lnd.xprv/lnrpc/walletrpc/walletkit_server.go

1122 lines
34 KiB
Go
Raw Normal View History

// +build walletrpc
package walletrpc
import (
"bytes"
2019-09-29 02:06:34 +03:00
"context"
"errors"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcutil/psbt"
2020-05-21 01:34:16 +03:00
"github.com/btcsuite/btcwallet/wtxmgr"
"github.com/grpc-ecosystem/grpc-gateway/runtime"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/labels"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/signrpc"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/btcwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/macaroons"
"github.com/lightningnetwork/lnd/sweep"
"google.golang.org/grpc"
"gopkg.in/macaroon-bakery.v2/bakery"
)
const (
// subServerName is the name of the sub rpc server. We'll use this name
// to register ourselves, and we also require that the main
// SubServerConfigDispatcher instance recognize as the name of our
subServerName = "WalletKitRPC"
)
var (
// macaroonOps are the set of capabilities that our minted macaroon (if
// it doesn't already exist) will have.
macaroonOps = []bakery.Op{
{
Entity: "address",
Action: "write",
},
{
Entity: "address",
Action: "read",
},
{
Entity: "onchain",
Action: "write",
},
{
Entity: "onchain",
Action: "read",
},
}
// macPermissions maps RPC calls to the permissions they require.
macPermissions = map[string][]bakery.Op{
"/walletrpc.WalletKit/DeriveNextKey": {{
Entity: "address",
Action: "read",
}},
"/walletrpc.WalletKit/DeriveKey": {{
Entity: "address",
Action: "read",
}},
"/walletrpc.WalletKit/NextAddr": {{
Entity: "address",
Action: "read",
}},
"/walletrpc.WalletKit/PublishTransaction": {{
Entity: "onchain",
Action: "write",
}},
"/walletrpc.WalletKit/SendOutputs": {{
Entity: "onchain",
Action: "write",
}},
"/walletrpc.WalletKit/EstimateFee": {{
Entity: "onchain",
Action: "read",
}},
"/walletrpc.WalletKit/PendingSweeps": {{
Entity: "onchain",
Action: "read",
}},
"/walletrpc.WalletKit/BumpFee": {{
Entity: "onchain",
Action: "write",
}},
"/walletrpc.WalletKit/ListSweeps": {{
Entity: "onchain",
Action: "read",
}},
2020-05-25 09:38:25 +03:00
"/walletrpc.WalletKit/LabelTransaction": {{
Entity: "onchain",
Action: "write",
}},
2020-05-21 01:34:16 +03:00
"/walletrpc.WalletKit/LeaseOutput": {{
Entity: "onchain",
Action: "write",
}},
"/walletrpc.WalletKit/ReleaseOutput": {{
Entity: "onchain",
Action: "write",
}},
2020-05-21 02:12:51 +03:00
"/walletrpc.WalletKit/ListUnspent": {{
Entity: "onchain",
Action: "read",
}},
"/walletrpc.WalletKit/FundPsbt": {{
Entity: "onchain",
Action: "write",
}},
"/walletrpc.WalletKit/FinalizePsbt": {{
Entity: "onchain",
Action: "write",
}},
}
// DefaultWalletKitMacFilename is the default name of the wallet kit
// macaroon that we expect to find via a file handle within the main
// configuration file in this package.
DefaultWalletKitMacFilename = "walletkit.macaroon"
// LndInternalLockID is the binary representation of the SHA256 hash of
// the string "lnd-internal-lock-id" and is used for UTXO lock leases to
// identify that we ourselves are locking an UTXO, for example when
// giving out a funded PSBT. The ID corresponds to the hex value of
// ede19a92ed321a4705f8a1cccc1d4f6182545d4bb4fae08bd5937831b7e38f98.
LndInternalLockID = wtxmgr.LockID{
0xed, 0xe1, 0x9a, 0x92, 0xed, 0x32, 0x1a, 0x47,
0x05, 0xf8, 0xa1, 0xcc, 0xcc, 0x1d, 0x4f, 0x61,
0x82, 0x54, 0x5d, 0x4b, 0xb4, 0xfa, 0xe0, 0x8b,
0xd5, 0x93, 0x78, 0x31, 0xb7, 0xe3, 0x8f, 0x98,
}
)
2020-05-25 09:38:25 +03:00
// ErrZeroLabel is returned when an attempt is made to label a transaction with
// an empty label.
var ErrZeroLabel = errors.New("cannot label transaction with empty label")
// WalletKit is a sub-RPC server that exposes a tool kit which allows clients
// to execute common wallet operations. This includes requesting new addresses,
// keys (for contracts!), and publishing transactions.
