lnd.xprv/lnd_test.go

967 lines
31 KiB
Go
Raw Normal View History

package main
import (
"bytes"
"fmt"
"sync"
"testing"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/roasbeef/btcd/rpctest"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcrpcclient"
"github.com/roasbeef/btcutil"
"golang.org/x/net/context"
"google.golang.org/grpc"
)
// harnessTest wraps a regular testing.T providing enhanced error detection
// and propagation. All error will be augmented with a full stack-trace in
// order to aide in debugging. Additionally, any panics caused by active
// test cases will also be handled and represented as fatals.
type harnessTest struct {
t *testing.T
// testCase is populated during test execution and represents the
// current test case.
testCase *testCase
}
// newHarnessTest creates a new instance of a harnessTest from a regular
// testing.T instance.
func newHarnessTest(t *testing.T) *harnessTest {
return &harnessTest{t, nil}
}
// Fatalf causes the current active test-case to fail with a fatal error. All
// integration tests should mark test failures soley with this method due to
// the error stack traces it produces.
func (h *harnessTest) Fatalf(format string, a ...interface{}) {
stacktrace := errors.Wrap(fmt.Sprintf(format, a...), 1).ErrorStack()
if h.testCase != nil {
h.t.Fatalf("Failed: (%v): exited with error: \n" +
"%v", h.testCase.name, stacktrace)
} else {
h.t.Fatalf("Error outside of test: %v", stacktrace)
}
}
// RunTestCase executes a harness test-case. Any errors or panics will be
// represented as fatal.
func (h *harnessTest) RunTestCase(testCase *testCase, net *networkHarness) {
h.testCase = testCase
defer func() {
h.testCase = nil
}()
defer func() {
if err := recover(); err != nil {
description := errors.Wrap(err, 2).ErrorStack()
h.t.Fatalf("Failed: (%v) paniced with: \n%v",
h.testCase.name, description)
}
}()
testCase.test(net, h)
h.t.Logf("Passed: (%v)", h.testCase.name)
return
}
func (h *harnessTest) Logf(format string, args ...interface{}) {
h.t.Logf(format, args...)
}
func (h *harnessTest) Log(args ...interface{}) {
h.t.Log(args...)
}
func assertTxInBlock(t *harnessTest, block *btcutil.Block, txid *wire.ShaHash) {
for _, tx := range block.Transactions() {
if bytes.Equal(txid[:], tx.Sha()[:]) {
return
}
}
t.Fatalf("funding tx was not included in block")
}
// mineBlocks mine 'num' of blocks and check that blocks are present in
// node blockchain.
func mineBlocks(t *harnessTest, net *networkHarness, num uint32) []*btcutil.Block {
blocks := make([]*btcutil.Block, num)
blockHashes, err := net.Miner.Node.Generate(num)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
for i, blockHash := range blockHashes {
block, err := net.Miner.Node.GetBlock(blockHash)
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
blocks[i] = block
}
return blocks
}
// openChannelAndAssert attempts to open a channel with the specified
// parameters extended from Alice to Bob. Additionally, two items are asserted
// after the channel is considered open: the funding transaction should be
// found within a block, and that Alice can report the status of the new
// channel.
func openChannelAndAssert(t *harnessTest, net *networkHarness, ctx context.Context,
alice, bob *lightningNode, amount btcutil.Amount) *lnrpc.ChannelPoint {
chanOpenUpdate, err := net.OpenChannel(ctx, alice, bob, amount, 1)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, 1)[0]
fundingChanPoint, err := net.WaitForChannelOpen(ctx, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := wire.NewShaHash(fundingChanPoint.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information returned by
// both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, alice, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
return fundingChanPoint
}
// closeChannelAndAssert attempts to close a channel identified by the passed
// channel point owned by the passed lighting node. A fully blocking channel
// closure is attempted, therefore the passed context should be a child derived
// via timeout from a base parent. Additionally, once the channel has been
// detected as closed, an assertion checks that the transaction is found within
// a block.
