// Ensure that the Tor server supports the SAFECOOKIE authentication
// method.
safeCookieSupport := false
for _, authMethod := range authMethods {
if authMethod == "SAFECOOKIE" {
safeCookieSupport = true
}
}
if !safeCookieSupport {
return nil, errors.New("the Tor server is currently not " +
"configured for cookie authentication")
}
// Read the cookie from the file and ensure it has the correct length.
cookie, err := ioutil.ReadFile(cookieFilePath)
if err != nil {
return nil, err
}
if len(cookie) != cookieLen {
return nil, errors.New("invalid authentication cookie length")
}
return cookie, nil
}
// computeHMAC256 computes the HMAC-SHA256 of a key and message.
func computeHMAC256(key, message []byte) []byte {
mac := hmac.New(sha256.New, key)
mac.Write(message)
return mac.Sum(nil)
}
// supportsV3 is a helper function that parses the current version of the Tor
// server and determines whether it supports creationg v3 onion services through
// Tor's control port. The version string should be of the format:
// major.minor.revision.build
func supportsV3(version string) error {
// We'll split the minimum Tor version that's supported and the given
// version in order to individually compare each number.
requiredParts := strings.Split(MinTorVersion, ".")
parts := strings.Split(version, ".")
if len(parts) != 4 {
return errors.New("version string is not of the format " +
"major.minor.revision.build")
}
// It's possible that the build number (the last part of the version
// string) includes a pre-release string, e.g. rc, beta, etc., so we'll
// parse that as well.
build := strings.Split(parts[len(parts)-1], "-")
parts[len(parts)-1] = build[0]
// Convert them each number from its string representation to integers
// and check that they respect the minimum version.
for i := range parts {
n, err := strconv.Atoi(parts[i])
if err != nil {
return err
}
requiredN, err := strconv.Atoi(requiredParts[i])
if err != nil {
return err
}
if n < requiredN {
return fmt.Errorf("version %v below minimum version "+
"supported %v", version, MinTorVersion)
}
}
return nil
}
// ProtocolInfo returns the different authentication methods supported by the
// Tor server and the version of the Tor server.
func (c *Controller) ProtocolInfo() ([]string, string, string, error) {
// We'll start off by sending the "PROTOCOLINFO" command to the Tor
// server. We should receive a reply of the following format:
//
// METHODS=COOKIE,SAFECOOKIE
// COOKIEFILE="/home/user/.tor/control_auth_cookie"
// VERSION Tor="0.3.2.10"
//
// We're interested in retrieving all of these fields, so we'll parse
// our reply to do so.
cmd := fmt.Sprintf("PROTOCOLINFO %d", ProtocolInfoVersion)
_, reply, err := c.sendCommand(cmd)
if err != nil {
return nil, "", "", err
}
info := parseTorReply(reply)
methods, ok := info["METHODS"]
if !ok {
return nil, "", "", errors.New("auth methods not found in " +
"reply")
}
cookieFile, ok := info["COOKIEFILE"]
if !ok {
return nil, "", "", errors.New("cookie file path not found " +
"in reply")
}
version, ok := info["Tor"]
if !ok {
return nil, "", "", errors.New("Tor version not found in reply")
}
// Finally, we'll clean up the results before returning them.
authMethods := strings.Split(methods, ",")
cookieFilePath := strings.Trim(cookieFile, "\"")
torVersion := strings.Trim(version, "\"")
return authMethods, cookieFilePath, torVersion, nil
}
// OnionType denotes the type of the onion service.
type OnionType int
const (
// V2 denotes that the onion service is V2.
V2 OnionType = iota
// V3 denotes that the onion service is V3.
V3
)
// AddOnionConfig houses all of the required paramaters in order to succesfully
// create a new onion service or restore an existing one.
type AddOnionConfig struct {
// Type denotes the type of the onion service that should be created.
Type OnionType
// VirtualPort is the externally reachable port of the onion address.
VirtualPort int
// TargetPorts is the set of ports that the service will be listening on
// locally. The Tor server will use choose a random port from this set
// to forward the traffic from the virtual port.
//
// NOTE: If nil/empty, the virtual port will be used as the only target
// port.
TargetPorts []int
// PrivateKeyPath is the full path to where the onion service's private
// key is stored. This can be used to restore an existing onion service.
PrivateKeyPath string
}
// AddOnion creates an onion service and returns its onion address. Once
// created, the new onion service will remain active until the connection
// between the controller and the Tor server is closed.
func (c *Controller) AddOnion(cfg AddOnionConfig) (*OnionAddr, error) {
// Before sending the request to create an onion service to the Tor
// server, we'll make sure that it supports V3 onion services if that
// was the type requested.
if cfg.Type == V3 {
if err := supportsV3(c.version); err != nil {
return nil, err
}
}
// We'll start off by checking if the file containing the private key
// exists. If it does not, then we should request the server to create
// a new onion service and return its private key. Otherwise, we'll
// request the server to recreate the onion server from our private key.
var keyParam string
if _, err := os.Stat(cfg.PrivateKeyPath); os.IsNotExist(err) {
switch cfg.Type {
case V2:
keyParam = "NEW:RSA1024"
case V3:
keyParam = "NEW:ED25519-V3"
}
} else {
privateKey, err := ioutil.ReadFile(cfg.PrivateKeyPath)
if err != nil {
return nil, err
}
keyParam = string(privateKey)
}
// Now, we'll create a mapping from the virtual port to each target
// port. If no target ports were specified, we'll use the virtual port
// to provide a one-to-one mapping.
var portParam string
if len(cfg.TargetPorts) == 0 {
portParam += fmt.Sprintf("Port=%d,%d ", cfg.VirtualPort,
cfg.VirtualPort)
} else {
for _, targetPort := range cfg.TargetPorts {
portParam += fmt.Sprintf("Port=%d,%d ", cfg.VirtualPort,
targetPort)
}
}
// Send the command to create the onion service to the Tor server and
// await its response.
cmd := fmt.Sprintf("ADD_ONION %s %s", keyParam, portParam)
_, reply, err := c.sendCommand(cmd)
if err != nil {
return nil, err
}
// If successful, the reply from the server should be of the following
// format, depending on whether a private key has been requested:
//
// C: ADD_ONION RSA1024:[Blob Redacted] Port=80,8080
// S: 250-ServiceID=testonion1234567
// S: 250 OK
//
// C: ADD_ONION NEW:RSA1024 Port=80,8080
// S: 250-ServiceID=testonion1234567
// S: 250-PrivateKey=RSA1024:[Blob Redacted]
// S: 250 OK
//
// We're interested in retrieving the service ID, which is the public
// name of the service, and the private key if requested.
replyParams := parseTorReply(reply)
serviceID, ok := replyParams["ServiceID"]
if !ok {
return nil, errors.New("service id not found in reply")
}
// If a new onion service was created, we'll write its private key to
// disk under strict permissions in the event that it needs to be
// recreated later on.
if privateKey, ok := replyParams["PrivateKey"]; ok {
err := ioutil.WriteFile(
cfg.PrivateKeyPath, []byte(privateKey), 0600,
)
if err != nil {
return nil, fmt.Errorf("unable to write private key "+
"to file: %v", err)
}
}
// Finally, we'll return the onion address composed of the service ID,
// along with the onion suffix, and the port this onion service can be
// reached at externally.
return &OnionAddr{
OnionService: serviceID + ".onion",
Port: cfg.VirtualPort,
}, nil
}