type WalletKit struct {
cfg *Config
}
// A compile time check to ensure that WalletKit fully implements the
// WalletKitServer gRPC service.
var _ WalletKitServer = (*WalletKit)(nil)
// New creates a new instance of the WalletKit sub-RPC server.
func New(cfg *Config) (*WalletKit, lnrpc.MacaroonPerms, error) {
// If the path of the wallet kit macaroon wasn't specified, then we'll
// assume that it's found at the default network directory.
if cfg.WalletKitMacPath == "" {
cfg.WalletKitMacPath = filepath.Join(
cfg.NetworkDir, DefaultWalletKitMacFilename,
)
}
// Now that we know the full path of the wallet kit macaroon, we can
// check to see if we need to create it or not. If stateless_init is set
// then we don't write the macaroons.
macFilePath := cfg.WalletKitMacPath
if cfg.MacService != nil && !cfg.MacService.StatelessInit &&
!lnrpc.FileExists(macFilePath) {
log.Infof("Baking macaroons for WalletKit RPC Server at: %v",
macFilePath)
// At this point, we know that the wallet kit macaroon doesn't
// yet, exist, so we need to create it with the help of the
// main macaroon service.
walletKitMac, err := cfg.MacService.NewMacaroon(
context.Background(), macaroons.DefaultRootKeyID,
macaroonOps...,
)
if err != nil {
return nil, nil, err
}
walletKitMacBytes, err := walletKitMac.M().MarshalBinary()
if err != nil {
return nil, nil, err
}
err = ioutil.WriteFile(macFilePath, walletKitMacBytes, 0644)
if err != nil {
_ = os.Remove(macFilePath)
return nil, nil, err
}
}
walletKit := &WalletKit{
cfg: cfg,
}
return walletKit, macPermissions, nil
}
// Start launches any helper goroutines required for the sub-server to function.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (w *WalletKit) Start() error {
return nil
}
// Stop signals any active goroutines for a graceful closure.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (w *WalletKit) Stop() error {
return nil
}
// Name returns a unique string representation of the sub-server. This can be
// used to identify the sub-server and also de-duplicate them.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (w *WalletKit) Name() string {
return subServerName
}
// RegisterWithRootServer will be called by the root gRPC server to direct a
// sub RPC server to register itself with the main gRPC root server. Until this
// is called, each sub-server won't be able to have requests routed towards it.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (w *WalletKit) RegisterWithRootServer(grpcServer *grpc.Server) error {
// We make sure that we register it with the main gRPC server to ensure
// all our methods are routed properly.
RegisterWalletKitServer(grpcServer, w)
log.Debugf("WalletKit RPC server successfully registered with " +
"root gRPC server")
return nil
}
// RegisterWithRestServer will be called by the root REST mux to direct a sub
// RPC server to register itself with the main REST mux server. Until this is
// called, each sub-server won't be able to have requests routed towards it.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (w *WalletKit) RegisterWithRestServer(ctx context.Context,
mux *runtime.ServeMux, dest string, opts []grpc.DialOption) error {
// We make sure that we register it with the main REST server to ensure
// all our methods are routed properly.
err := RegisterWalletKitHandlerFromEndpoint(ctx, mux, dest, opts)
if err != nil {
log.Errorf("Could not register WalletKit REST server "+
"with root REST server: %v", err)
return err
}
log.Debugf("WalletKit REST server successfully registered with " +
"root REST server")
return nil
}
2020-05-21 02:12:51 +03:00
// ListUnspent returns useful information about each unspent output owned by the
// wallet, as reported by the underlying `ListUnspentWitness`; the information
// returned is: outpoint, amount in satoshis, address, address type,
// scriptPubKey in hex and number of confirmations. The result is filtered to
// contain outputs whose number of confirmations is between a
// minimum and maximum number of confirmations specified by the user, with 0
// meaning unconfirmed.
func (w *WalletKit) ListUnspent(ctx context.Context,
req *ListUnspentRequest) (*ListUnspentResponse, error) {
// Validate the confirmation arguments.
minConfs, maxConfs, err := lnrpc.ParseConfs(req.MinConfs, req.MaxConfs)
if err != nil {
return nil, err
}
// With our arguments validated, we'll query the internal wallet for
// the set of UTXOs that match our query.