func closeChannelAndAssert(t *harnessTest, net *networkHarness, ctx context.Context,
node *lightningNode, fundingChanPoint *lnrpc.ChannelPoint) {
closeUpdates, err := net.CloseChannel(ctx, node, fundingChanPoint, false)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1)[0]
closingTxid, err := net.WaitForChannelClose(ctx, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, closingTxid)
}
// testBasicChannelFunding performs a test exercising expected behavior from a
// basic funding workflow. The test creates a new channel between Alice and
// Bob, then immediately closes the channel after asserting some expected post
// conditions. Finally, the chain itself is checked to ensure the closing
// transaction was mined.
func testBasicChannelFunding(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
chanAmt := btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob. This function will block until the channel itself is fully
// open or an error occurs in the funding process. A series of
// assertions will be executed to ensure the funding process completed
// successfully.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(t, net, ctxt, net.Alice, net.Bob, chanAmt)
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(t, net, ctxt, net.Alice, chanPoint)
}
// testChannelBalance creates a new channel between Alice and Bob, then
// checks channel balance to be equal amount specified while creation of channel.
func testChannelBalance(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
// Open a channel with 0.5 BTC between Alice and Bob, ensuring the
// channel has been opened properly.
amount := btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
ctx, _ := context.WithTimeout(context.Background(), timeout)
// Creates a helper closure to be used below which asserts the proper
// response to a channel balance RPC.
checkChannelBalance := func(node lnrpc.LightningClient,
amount btcutil.Amount) {
response, err := node.ChannelBalance(ctx, &lnrpc.ChannelBalanceRequest{})
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
balance := btcutil.Amount(response.Balance)
if balance != amount {
t.Fatalf("channel balance wrong: %v != %v", balance,
amount)
}
}
chanPoint := openChannelAndAssert(t, net, ctx, net.Alice, net.Bob,
amount)
// As this is a single funder channel, Alice's balance should be
// exactly 0.5 BTC since now state transitions have taken place yet.
checkChannelBalance(net.Alice, amount)
// Since we only explicitly wait for Alice's channel open notification,
// Bob might not yet have updated his internal state in response to
// Alice's channel open proof. So we sleep here for a second to let Bob
// catch up.
// TODO(roasbeef): Bob should also watch for the channel on-chain after
// the changes to restrict the number of pending channels are in.
time.Sleep(time.Second)
// Ensure Bob currently has no available balance within the channel.
checkChannelBalance(net.Bob, 0)
// Finally close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
ctx, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(t, net, ctx, net.Alice, chanPoint)
}
// testChannelForceClosure performs a test to exercise the behavior of "force"
// closing a channel or unilaterally broadcasting the latest local commitment
// state on-chain. The test creates a new channel between Alice and Bob, then
// force closes the channel after some cursory assertions. Within the test, two
// transactions should be broadcast on-chain, the commitment transaction itself
// (which closes the channel), and the sweep transaction a few blocks later
// once the output(s) become mature.
//
// TODO(roabeef): also add an unsettled HTLC before force closing.
func testChannelForceClosure(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
// First establish a channel ween with a capacity of 100k satoshis
// between Alice and Bob.
numFundingConfs := uint32(1)
chanAmt := btcutil.Amount(10e4)
chanOpenUpdate, err := net.OpenChannel(ctxb, net.Alice, net.Bob,
chanAmt, numFundingConfs)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
if _, err := net.Miner.Node.Generate(numFundingConfs); err != nil {
t.Fatalf("unable to mine block: %v", err)
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel to open: %v", err)
}
// Now that the channel is open, immediately execute a force closure of
// the channel. This will also assert that the commitment transaction
// was immediately broadcast in order to fulfill the force closure
// request.
closeUpdate, err := net.CloseChannel(ctxb, net.Alice, chanPoint, true)
if err != nil {
t.Fatalf("unable to execute force channel closure: %v", err)
}
// Mine a block which should confirm the commitment transaction
// broadcast as a result of the force closure.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closingTxID, err := net.WaitForChannelClose(ctxt, closeUpdate)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
// Currently within the codebase, the default CSV is 4 relative blocks.
// So generate exactly 4 new blocks.
