lnd.xprv/htlcswitch.go

953 lines
29 KiB
Go
Raw Normal View History

package main
import (
"crypto/sha256"
"encoding/hex"
"fmt"
"sync"
"sync/atomic"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
"golang.org/x/crypto/ripemd160"
)
const (
// htlcQueueSize...
// buffer bloat ;)
htlcQueueSize = 50
)
var (
zeroBytes [32]byte
)
// boundedLinkChan is a simple wrapper around a link's communication channel
// that bounds the total flow into and through the channel. Channels attached
// the link have a value which defines the max number of pending HTLC's present
// within the commitment transaction. Using this struct we establish a
// synchronization primitive that ensure we don't send additional htlcPackets
// to a link if the max limit has een reached. Once HTLC's are cleared from the
// commitment transaction, slots are freed up and more can proceed.
type boundedLinkChan struct {
// slots is a buffered channel whose buffer is the total number of
// outstanding HTLC's we can add to a link's commitment transaction.
// This channel is essentially used as a semaphore.
slots chan struct{}
// linkChan is a channel that is connected to the channel state machine
// for a link. The switch will send adds, settles, and cancels over
// this channel.
linkChan chan *htlcPacket
}
// newBoundedChan makes a new boundedLinkChan that has numSlots free slots that
// are depleted on each send until a slot is re-stored. linkChan is the
// underlying channel that will be sent upon.
func newBoundedLinkChan(numSlots uint32,
linkChan chan *htlcPacket) *boundedLinkChan {
b := &boundedLinkChan{
slots: make(chan struct{}, numSlots),
linkChan: linkChan,
}
b.restoreSlots(numSlots)
return b
}
// sendAndConsume sends a packet to the linkChan and consumes a single token in
// the process.
//
// TODO(roasbeef): add error fall through case?
func (b *boundedLinkChan) sendAndConsume(pkt *htlcPacket) {
<-b.slots
b.linkChan <- pkt
}
// sendAndRestore sends a packet to the linkChan and consumes a single token in
// the process. This method is called when the switch sends either a cancel or
// settle HTLC message to the link.
func (b *boundedLinkChan) sendAndRestore(pkt *htlcPacket) {
b.linkChan <- pkt
b.slots <- struct{}{}
}
// consumeSlot consumes a single slot from the bounded channel. This method is
// called once the switch receives a new htlc add message from a link right
// before forwarding it to the next hop.
func (b *boundedLinkChan) consumeSlot() {
<-b.slots
}
// restoreSlot restores a single slots to the bounded channel. This method is
// called once the switch receives an HTLC cancel or settle from a link.
func (b *boundedLinkChan) restoreSlot() {
b.slots <- struct{}{}
}
// restoreSlots adds numSlots additional slots to the bounded channel.
func (b *boundedLinkChan) restoreSlots(numSlots uint32) {
for i := uint32(0); i < numSlots; i++ {
b.slots <- struct{}{}
}
}
// link represents an active channel capable of forwarding HTLCs. Each
// active channel registered with the htlc switch creates a new link which will
// be used for forwarding outgoing HTLCs. The link also has additional
// metadata such as the current available bandwidth of the link (in satoshis)
// which aid the switch in optimally forwarding HTLCs.
type link struct {
chanID lnwire.ChannelID
capacity btcutil.Amount
availableBandwidth int64 // atomic
peer *peer
*boundedLinkChan
}
// htlcPacket is a wrapper around an lnwire message which adds, times out, or
// settles an active HTLC. The dest field denotes the name of the interface to
// forward this htlcPacket on.
type htlcPacket struct {
sync.RWMutex
dest chainhash.Hash
srcLink lnwire.ChannelID
onion *sphinx.ProcessedPacket
msg lnwire.Message
// TODO(roasbeef): refactor and add type to pkt message
payHash [32]byte
amt btcutil.Amount
preImage chan [32]byte
err chan error
done chan struct{}
}
// circuitKey uniquely identifies an active Sphinx (onion routing) circuit
// between two open channels. Currently, the rHash of the HTLC which created
// the circuit is used to uniquely identify each circuit.