//
// We'll acquire the global coin selection lock to ensure there aren't
// any other concurrent processes attempting to lock any UTXOs which may
// be shown available to us.
var utxos []*lnwallet.Utxo
err = w.cfg.CoinSelectionLocker.WithCoinSelectLock(func() error {
utxos, err = w.cfg.Wallet.ListUnspentWitness(minConfs, maxConfs)
return err
})
2020-05-21 02:12:51 +03:00
if err != nil {
return nil, err
}
rpcUtxos, err := lnrpc.MarshalUtxos(utxos, w.cfg.ChainParams)
if err != nil {
return nil, err
}
return &ListUnspentResponse{
Utxos: rpcUtxos,
}, nil
}
2020-05-21 01:34:16 +03:00
// LeaseOutput locks an output to the given ID, preventing it from being
// available for any future coin selection attempts. The absolute time of the
// lock's expiration is returned. The expiration of the lock can be extended by
// successive invocations of this call. Outputs can be unlocked before their
// expiration through `ReleaseOutput`.
//
// If the output is not known, wtxmgr.ErrUnknownOutput is returned. If the
// output has already been locked to a different ID, then
// wtxmgr.ErrOutputAlreadyLocked is returned.
func (w *WalletKit) LeaseOutput(ctx context.Context,
req *LeaseOutputRequest) (*LeaseOutputResponse, error) {
if len(req.Id) != 32 {
return nil, errors.New("id must be 32 random bytes")
}
var lockID wtxmgr.LockID
copy(lockID[:], req.Id)
// Don't allow ID's of 32 bytes, but all zeros.
if lockID == (wtxmgr.LockID{}) {
return nil, errors.New("id must be 32 random bytes")
}
// Don't allow our internal ID to be used externally for locking. Only
// unlocking is allowed.
if lockID == LndInternalLockID {
return nil, errors.New("reserved id cannot be used")
}
2020-05-21 01:34:16 +03:00
op, err := unmarshallOutPoint(req.Outpoint)
if err != nil {
return nil, err
}
// Acquire the global coin selection lock to ensure there aren't any
// other concurrent processes attempting to lease the same UTXO.
var expiration time.Time
err = w.cfg.CoinSelectionLocker.WithCoinSelectLock(func() error {
expiration, err = w.cfg.Wallet.LeaseOutput(lockID, *op)
return err
})
2020-05-21 01:34:16 +03:00
if err != nil {
return nil, err
}
return &LeaseOutputResponse{
Expiration: uint64(expiration.Unix()),
}, nil
}
// ReleaseOutput unlocks an output, allowing it to be available for coin
// selection if it remains unspent. The ID should match the one used to
// originally lock the output.
func (w *WalletKit) ReleaseOutput(ctx context.Context,
req *ReleaseOutputRequest) (*ReleaseOutputResponse, error) {
if len(req.Id) != 32 {
return nil, errors.New("id must be 32 random bytes")
}
var lockID wtxmgr.LockID
copy(lockID[:], req.Id)
op, err := unmarshallOutPoint(req.Outpoint)
if err != nil {
return nil, err
}
// Acquire the global coin selection lock to maintain consistency as
// it's acquired when we initially leased the output.
err = w.cfg.CoinSelectionLocker.WithCoinSelectLock(func() error {
return w.cfg.Wallet.ReleaseOutput(lockID, *op)
})
if err != nil {
2020-05-21 01:34:16 +03:00
return nil, err
}
return &ReleaseOutputResponse{}, nil
}
// DeriveNextKey attempts to derive the *next* key within the key family
// (account in BIP43) specified. This method should return the next external
// child within this branch.
func (w *WalletKit) DeriveNextKey(ctx context.Context,
req *KeyReq) (*signrpc.KeyDescriptor, error) {
nextKeyDesc, err := w.cfg.KeyRing.DeriveNextKey(
keychain.KeyFamily(req.KeyFamily),
)
if err != nil {
return nil, err
}
return &signrpc.KeyDescriptor{
KeyLoc: &signrpc.KeyLocator{
KeyFamily: int32(nextKeyDesc.Family),
KeyIndex: int32(nextKeyDesc.Index),
},
RawKeyBytes: nextKeyDesc.PubKey.SerializeCompressed(),
}, nil
}
// DeriveKey attempts to derive an arbitrary key specified by the passed
// KeyLocator.
func (w *WalletKit) DeriveKey(ctx context.Context,
req *signrpc.KeyLocator) (*signrpc.KeyDescriptor, error) {
keyDesc, err := w.cfg.KeyRing.DeriveKey(keychain.KeyLocator{
Family: keychain.KeyFamily(req.KeyFamily),
Index: uint32(req.KeyIndex),
})
if err != nil {
return nil, err
}
return &signrpc.KeyDescriptor{
KeyLoc: &signrpc.KeyLocator{
KeyFamily: int32(keyDesc.Family),
KeyIndex: int32(keyDesc.Index),
},
RawKeyBytes: keyDesc.PubKey.SerializeCompressed(),
}, nil
}
// NextAddr returns the next unused address within the wallet.