// TODO(roasbeef): should check default value in config here instead,
// or make delay a param
const defaultCSV = 4
if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the sweeping transaction should now be broadcast. So
// we fetch the node's mempool to ensure it has been properly
// broadcast.
var sweepingTXID *wire.ShaHash
var mempool []*wire.ShaHash
mempoolPoll:
for {
select {
case <-time.After(time.Second * 5):
t.Fatalf("sweep tx not found in mempool")
default:
mempool, err = net.Miner.Node.GetRawMempool()
if err != nil {
t.Fatalf("unable to fetch node's mempool: %v", err)
}
if len(mempool) == 0 {
continue
}
break mempoolPoll
}
}
// There should be exactly one transaction within the mempool at this
// point.
// TODO(roasbeef): assertion may not necessarily hold with concurrent
// test executions
if len(mempool) != 1 {
t.Fatalf("node's mempool is wrong size, expected 1 got %v",
len(mempool))
}
sweepingTXID = mempool[0]
// Fetch the sweep transaction, all input it's spending should be from
// the commitment transaction which was broadcast on-chain.
sweepTx, err := net.Miner.Node.GetRawTransaction(sweepingTXID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
for _, txIn := range sweepTx.MsgTx().TxIn {
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
t.Fatalf("sweep transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
}
// Finally, we mine an additional block which should include the sweep
// transaction as the input scripts and the sequence locks on the
// inputs should be properly met.
blockHash, err := net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := net.Miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
assertTxInBlock(t, block, sweepTx.Sha())
}
func testSingleHopInvoice(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 100k satoshis between Alice and Bob with Alice being
// the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanAmt := btcutil.Amount(100000)
chanPoint := openChannelAndAssert(t, net, ctxt, net.Alice, net.Bob, chanAmt)
// Now that the channel is open, create an invoice for Bob which
// expects a payment of 1000 satoshis from Alice paid via a particular
// pre-image.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("A"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// With the invoice for Bob added, send a payment towards Alice paying
// to the above generated invoice.
sendStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create alice payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentHash: invoiceResp.RHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := sendStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if _, err := sendStream.Recv(); err != nil {
t.Fatalf("error when attempting recv: %v", err)
}
// Bob's invoice should now be found and marked as settled.
// TODO(roasbeef): remove sleep after hooking into the to-be-written
// invoice settlement notification stream
payHash := &lnrpc.PaymentHash{
RHash: invoiceResp.RHash,
}
dbInvoice, err := net.Bob.LookupInvoice(ctxb, payHash)
if err != nil {
t.Fatalf("unable to lookup invoice: %v", err)
}
if !dbInvoice.Settled {
t.Fatalf("bob's invoice should be marked as settled: %v",
spew.Sdump(dbInvoice))
}
// The balances of Alice and Bob should be updated accordingly.
aliceBalance, err := net.Alice.ChannelBalance(ctxb, &lnrpc.ChannelBalanceRequest{})
if err != nil {
t.Fatalf("unable to query for alice's balance: %v", err)
}
bobBalance, err := net.Bob.ChannelBalance(ctxb, &lnrpc.ChannelBalanceRequest{})
if err != nil {
t.Fatalf("unable to query for bob's balance: %v", err)
}
if aliceBalance.Balance != int64(chanAmt-paymentAmt) {
t.Fatalf("Alice's balance is incorrect got %v, expected %v",
aliceBalance, int64(chanAmt-paymentAmt))
}
if bobBalance.Balance != paymentAmt {
t.Fatalf("Bob's balance is incorrect got %v, expected %v",
bobBalance, paymentAmt)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(t, net, ctxt, net.Alice, chanPoint)
}
func testMultiHopPayments(net *networkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(100000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(t, net, ctxt, net.Alice,
net.Bob, chanAmt)
aliceChanTXID, err := wire.NewShaHash(chanPointAlice.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Create a new node (Carol), load her with some funds, then establish
// a connection between Carol and Alice with a channel that has
// identical capacity to the one created above.