// TODO(roasbeef): need to also add in the settle/clear channel points in order
// to support fragmenting payments on the link layer: 1 to N, N to N, etc.
type circuitKey [32]byte
// paymentCircuit represents an active Sphinx (onion routing) circuit between
// two active links within the htlcSwitch. A payment circuit is created once a
// link forwards an HTLC add request which initiates the creation of the
// circuit. The onion routing information contained within this message is
// used to identify the settle/clear ends of the circuit. A circuit may be
// re-used (not torndown) in the case that multiple HTLCs with the send RHash
// are sent.
type paymentCircuit struct {
refCount uint32
// clear is the link the htlcSwitch will forward the HTLC add message
// that initiated the circuit to. Once the message is forwarded, the
// payment circuit is considered "active" from the POV of the switch as
// both the incoming/outgoing channels have the cleared HTLC within
// their latest state.
clear *link
// settle is the link the htlcSwitch will forward the HTLC settle it
// receives from the outgoing peer to. Once the switch forwards the
// settle message to this link, the payment circuit is considered
// complete unless the reference count on the circuit is greater than
// 1.
settle *link
}
// htlcSwitch is a central messaging bus for all incoming/outgoing HTLCs.
// Connected peers with active channels are treated as named interfaces which
// refer to active channels as links. A link is the switch's message
// communication point with the goroutine that manages an active channel. New
// links are registered each time a channel is created, and unregistered once
// the channel is closed. The switch manages the hand-off process for multi-hop
// HTLCs, forwarding HTLCs initiated from within the daemon, and additionally
// splitting up incoming/outgoing HTLCs to a particular interface amongst many
// links (payment fragmentation).
// TODO(roasbeef): active sphinx circuits need to be synced to disk
type htlcSwitch struct {
started int32 // atomic
shutdown int32 // atomic
// chanIndex maps a channel's ID to a link which contains additional
// information about the channel, and additionally houses a pointer to
// the peer managing the channel.
chanIndexMtx sync.RWMutex
chanIndex map[lnwire.ChannelID]*link
// interfaces maps a node's ID to the set of links (active channels) we
// currently have open with that peer.
// TODO(roasbeef): combine w/ onionIndex?
interfaceMtx sync.RWMutex
interfaces map[chainhash.Hash][]*link
// onionIndex is an index used to properly forward a message to the
// next hop within a Sphinx circuit. Within the sphinx packets, the
// "next-hop" destination is encoded as the hash160 of the node's
// public key serialized in compressed format.
onionMtx sync.RWMutex
onionIndex map[[ripemd160.Size]byte][]*link
// paymentCircuits maps a circuit key to an active payment circuit
2017-03-15 08:53:15 +03:00
// amongst two open channels. This map is used to properly clear/settle
// onion routed payments within the network.
paymentCircuits map[circuitKey]*paymentCircuit
// linkControl is a channel used by connected links to notify the
// switch of a non-multi-hop triggered link state update.
linkControl chan interface{}
// outgoingPayments is a channel that outgoing payments initiated by
// the RPC system.
outgoingPayments chan *htlcPacket
// htlcPlex is the channel which all connected links use to coordinate
// the setup/teardown of Sphinx (onion routing) payment circuits.