func (w *WalletKit) NextAddr(ctx context.Context,
req *AddrRequest) (*AddrResponse, error) {
addr, err := w.cfg.Wallet.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
return nil, err
}
return &AddrResponse{
Addr: addr.String(),
}, nil
}
// Attempts to publish the passed transaction to the network. Once this returns
// without an error, the wallet will continually attempt to re-broadcast the
// transaction on start up, until it enters the chain.
func (w *WalletKit) PublishTransaction(ctx context.Context,
req *Transaction) (*PublishResponse, error) {
switch {
// If the client doesn't specify a transaction, then there's nothing to
// publish.
case len(req.TxHex) == 0:
return nil, fmt.Errorf("must provide a transaction to " +
"publish")
}
tx := &wire.MsgTx{}
txReader := bytes.NewReader(req.TxHex)
if err := tx.Deserialize(txReader); err != nil {
return nil, err
}
label, err := labels.ValidateAPI(req.Label)
if err != nil {
return nil, err
}
err = w.cfg.Wallet.PublishTransaction(tx, label)
if err != nil {
return nil, err
}
return &PublishResponse{}, nil
}
// SendOutputs is similar to the existing sendmany call in Bitcoind, and allows
// the caller to create a transaction that sends to several outputs at once.
// This is ideal when wanting to batch create a set of transactions.
func (w *WalletKit) SendOutputs(ctx context.Context,
req *SendOutputsRequest) (*SendOutputsResponse, error) {
switch {
// If the client didn't specify any outputs to create, then we can't
// proceed .
case len(req.Outputs) == 0:
return nil, fmt.Errorf("must specify at least one output " +
"to create")
}
// Before we can request this transaction to be created, we'll need to
// amp the protos back into the format that the internal wallet will
// recognize.
outputsToCreate := make([]*wire.TxOut, 0, len(req.Outputs))
for _, output := range req.Outputs {
outputsToCreate = append(outputsToCreate, &wire.TxOut{
Value: output.Value,
PkScript: output.PkScript,
})
}
// Then, we'll extract the minimum number of confirmations that each
// output we use to fund the transaction should satisfy.
minConfs, err := lnrpc.ExtractMinConfs(req.MinConfs, req.SpendUnconfirmed)
if err != nil {
return nil, err
}
label, err := labels.ValidateAPI(req.Label)
if err != nil {
return nil, err
}
// Now that we have the outputs mapped, we can request that the wallet
// attempt to create this transaction.
tx, err := w.cfg.Wallet.SendOutputs(
outputsToCreate, chainfee.SatPerKWeight(req.SatPerKw), minConfs, label,
)
if err != nil {
return nil, err
}
var b bytes.Buffer
if err := tx.Serialize(&b); err != nil {
return nil, err
}
return &SendOutputsResponse{
RawTx: b.Bytes(),
}, nil
}
// EstimateFee attempts to query the internal fee estimator of the wallet to
// determine the fee (in sat/kw) to attach to a transaction in order to achieve
// the confirmation target.
func (w *WalletKit) EstimateFee(ctx context.Context,
req *EstimateFeeRequest) (*EstimateFeeResponse, error) {
switch {
// A confirmation target of zero doesn't make any sense. Similarly, we
// reject confirmation targets of 1 as they're unreasonable.
case req.ConfTarget == 0 || req.ConfTarget == 1:
return nil, fmt.Errorf("confirmation target must be greater " +
"than 1")
}
satPerKw, err := w.cfg.FeeEstimator.EstimateFeePerKW(
uint32(req.ConfTarget),
)
if err != nil {
return nil, err
}
return &EstimateFeeResponse{
SatPerKw: int64(satPerKw),
}, nil
}
// PendingSweeps returns lists of on-chain outputs that lnd is currently
// attempting to sweep within its central batching engine. Outputs with similar
// fee rates are batched together in order to sweep them within a single
// transaction. The fee rate of each sweeping transaction is determined by
// taking the average fee rate of all the outputs it's trying to sweep.
func (w *WalletKit) PendingSweeps(ctx context.Context,
in *PendingSweepsRequest) (*PendingSweepsResponse, error) {
// Retrieve all of the outputs the UtxoSweeper is currently trying to
// sweep.
pendingInputs, err := w.cfg.Sweeper.PendingInputs()
if err != nil {
return nil, err
}
// Convert them into their respective RPC format.