//
// The network topology should now look like: Carol -> Alice -> Bob
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, net.Alice); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(t, net, ctxt, carol,
net.Alice, chanAmt)
carolChanTXID, err := wire.NewShaHash(chanPointCarol.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Create 5 invoices for Bob, which expect a payment from Carol for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
rHashes := make([][]byte, numPayments)
for i := 0; i < numPayments; i++ {
preimage := bytes.Repeat([]byte{byte(i)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
rHashes[i] = resp.RHash
}
// Carol's routing table should show a path from Carol -> Alice -> Bob,
// with the two channels above recognized as the only links within the
// network.
time.Sleep(time.Second)
req := &lnrpc.ShowRoutingTableRequest{}
routingResp, err := carol.ShowRoutingTable(ctxb, req)
if err != nil {
t.Fatalf("unable to query for carol's routing table: %v", err)
}
if len(routingResp.Channels) != 2 {
t.Fatalf("only two channels should be seen as active in the "+
"network, instead %v are", len(routingResp.Channels))
}
for _, link := range routingResp.Channels {
switch {
case link.Outpoint == aliceFundPoint.String():
switch {
case link.Id1 == net.Alice.PubKeyStr &&
link.Id2 == net.Bob.PubKeyStr:
continue
case link.Id1 == net.Bob.PubKeyStr &&
link.Id2 == net.Alice.PubKeyStr:
continue
default:
t.Fatalf("unkown link within routing "+
"table: %v", spew.Sdump(link))
}
case link.Outpoint == carolFundPoint.String():
switch {
case link.Id1 == net.Alice.PubKeyStr &&
link.Id2 == carol.PubKeyStr:
continue
case link.Id1 == carol.PubKeyStr &&
link.Id2 == net.Alice.PubKeyStr:
continue
default:
t.Fatalf("unkown link within routing "+
"table: %v", spew.Sdump(link))
}
default:
t.Fatalf("unkown channel %v found in routing table, "+
"only %v and %v should exist", link.Outpoint,
aliceFundPoint, carolFundPoint)
}
}
// Using Carol as the source, pay to the 5 invoices from Bob created above.
carolPayStream, err := carol.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for carol: %v", err)
}
// Concurrently pay off all 5 of Bob's invoices. Each of the goroutines
// will unblock on the recv once the HTLC it sent has been fully
// settled.
var wg sync.WaitGroup
for _, rHash := range rHashes {
sendReq := &lnrpc.SendRequest{
PaymentHash: rHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
wg.Add(1)
go func() {
if err := carolPayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if _, err := carolPayStream.Recv(); err != nil {
t.Fatalf("unable to recv pay resp: %v", err)
}
wg.Done()
}()
}
finClear := make(chan struct{})
go func() {
wg.Wait()
close(finClear)
}()
select {
case <-time.After(time.Second * 10):
t.Fatalf("HTLC's not cleared after 10 seconds")
case <-finClear:
}
assertAsymmetricBalance := func(node *lightningNode,
chanPoint *wire.OutPoint, localBalance,
remoteBalance int64) {
listReq := &lnrpc.ListChannelsRequest{}
resp, err := node.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to for node's channels: %v", err)
}
for _, channel := range resp.Channels {
if channel.ChannelPoint != chanPoint.String() {
continue
}
if channel.LocalBalance != localBalance ||
channel.RemoteBalance != remoteBalance {
t.Fatalf("incorrect balances: %v",
spew.Sdump(channel))
}
return
}
t.Fatalf("channel not found")
}
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Bob, the sink within the
// payment flow generated above.
// TODO(roasbeef): remove sleep after invoice notification hooks are in
// place
time.Sleep(time.Second * 3)
const sourceBal = int64(95000)
const sinkBal = int64(5000)
assertAsymmetricBalance(carol, &carolFundPoint, sourceBal, sinkBal)
assertAsymmetricBalance(net.Alice, &carolFundPoint, sinkBal, sourceBal)
assertAsymmetricBalance(net.Alice, &aliceFundPoint, sourceBal, sinkBal)
assertAsymmetricBalance(net.Bob, &aliceFundPoint, sinkBal, sourceBal)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(t, net, ctxt, net.Alice, chanPointAlice)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(t, net, ctxt, carol, chanPointCarol)
}
func testInvoiceSubscriptions(net *networkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(500000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 500k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(t, net, ctxt, net.Alice, net.Bob,
chanAmt)
// Next create a new invoice for Bob requesting 1k satoshis.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte{byte(90)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Create a new invoice subscription client for Bob, the notification
// should be dispatched shortly below.