// Active links forward any add/settle messages over this channel each
// state transition, sending new adds/settles which are fully locked
// in.
htlcPlex chan *htlcPacket
// TODO(roasbeef): sampler to log sat/sec and tx/sec
wg sync.WaitGroup
quit chan struct{}
}
// newHtlcSwitch creates a new htlcSwitch.
func newHtlcSwitch() *htlcSwitch {
return &htlcSwitch{
chanIndex: make(map[lnwire.ChannelID]*link),
interfaces: make(map[chainhash.Hash][]*link),
onionIndex: make(map[[ripemd160.Size]byte][]*link),
paymentCircuits: make(map[circuitKey]*paymentCircuit),
linkControl: make(chan interface{}),
htlcPlex: make(chan *htlcPacket, htlcQueueSize),
outgoingPayments: make(chan *htlcPacket, htlcQueueSize),
quit: make(chan struct{}),
}
}
// Start starts all helper goroutines required for the operation of the switch.
func (h *htlcSwitch) Start() error {
if !atomic.CompareAndSwapInt32(&h.started, 0, 1) {
return nil
}
hswcLog.Tracef("Starting HTLC switch")
h.wg.Add(2)
go h.networkAdmin()
go h.htlcForwarder()
return nil
}
// Stop gracefully stops all active helper goroutines, then waits until they've
// exited.
func (h *htlcSwitch) Stop() error {
if !atomic.CompareAndSwapInt32(&h.shutdown, 0, 1) {
return nil
}
hswcLog.Infof("HLTC switch shutting down")
close(h.quit)
h.wg.Wait()
return nil
}
// SendHTLC queues a HTLC packet for forwarding over the designated interface.
// In the event that the interface has insufficient capacity for the payment,
// an error is returned. Additionally, if the interface cannot be found, an
// alternative error is returned.
func (h *htlcSwitch) SendHTLC(htlcPkt *htlcPacket) ([32]byte, error) {
htlcPkt.err = make(chan error, 1)
htlcPkt.done = make(chan struct{})
htlcPkt.preImage = make(chan [32]byte, 1)
h.outgoingPayments <- htlcPkt
return <-htlcPkt.preImage, <-htlcPkt.err
}
// htlcForwarder is responsible for optimally forwarding (and possibly
// fragmenting) incoming/outgoing HTLCs amongst all active interfaces and
// their links. The duties of the forwarder are similar to that of a network
// switch, in that it facilitates multi-hop payments by acting as a central
// messaging bus. The switch communicates will active links to create, manage,
// and tear down active onion routed payments. Each active channel is modeled
// as networked device with metadata such as the available payment bandwidth,
// and total link capacity.
func (h *htlcSwitch) htlcForwarder() {
// TODO(roasbeef): track pending payments here instead of within each peer?
// Examine settles/timeouts from htlcPlex. Add src to htlcPacket, key by
// (src, htlcKey).
// TODO(roasbeef): cleared vs settled distinction
var (
deltaNumUpdates, totalNumUpdates uint64
deltaSatSent, deltaSatRecv btcutil.Amount
totalSatSent, totalSatRecv btcutil.Amount
)
logTicker := time.NewTicker(10 * time.Second)
out:
for {
select {
case htlcPkt := <-h.outgoingPayments:
dest := htlcPkt.dest
h.interfaceMtx.RLock()
chanInterface, ok := h.interfaces[dest]
h.interfaceMtx.RUnlock()
if !ok {
err := fmt.Errorf("Unable to locate link %x",
dest[:])
hswcLog.Errorf(err.Error())
htlcPkt.preImage <- zeroBytes
htlcPkt.err <- err
continue
}
wireMsg := htlcPkt.msg.(*lnwire.UpdateAddHTLC)
2017-02-23 22:07:01 +03:00
amt := wireMsg.Amount
// Handle this send request in a distinct goroutine in
// order to avoid a possible deadlock between the htlc
// switch and channel's htlc manager.
for _, link := range chanInterface {
// TODO(roasbeef): implement HTLC fragmentation
// * avoid full channel depletion at higher
// level (here) instead of within state
// machine?