rpcPendingSweeps := make([]*PendingSweep, 0, len(pendingInputs))
for _, pendingInput := range pendingInputs {
var witnessType WitnessType
switch pendingInput.WitnessType {
case input.CommitmentTimeLock:
witnessType = WitnessType_COMMITMENT_TIME_LOCK
case input.CommitmentNoDelay:
witnessType = WitnessType_COMMITMENT_NO_DELAY
case input.CommitmentRevoke:
witnessType = WitnessType_COMMITMENT_REVOKE
case input.HtlcOfferedRevoke:
witnessType = WitnessType_HTLC_OFFERED_REVOKE
case input.HtlcAcceptedRevoke:
witnessType = WitnessType_HTLC_ACCEPTED_REVOKE
case input.HtlcOfferedTimeoutSecondLevel:
witnessType = WitnessType_HTLC_OFFERED_TIMEOUT_SECOND_LEVEL
case input.HtlcAcceptedSuccessSecondLevel:
witnessType = WitnessType_HTLC_ACCEPTED_SUCCESS_SECOND_LEVEL
case input.HtlcOfferedRemoteTimeout:
witnessType = WitnessType_HTLC_OFFERED_REMOTE_TIMEOUT
case input.HtlcAcceptedRemoteSuccess:
witnessType = WitnessType_HTLC_ACCEPTED_REMOTE_SUCCESS
case input.HtlcSecondLevelRevoke:
witnessType = WitnessType_HTLC_SECOND_LEVEL_REVOKE
case input.WitnessKeyHash:
witnessType = WitnessType_WITNESS_KEY_HASH
case input.NestedWitnessKeyHash:
witnessType = WitnessType_NESTED_WITNESS_KEY_HASH
2020-03-10 15:23:17 +03:00
case input.CommitmentAnchor:
witnessType = WitnessType_COMMITMENT_ANCHOR
default:
log.Warnf("Unhandled witness type %v for input %v",
pendingInput.WitnessType, pendingInput.OutPoint)
}
op := &lnrpc.OutPoint{
TxidBytes: pendingInput.OutPoint.Hash[:],
OutputIndex: pendingInput.OutPoint.Index,
}
amountSat := uint32(pendingInput.Amount)
satPerByte := uint32(pendingInput.LastFeeRate.FeePerKVByte() / 1000)
broadcastAttempts := uint32(pendingInput.BroadcastAttempts)
nextBroadcastHeight := uint32(pendingInput.NextBroadcastHeight)
requestedFee := pendingInput.Params.Fee
requestedFeeRate := uint32(requestedFee.FeeRate.FeePerKVByte() / 1000)
rpcPendingSweeps = append(rpcPendingSweeps, &PendingSweep{
Outpoint: op,
WitnessType: witnessType,
AmountSat: amountSat,
SatPerByte: satPerByte,
BroadcastAttempts: broadcastAttempts,
NextBroadcastHeight: nextBroadcastHeight,
RequestedSatPerByte: requestedFeeRate,
RequestedConfTarget: requestedFee.ConfTarget,
2019-12-09 17:40:05 +03:00
Force: pendingInput.Params.Force,
})
}
return &PendingSweepsResponse{
PendingSweeps: rpcPendingSweeps,
}, nil
}
// unmarshallOutPoint converts an outpoint from its lnrpc type to its canonical
// type.
func unmarshallOutPoint(op *lnrpc.OutPoint) (*wire.OutPoint, error) {
if op == nil {
return nil, fmt.Errorf("empty outpoint provided")
}
var hash chainhash.Hash
switch {
case len(op.TxidBytes) == 0 && len(op.TxidStr) == 0:
fallthrough
case len(op.TxidBytes) != 0 && len(op.TxidStr) != 0:
return nil, fmt.Errorf("either TxidBytes or TxidStr must be " +
"specified, but not both")
// The hash was provided as raw bytes.
case len(op.TxidBytes) != 0:
copy(hash[:], op.TxidBytes)
// The hash was provided as a hex-encoded string.
case len(op.TxidStr) != 0:
h, err := chainhash.NewHashFromStr(op.TxidStr)
if err != nil {
return nil, err
}
hash = *h
}
return &wire.OutPoint{
Hash: hash,
Index: op.OutputIndex,
}, nil
}
// BumpFee allows bumping the fee rate of an arbitrary input. A fee preference
// can be expressed either as a specific fee rate or a delta of blocks in which
// the output should be swept on-chain within. If a fee preference is not
// explicitly specified, then an error is returned. The status of the input
// sweep can be checked through the PendingSweeps RPC.
func (w *WalletKit) BumpFee(ctx context.Context,
in *BumpFeeRequest) (*BumpFeeResponse, error) {
// Parse the outpoint from the request.
op, err := unmarshallOutPoint(in.Outpoint)
if err != nil {
return nil, err
}
// Construct the request's fee preference.
satPerKw := chainfee.SatPerKVByte(in.SatPerByte * 1000).FeePerKWeight()
feePreference := sweep.FeePreference{
ConfTarget: uint32(in.TargetConf),
FeeRate: satPerKw,
}
// We'll attempt to bump the fee of the input through the UtxoSweeper.