req := &lnrpc.InvoiceSubscription{}
bobInvoiceSubscription, err := net.Bob.SubscribeInvoices(ctxb, req)
if err != nil {
t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
}
updateSent := make(chan struct{})
go func() {
invoiceUpdate, err := bobInvoiceSubscription.Recv()
if err != nil {
t.Fatalf("unable to recv invoice update: %v", err)
}
// The invoice update should exactly match the invoice created
// above, but should now be settled.
if !invoiceUpdate.Settled {
t.Fatalf("invoice not settled but shoudl be")
}
if !bytes.Equal(invoiceUpdate.RPreimage, invoice.RPreimage) {
t.Fatalf("payment preimages don't match: expected %v, got %v",
invoice.RPreimage, invoiceUpdate.RPreimage)
}
close(updateSent)
}()
// With the assertion above set up, send a payment from Alice to Bob
// which should finalize and settle the invoice.
sendStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create alice payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentHash: invoiceResp.RHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := sendStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if _, err := sendStream.Recv(); err != nil {
t.Fatalf("error when attempting recv: %v", err)
}
select {
case <-time.After(time.Second * 5):
t.Fatalf("update not sent after 5 seconds")
case <-updateSent: // Fall through on success
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(t, net, ctxt, net.Alice, chanPoint)
}
// testBasicChannelCreation test multiple channel opening and closing.
func testBasicChannelCreation(net *networkHarness, t *harnessTest) {
const (
numChannels = 2
timeout = time.Duration(time.Second * 5)
amount = btcutil.Amount(btcutil.SatoshiPerBitcoin)
)
// Open the channel between Alice and Bob, asserting that the
// channel has been properly open on-chain.
chanPoints := make([]*lnrpc.ChannelPoint, numChannels)
for i := 0; i < numChannels; i++ {
ctx, _ := context.WithTimeout(context.Background(), timeout)
chanPoints[i] = openChannelAndAssert(t, net, ctx, net.Alice,
net.Bob, amount)
}
// Close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
ctx, _ := context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(t, net, ctx, net.Alice, chanPoint)
}
}
// testMaxPendingChannels checks that error is returned from remote peer if
// max pending channel number was exceeded and that '--maxpendingchannels' flag
// exists and works properly.
func testMaxPendingChannels(net *networkHarness, t *harnessTest) {
maxPendingChannels := defaultMaxPendingChannels + 1
amount := btcutil.Amount(btcutil.SatoshiPerBitcoin)
timeout := time.Duration(time.Second * 10)
ctx, _ := context.WithTimeout(context.Background(), timeout)
// Create a new node (Carol) with greater number of max pending
// channels.
args := []string{
fmt.Sprintf("--maxpendingchannels=%v", maxPendingChannels),
}
carol, err := net.NewNode(args)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
ctx, _ = context.WithTimeout(context.Background(), timeout)
if err := net.ConnectNodes(ctx, net.Alice, carol); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctx, _ = context.WithTimeout(context.Background(), timeout)
carolBalance := btcutil.Amount(maxPendingChannels) * amount
if err := net.SendCoins(ctx, carolBalance, carol); err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
// Send open channel requests without generating new blocks thereby
// increasing pool of pending channels. Then check that we can't
// open the channel if the number of pending channels exceed
// max value.
openStreams := make([]lnrpc.Lightning_OpenChannelClient, maxPendingChannels)
for i := 0; i < maxPendingChannels; i++ {
ctx, _ = context.WithTimeout(context.Background(), timeout)
stream, err := net.OpenChannel(ctx, net.Alice, carol, amount, 1)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
openStreams[i] = stream
}
// Carol exhausted available amount of pending channels, next open
// channel request should cause ErrorGeneric to be sent back to Alice.
ctx, _ = context.WithTimeout(context.Background(), timeout)
_, err = net.OpenChannel(ctx, net.Alice, carol, amount, 1)
if err == nil {
t.Fatalf("error wasn't received")
} else if grpc.Code(err) != OpenChannelFundingError {
t.Fatalf("not expected error was received : %v", err)
}
// For now our channels are in pending state, in order to not
// interfere with other tests we should clean up - complete opening
// of the channel and then close it.