if atomic.LoadInt64(&link.availableBandwidth) < int64(amt) {
continue
}
hswcLog.Tracef("Sending %v to %x", amt, dest[:])
go func() {
link.sendAndConsume(htlcPkt)
<-htlcPkt.done
link.restoreSlot()
}()
n := atomic.AddInt64(&link.availableBandwidth,
-int64(amt))
hswcLog.Tracef("Decrementing link %v bandwidth to %v",
link.chanID, n)
continue out
}
hswcLog.Errorf("Unable to send payment, insufficient capacity")
htlcPkt.preImage <- zeroBytes
htlcPkt.err <- fmt.Errorf("Insufficient capacity")
case pkt := <-h.htlcPlex:
// TODO(roasbeef): properly account with cleared vs settled
deltaNumUpdates++
hswcLog.Tracef("plex packet: %v", newLogClosure(func() string {
if pkt.onion != nil {
pkt.onion.Packet.Header.EphemeralKey.Curve = nil
}
return spew.Sdump(pkt)
}))
switch wireMsg := pkt.msg.(type) {
// A link has just forwarded us a new HTLC, therefore
// we initiate the payment circuit within our internal
// state so we can properly forward the ultimate settle
// message.
case *lnwire.UpdateAddHTLC:
payHash := wireMsg.PaymentHash
// Create the two ends of the payment circuit
// required to ensure completion of this new
// payment.
nextHop := pkt.onion.NextHop
h.onionMtx.RLock()
clearLink, ok := h.onionIndex[nextHop]
h.onionMtx.RUnlock()
if !ok {
hswcLog.Errorf("unable to find dest end of "+
"circuit: %x", nextHop)
// We were unable to locate the
// next-hop as encoded within the
// Sphinx packet. Therefore, we send a
// cancellation message back to the
// source of the packet so they can
// propagate the message back to the
// origin.
cancelPkt := &htlcPacket{
payHash: payHash,
msg: &lnwire.UpdateFailHTLC{
Reason: []byte{uint8(lnwire.UnknownDestination)},
},
err: make(chan error, 1),
}
h.chanIndexMtx.RLock()
cancelLink := h.chanIndex[pkt.srcLink]
h.chanIndexMtx.RUnlock()
cancelLink.linkChan <- cancelPkt
continue
}
h.chanIndexMtx.RLock()
settleLink := h.chanIndex[pkt.srcLink]
h.chanIndexMtx.RUnlock()
// As the link now has a new HTLC that's been
// propagated to us, we'll consume a slot from
// it's bounded channel.
settleLink.consumeSlot()
// If the link we're attempting to forward the
// HTLC over has insufficient capacity, then
// we'll cancel the HTLC as the payment cannot
// succeed.
linkBandwidth := atomic.LoadInt64(&clearLink[0].availableBandwidth)
if linkBandwidth < int64(wireMsg.Amount) {
hswcLog.Errorf("unable to forward HTLC "+
"link %v has insufficient "+
"capacity, have %v need %v",
clearLink[0].chanID, linkBandwidth,
int64(wireMsg.Amount))
pkt := &htlcPacket{
payHash: payHash,
msg: &lnwire.UpdateFailHTLC{
Reason: []byte{uint8(lnwire.InsufficientCapacity)},
},
err: make(chan error, 1),
}
// Send the cancel message along the
// link, restoring a slot in the
// bounded channel in the process.
settleLink.sendAndRestore(pkt)
continue
}
// Examine the circuit map to see if this
// circuit is already in use or not. If so,
// then we'll simply increment the reference
// count. Otherwise, we'll create a new circuit
// from scratch.
//
// TODO(roasbeef): include dest+src+amt in key
cKey := circuitKey(wireMsg.PaymentHash)
circuit, ok := h.paymentCircuits[cKey]
if ok {
hswcLog.Debugf("Increasing ref_count "+
"of circuit: %x, from %v to %v",
wireMsg.PaymentHash,
circuit.refCount,
circuit.refCount+1)
circuit.refCount += 1
} else {
hswcLog.Debugf("Creating onion "+
"circuit for %x: %v<->%v",
cKey[:], clearLink[0].chanID,
settleLink.chanID)
circuit = &paymentCircuit{
clear: clearLink[0],
settle: settleLink,
refCount: 1,
}
h.paymentCircuits[cKey] = circuit
}
// With the circuit initiated, send the htlcPkt
// to the clearing link within the circuit to
// continue propagating the HTLC across the
// network.