// If it is currently attempting to sweep the input, then it'll simply
// bump its fee, which will result in a replacement transaction (RBF)
// being broadcast. If it is not aware of the input however,
// lnwallet.ErrNotMine is returned.
params := sweep.ParamsUpdate{
2019-12-09 17:40:05 +03:00
Fee: feePreference,
Force: in.Force,
}
_, err = w.cfg.Sweeper.UpdateParams(*op, params)
switch err {
case nil:
return &BumpFeeResponse{}, nil
case lnwallet.ErrNotMine:
break
default:
return nil, err
}
log.Debugf("Attempting to CPFP outpoint %s", op)
// Since we're unable to perform a bump through RBF, we'll assume the
// user is attempting to bump an unconfirmed transaction's fee rate by
// sweeping an output within it under control of the wallet with a
// higher fee rate, essentially performing a Child-Pays-For-Parent
// (CPFP).
//
// We'll gather all of the information required by the UtxoSweeper in
// order to sweep the output.
utxo, err := w.cfg.Wallet.FetchInputInfo(op)
if err != nil {
return nil, err
}
// We're only able to bump the fee of unconfirmed transactions.
if utxo.Confirmations > 0 {
return nil, errors.New("unable to bump fee of a confirmed " +
"transaction")
}
var witnessType input.WitnessType
switch utxo.AddressType {
case lnwallet.WitnessPubKey:
witnessType = input.WitnessKeyHash
case lnwallet.NestedWitnessPubKey:
witnessType = input.NestedWitnessKeyHash
default:
return nil, fmt.Errorf("unknown input witness %v", op)
}
signDesc := &input.SignDescriptor{
Output: &wire.TxOut{
PkScript: utxo.PkScript,
Value: int64(utxo.Value),
},
HashType: txscript.SigHashAll,
}
// We'll use the current height as the height hint since we're dealing
// with an unconfirmed transaction.
_, currentHeight, err := w.cfg.Chain.GetBestBlock()
if err != nil {
return nil, fmt.Errorf("unable to retrieve current height: %v",
err)
}
input := input.NewBaseInput(op, witnessType, signDesc, uint32(currentHeight))
if _, err = w.cfg.Sweeper.SweepInput(input, sweep.Params{Fee: feePreference}); err != nil {
return nil, err
}
return &BumpFeeResponse{}, nil
}
// ListSweeps returns a list of the sweeps that our node has published.
func (w *WalletKit) ListSweeps(ctx context.Context,
in *ListSweepsRequest) (*ListSweepsResponse, error) {
sweeps, err := w.cfg.Sweeper.ListSweeps()
if err != nil {
return nil, err
}
sweepTxns := make(map[string]bool)
for _, sweep := range sweeps {
sweepTxns[sweep.String()] = true
}
// Some of our sweeps could have been replaced by fee, or dropped out
// of the mempool. Here, we lookup our wallet transactions so that we
// can match our list of sweeps against the list of transactions that
// the wallet is still tracking.
transactions, err := w.cfg.Wallet.ListTransactionDetails(
0, btcwallet.UnconfirmedHeight,
)
if err != nil {
return nil, err
}
var (
txids []string
txDetails []*lnwallet.TransactionDetail
)
for _, tx := range transactions {
_, ok := sweepTxns[tx.Hash.String()]
if !ok {
continue
}
// Add the txid or full tx details depending on whether we want
// verbose output or not.
if in.Verbose {
txDetails = append(txDetails, tx)
} else {
txids = append(txids, tx.Hash.String())
}
}
if in.Verbose {
return &ListSweepsResponse{
Sweeps: &ListSweepsResponse_TransactionDetails{
TransactionDetails: lnrpc.RPCTransactionDetails(
txDetails,
),
},
}, nil
}
return &ListSweepsResponse{
Sweeps: &ListSweepsResponse_TransactionIds{
TransactionIds: &ListSweepsResponse_TransactionIDs{
TransactionIds: txids,
},
},
}, nil
}
2020-05-25 09:38:25 +03:00
// LabelTransaction adds a label to a transaction.
func (w *WalletKit) LabelTransaction(ctx context.Context,
req *LabelTransactionRequest) (*LabelTransactionResponse, error) {
// Check that the label provided in non-zero.
if len(req.Label) == 0 {
return nil, ErrZeroLabel
}
// Validate the length of the non-zero label. We do not need to use the
// label returned here, because the original is non-zero so will not
// be replaced.