// Mine a block, then wait for node's to notify us that the channel
// has been opened. The funding transactions should be found within the
// newly mined block.
block := mineBlocks(t, net, 1)[0]
chanPoints := make([]*lnrpc.ChannelPoint, maxPendingChannels)
for i, stream := range openStreams {
ctx, _ = context.WithTimeout(context.Background(), timeout)
fundingChanPoint, err := net.WaitForChannelOpen(ctx, stream)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := wire.NewShaHash(fundingChanPoint.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information
// returned by both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, net.Alice, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
chanPoints[i] = fundingChanPoint
}
// Finally close the channel between Alice and Carol, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
ctx, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(t, net, ctx, net.Alice, chanPoint)
}
}
type testCase struct {
name string
test func(net *networkHarness, t *harnessTest)
}
var testsCases = []*testCase{
{
name: "basic funding flow",
test: testBasicChannelFunding,
},
{
name: "channel force closure",
test: testChannelForceClosure,
},
{
name: "channel balance",
test: testChannelBalance,
},
{
name: "single hop invoice",
test: testSingleHopInvoice,
},
{
name: "max pending channel",
test: testMaxPendingChannels,
},
{
name: "multi-hop payments",
test: testMultiHopPayments,
},
{
name: "multiple channel creation",
test: testBasicChannelCreation,
},
{
name: "invoice update subscription",
test: testInvoiceSubscriptions,
},
}
// TestLightningNetworkDaemon performs a series of integration tests amongst a
// programmatically driven network of lnd nodes.
func TestLightningNetworkDaemon(t *testing.T) {
ht := newHarnessTest(t)
// First create the network harness to gain access to its
// 'OnTxAccepted' call back.
lndHarness, err := newNetworkHarness()
if err != nil {
ht.Fatalf("unable to create lightning network harness: %v", err)
}
defer lndHarness.TearDownAll()
handlers := &btcrpcclient.NotificationHandlers{
OnTxAccepted: lndHarness.OnTxAccepted,
}
// First create an instance of the btcd's rpctest.Harness. This will be
// used to fund the wallets of the nodes within the test network and to
// drive blockchain related events within the network.
btcdHarness, err := rpctest.New(harnessNetParams, handlers, nil)
if err != nil {
ht.Fatalf("unable to create mining node: %v", err)
}
defer btcdHarness.TearDown()
if err := btcdHarness.SetUp(true, 50); err != nil {
ht.Fatalf("unable to set up mining node: %v", err)
}
if err := btcdHarness.Node.NotifyNewTransactions(false); err != nil {
ht.Fatalf("unable to request transaction notifications: %v", err)
}
// With the btcd harness created, we can now complete the
// initialization of the network. args - list of lnd arguments,
// example: "--debuglevel=debug"
// TODO(roasbeef): create master balanced channel with all the monies?
if err := lndHarness.InitializeSeedNodes(btcdHarness, nil); err != nil {
ht.Fatalf("unable to initialize seed nodes: %v", err)
}
if err = lndHarness.SetUp(); err != nil {
ht.Fatalf("unable to set up test lightning network: %v", err)
}
// Spawn a new goroutine to watch for any fatal errors that any of the
// running lnd processes encounter. If an error occurs, then the test
// fails immediately with a fatal error, as far as fatal is happening
// inside goroutine main goroutine would not be finished at the same
// time as we receive fatal error from lnd process.
go func() {
err := <-lndHarness.ProcessErrors()
ht.Fatalf("lnd finished with error (stderr): "+
"\n%v", err)
}()
t.Logf("Running %v integration tests", len(testsCases))
for _, testCase := range testsCases {
ht.RunTestCase(testCase, lndHarness)
}
}