circuit.clear.sendAndConsume(&htlcPacket{
msg: wireMsg,
preImage: make(chan [32]byte, 1),
err: make(chan error, 1),
done: make(chan struct{}),
})
// Reduce the available bandwidth for the link
// as it will clear the above HTLC, increasing
// the limbo balance within the channel.
n := atomic.AddInt64(&circuit.clear.availableBandwidth,
-int64(pkt.amt))
hswcLog.Tracef("Decrementing link %v bandwidth to %v",
circuit.clear.chanID, n)
deltaSatRecv += pkt.amt
// We've just received a settle message which means we
// can finalize the payment circuit by forwarding the
// settle msg to the link which initially created the
// circuit.
case *lnwire.UpdateFufillHTLC:
rHash := sha256.Sum256(wireMsg.PaymentPreimage[:])
var cKey circuitKey
copy(cKey[:], rHash[:])
// If we initiated the payment then there won't
// be an active circuit to continue propagating
// the settle over. Therefore, we exit early.
circuit, ok := h.paymentCircuits[cKey]
if !ok {
hswcLog.Debugf("No existing circuit "+
"for %x to settle", rHash[:])
deltaSatSent += pkt.amt
continue
}
circuit.clear.restoreSlot()
circuit.settle.sendAndRestore(&htlcPacket{
msg: wireMsg,
err: make(chan error, 1),
})
// Increase the available bandwidth for the
// link as it will settle the above HTLC,
// subtracting from the limbo balance and
// incrementing its local balance.
n := atomic.AddInt64(&circuit.settle.availableBandwidth,
int64(pkt.amt))
hswcLog.Tracef("Incrementing link %v bandwidth to %v",
circuit.settle.chanID, n)
deltaSatSent += pkt.amt
if circuit.refCount--; circuit.refCount == 0 {
hswcLog.Debugf("Closing completed onion "+
"circuit for %x: %v<->%v", rHash[:],
circuit.clear.chanID,
circuit.settle.chanID)
delete(h.paymentCircuits, cKey)
}
// We've just received an HTLC cancellation triggered
// by an upstream peer somewhere within the ultimate
// route. In response, we'll terminate the payment
// circuit and propagate the error backwards.
case *lnwire.UpdateFailHTLC:
// In order to properly handle the error, we'll
// need to look up the original circuit that
// the incoming HTLC created.
circuit, ok := h.paymentCircuits[pkt.payHash]
if !ok {
hswcLog.Debugf("No existing circuit "+
"for %x to cancel", pkt.payHash)
continue
}
circuit.clear.restoreSlot()
// Since an outgoing HTLC we sent on the clear
// link has been cancelled, we update the
// bandwidth of the clear link, restoring the
// value of the HTLC worth.
n := atomic.AddInt64(&circuit.clear.availableBandwidth,
int64(pkt.amt))
hswcLog.Debugf("HTLC %x has been cancelled, "+
"incrementing link %v bandwidth to %v", pkt.payHash,
circuit.clear.chanID, n)
// With our link info updated, we now continue
// the error propagation by sending the
// cancellation message over the link that sent
// us the incoming HTLC.