if _, err := labels.ValidateAPI(req.Label); err != nil {
return nil, err
}
hash, err := chainhash.NewHash(req.Txid)
if err != nil {
return nil, err
}
err = w.cfg.Wallet.LabelTransaction(*hash, req.Label, req.Overwrite)
return &LabelTransactionResponse{}, err
}
// FundPsbt creates a fully populated PSBT that contains enough inputs to fund
// the outputs specified in the template. There are two ways of specifying a
// template: Either by passing in a PSBT with at least one output declared or
// by passing in a raw TxTemplate message. If there are no inputs specified in
// the template, coin selection is performed automatically. If the template does
// contain any inputs, it is assumed that full coin selection happened
// externally and no additional inputs are added. If the specified inputs aren't
// enough to fund the outputs with the given fee rate, an error is returned.
// After either selecting or verifying the inputs, all input UTXOs are locked
// with an internal app ID.
//
// NOTE: If this method returns without an error, it is the caller's
// responsibility to either spend the locked UTXOs (by finalizing and then
// publishing the transaction) or to unlock/release the locked UTXOs in case of
// an error on the caller's side.
func (w *WalletKit) FundPsbt(_ context.Context,
req *FundPsbtRequest) (*FundPsbtResponse, error) {
var (
err error
packet *psbt.Packet
feeSatPerKW chainfee.SatPerKWeight
locks []*utxoLock
rawPsbt bytes.Buffer
)
// There are two ways a user can specify what we call the template (a
// list of inputs and outputs to use in the PSBT): Either as a PSBT
// packet directly or as a special RPC message. Find out which one the
// user wants to use, they are mutually exclusive.
switch {
// The template is specified as a PSBT. All we have to do is parse it.
case req.GetPsbt() != nil:
r := bytes.NewReader(req.GetPsbt())
packet, err = psbt.NewFromRawBytes(r, false)
if err != nil {
return nil, fmt.Errorf("could not parse PSBT: %v", err)
}
// The template is specified as a RPC message. We need to create a new
// PSBT and copy the RPC information over.
case req.GetRaw() != nil:
tpl := req.GetRaw()
if len(tpl.Outputs) == 0 {
return nil, fmt.Errorf("no outputs specified")
}
txOut := make([]*wire.TxOut, 0, len(tpl.Outputs))
for addrStr, amt := range tpl.Outputs {
addr, err := btcutil.DecodeAddress(
addrStr, w.cfg.ChainParams,
)
if err != nil {
return nil, fmt.Errorf("error parsing address "+
"%s for network %s: %v", addrStr,
w.cfg.ChainParams.Name, err)
}
pkScript, err := txscript.PayToAddrScript(addr)
if err != nil {
return nil, fmt.Errorf("error getting pk "+
"script for address %s: %v", addrStr,
err)
}
txOut = append(txOut, &wire.TxOut{
Value: int64(amt),
PkScript: pkScript,
})
}
txIn := make([]*wire.OutPoint, len(tpl.Inputs))
for idx, in := range tpl.Inputs {
op, err := unmarshallOutPoint(in)
if err != nil {
return nil, fmt.Errorf("error parsing "+
"outpoint: %v", err)
}
txIn[idx] = op
}
sequences := make([]uint32, len(txIn))
packet, err = psbt.New(txIn, txOut, 2, 0, sequences)
if err != nil {
return nil, fmt.Errorf("could not create PSBT: %v", err)
}
default:
return nil, fmt.Errorf("transaction template missing, need " +
"to specify either PSBT or raw TX template")
}
// Determine the desired transaction fee.
switch {
// Estimate the fee by the target number of blocks to confirmation.
case req.GetTargetConf() != 0:
targetConf := req.GetTargetConf()
if targetConf < 2 {
return nil, fmt.Errorf("confirmation target must be " +
"greater than 1")
}
feeSatPerKW, err = w.cfg.FeeEstimator.EstimateFeePerKW(
targetConf,
)
if err != nil {
return nil, fmt.Errorf("could not estimate fee: %v",
err)
}
// Convert the fee to sat/kW from the specified sat/vByte.
case req.GetSatPerVbyte() != 0:
feeSatPerKW = chainfee.SatPerKVByte(
req.GetSatPerVbyte() * 1000,
).FeePerKWeight()
default:
return nil, fmt.Errorf("fee definition missing, need to " +
"specify either target_conf or set_per_vbyte")
}
// The RPC parsing part is now over. Several of the following operations
// require us to hold the global coin selection lock so we do the rest
// of the tasks while holding the lock. The result is a list of locked
// UTXOs.
changeIndex := int32(-1)
err = w.cfg.CoinSelectionLocker.WithCoinSelectLock(func() error {
// In case the user did specify inputs, we need to make sure
// they are known to us, still unspent and not yet locked.
if len(packet.UnsignedTx.TxIn) > 0 {
// Get a list of all unspent witness outputs.
utxos, err := w.cfg.Wallet.ListUnspentWitness(
defaultMinConf, defaultMaxConf,
)
if err != nil {
return err
}
// Validate all inputs against our known list of UTXOs
// now.
err = verifyInputsUnspent(packet.UnsignedTx.TxIn, utxos)
if err != nil {
return err
}
}
// We made sure the input from the user is as sane as possible.