circuit.settle.sendAndRestore(&htlcPacket{
msg: wireMsg,
payHash: pkt.payHash,
err: make(chan error, 1),
})
if circuit.refCount--; circuit.refCount == 0 {
hswcLog.Debugf("Closing cancelled onion "+
"circuit for %x: %v<->%v", pkt.payHash,
circuit.clear.chanID,
circuit.settle.chanID)
delete(h.paymentCircuits, pkt.payHash)
}
}
case <-logTicker.C:
if deltaNumUpdates == 0 {
continue
}
oldSatSent := totalSatRecv
oldSatRecv := totalSatRecv
oldNumUpdates := totalNumUpdates
newSatSent := oldSatRecv + deltaSatSent
newSatRecv := totalSatRecv + deltaSatRecv
newNumUpdates := totalNumUpdates + deltaNumUpdates
satSent := newSatSent - oldSatSent
satRecv := newSatRecv - oldSatRecv
numUpdates := newNumUpdates - oldNumUpdates
hswcLog.Infof("Sent %v satoshis, received %v satoshis in "+
"the last 10 seconds (%v tx/sec)",
satSent.ToUnit(btcutil.AmountSatoshi),
satRecv.ToUnit(btcutil.AmountSatoshi),
numUpdates)
totalSatSent += deltaSatSent
deltaSatSent = 0
totalSatRecv += deltaSatRecv
deltaSatRecv = 0
totalNumUpdates += deltaNumUpdates
deltaNumUpdates = 0
case <-h.quit:
break out
}
}
h.wg.Done()
}
// networkAdmin is responsible for handling requests to register, unregister,
// and close any link. In the event that an unregister request leaves an
// interface with no active links, that interface is garbage collected.
func (h *htlcSwitch) networkAdmin() {
out:
for {
select {
case msg := <-h.linkControl:
switch req := msg.(type) {
case *closeLinkReq:
h.handleCloseLink(req)
case *registerLinkMsg:
h.handleRegisterLink(req)
case *unregisterLinkMsg:
h.handleUnregisterLink(req)
case *linkInfoUpdateMsg:
h.handleLinkUpdate(req)
}
case <-h.quit:
break out
}
}
h.wg.Done()
}
// handleRegisterLink registers a new link within the channel index, and also
// adds the link to the existing set of links for the target interface.
func (h *htlcSwitch) handleRegisterLink(req *registerLinkMsg) {
chanPoint := req.linkInfo.ChannelPoint
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
newLink := &link{
capacity: req.linkInfo.Capacity,
availableBandwidth: int64(req.linkInfo.LocalBalance),
peer: req.peer,
chanID: chanID,
}
// To ensure we never accidentally cause an HTLC overflow, we'll limit,
// we'll use this buffered channel as as semaphore in order to limit
// the number of outstanding HTLC's we extend to the target link.
//const numSlots = (lnwallet.MaxHTLCNumber / 2) - 1
const numSlots = lnwallet.MaxHTLCNumber - 5
newLink.boundedLinkChan = newBoundedLinkChan(numSlots, req.linkChan)
// First update the channel index with this new channel point. The
// channel index will be used to quickly lookup channels in order to:
// close them, update their link capacity, or possibly during multi-hop
// HTLC forwarding.
h.chanIndexMtx.Lock()
h.chanIndex[chanID] = newLink
h.chanIndexMtx.Unlock()
interfaceID := req.peer.lightningID
h.interfaceMtx.Lock()
h.interfaces[interfaceID] = append(h.interfaces[interfaceID], newLink)
h.interfaceMtx.Unlock()
// Next, update the onion index which is used to look up the
// settle/clear links during multi-hop payments and to dispatch
// outgoing payments initiated by a local subsystem.
var onionID [ripemd160.Size]byte
copy(onionID[:], btcutil.Hash160(req.peer.addr.IdentityKey.SerializeCompressed()))
h.onionMtx.Lock()
h.onionIndex[onionID] = h.interfaces[interfaceID]
h.onionMtx.Unlock()
hswcLog.Infof("registering new link, interface=%x, onion_link=%x, "+
"chan_point=%v, capacity=%v", interfaceID[:], onionID,
chanPoint, newLink.capacity)
if req.done != nil {
req.done <- struct{}{}
}
}
// handleUnregisterLink unregisters a currently active link. If the deletion of
// this link leaves the interface empty, then the interface entry itself is
// also deleted.