// We can now ask the wallet to fund the TX. This will not yet
// lock any coins but might still change the wallet DB by
// generating a new change address.
changeIndex, err = w.cfg.Wallet.FundPsbt(packet, feeSatPerKW)
if err != nil {
return fmt.Errorf("wallet couldn't fund PSBT: %v", err)
}
// Make sure we can properly serialize the packet. If this goes
// wrong then something isn't right with the inputs and we
// probably shouldn't try to lock any of them.
err = packet.Serialize(&rawPsbt)
if err != nil {
return fmt.Errorf("error serializing funded PSBT: %v",
err)
}
// Now we have obtained a set of coins that can be used to fund
// the TX. Let's lock them to be sure they aren't spent by the
// time the PSBT is published. This is the action we do here
// that could cause an error. Therefore if some of the UTXOs
// cannot be locked, the rollback of the other's locks also
// happens in this function. If we ever need to do more after
// this function, we need to extract the rollback needs to be
// extracted into a defer.
locks, err = lockInputs(w.cfg.Wallet, packet)
if err != nil {
return fmt.Errorf("could not lock inputs: %v", err)
}
return nil
})
if err != nil {
return nil, err
}
// Convert the lock leases to the RPC format.
rpcLocks := make([]*UtxoLease, len(locks))
for idx, lock := range locks {
rpcLocks[idx] = &UtxoLease{
Id: lock.lockID[:],
Outpoint: &lnrpc.OutPoint{
TxidBytes: lock.outpoint.Hash[:],
TxidStr: lock.outpoint.Hash.String(),
OutputIndex: lock.outpoint.Index,
},
Expiration: uint64(lock.expiration.Unix()),
}
}
return &FundPsbtResponse{
FundedPsbt: rawPsbt.Bytes(),
ChangeOutputIndex: changeIndex,
LockedUtxos: rpcLocks,
}, nil
}
// FinalizePsbt expects a partial transaction with all inputs and outputs fully
// declared and tries to sign all inputs that belong to the wallet. Lnd must be
// the last signer of the transaction. That means, if there are any unsigned
// non-witness inputs or inputs without UTXO information attached or inputs
// without witness data that do not belong to lnd's wallet, this method will
// fail. If no error is returned, the PSBT is ready to be extracted and the
// final TX within to be broadcast.
//
// NOTE: This method does NOT publish the transaction once finalized. It is the
// caller's responsibility to either publish the transaction on success or
// unlock/release any locked UTXOs in case of an error in this method.
func (w *WalletKit) FinalizePsbt(_ context.Context,
req *FinalizePsbtRequest) (*FinalizePsbtResponse, error) {
// Parse the funded PSBT. No additional checks are required at this
// level as the wallet will perform all of them.
packet, err := psbt.NewFromRawBytes(
bytes.NewReader(req.FundedPsbt), false,
)
if err != nil {
return nil, fmt.Errorf("error parsing PSBT: %v", err)
}
// Let the wallet do the heavy lifting. This will sign all inputs that
// we have the UTXO for. If some inputs can't be signed and don't have
// witness data attached, this will fail.
err = w.cfg.Wallet.FinalizePsbt(packet)
if err != nil {
return nil, fmt.Errorf("error finalizing PSBT: %v", err)
}
var (
finalPsbtBytes bytes.Buffer
finalTxBytes bytes.Buffer
)
// Serialize the finalized PSBT in both the packet and wire format.
err = packet.Serialize(&finalPsbtBytes)
if err != nil {
return nil, fmt.Errorf("error serializing PSBT: %v", err)
}
finalTx, err := psbt.Extract(packet)
if err != nil {
return nil, fmt.Errorf("unable to extract final TX: %v", err)
}
err = finalTx.Serialize(&finalTxBytes)
if err != nil {
return nil, fmt.Errorf("error serializing final TX: %v", err)
}
return &FinalizePsbtResponse{
SignedPsbt: finalPsbtBytes.Bytes(),
RawFinalTx: finalTxBytes.Bytes(),
}, nil
}