func (h *htlcSwitch) handleUnregisterLink(req *unregisterLinkMsg) {
hswcLog.Debugf("unregistering active link, interface=%v, chan_id=%v",
hex.EncodeToString(req.chanInterface[:]), req.chanID)
chanInterface := req.chanInterface
h.interfaceMtx.RLock()
links := h.interfaces[chanInterface]
h.interfaceMtx.RUnlock()
h.chanIndexMtx.Lock()
defer h.chanIndexMtx.Unlock()
h.onionMtx.Lock()
defer h.onionMtx.Unlock()
// A request with a nil channel point indicates that all the current
// links for this channel should be cleared.
if req.chanID == nil {
hswcLog.Debugf("purging all active links for interface %v",
hex.EncodeToString(chanInterface[:]))
for _, link := range links {
delete(h.chanIndex, link.chanID)
}
links = nil
} else {
delete(h.chanIndex, *req.chanID)
for i := 0; i < len(links); i++ {
chanLink := links[i]
if chanLink.chanID == *req.chanID {
// We perform an in-place delete by sliding
// every element down one, then slicing off the
// last element. Additionally, we update the
// slice reference within the source map to
// ensure full deletion.
copy(links[i:], links[i+1:])
links[len(links)-1] = nil
h.interfaceMtx.Lock()
h.interfaces[chanInterface] = links[:len(links)-1]
h.interfaceMtx.Unlock()
break
}
}
}
if len(links) == 0 {
hswcLog.Debugf("interface %v has no active links, destroying",
hex.EncodeToString(chanInterface[:]))
// Delete the peer from the onion index so that the
// htlcForwarder knows not to attempt to forward any further
// HTLCs in this direction.
var onionID [ripemd160.Size]byte
copy(onionID[:], btcutil.Hash160(req.remoteID))
delete(h.onionIndex, onionID)
// Finally, delete the interface itself so that outgoing
// payments don't select this path.
h.interfaceMtx.Lock()
delete(h.interfaces, chanInterface)
h.interfaceMtx.Unlock()
}
if req.done != nil {
req.done <- struct{}{}
}
}
// handleCloseLink sends a message to the peer responsible for the target
// channel point, instructing it to initiate a cooperative channel closure.
func (h *htlcSwitch) handleCloseLink(req *closeLinkReq) {
chanID := lnwire.NewChanIDFromOutPoint(req.chanPoint)
h.chanIndexMtx.RLock()
targetLink, ok := h.chanIndex[chanID]
h.chanIndexMtx.RUnlock()
if !ok {
req.err <- fmt.Errorf("channel %v not found, or peer "+
"offline", req.chanPoint)
return
}
hswcLog.Debugf("requesting interface %v to close link %v",
hex.EncodeToString(targetLink.peer.lightningID[:]), chanID)
targetLink.peer.localCloseChanReqs <- req
// TODO(roasbeef): if type was CloseBreach initiate force closure with
// all other channels (if any) we have with the remote peer.
}
// handleLinkUpdate processes the link info update message by adjusting the
// channel's available bandwidth by the delta specified within the message.
func (h *htlcSwitch) handleLinkUpdate(req *linkInfoUpdateMsg) {
h.chanIndexMtx.RLock()
link, ok := h.chanIndex[req.targetLink]
h.chanIndexMtx.RUnlock()
if !ok {
hswcLog.Errorf("received link update for non-existent link: %v",
req.targetLink)
return
}
atomic.AddInt64(&link.availableBandwidth, int64(req.bandwidthDelta))
hswcLog.Tracef("adjusting bandwidth of link %v by %v", req.targetLink,
req.bandwidthDelta)
}
// registerLinkMsg is message which requests a new link to be registered.
type registerLinkMsg struct {
peer *peer
linkInfo *channeldb.ChannelSnapshot
linkChan chan *htlcPacket
done chan struct{}
}
// RegisterLink requests the htlcSwitch to register a new active link. The new
// link encapsulates an active channel. The htlc plex channel is returned. The
// plex channel allows the switch to properly de-multiplex incoming/outgoing
// HTLC messages forwarding them to their proper destination in the multi-hop
// settings.
func (h *htlcSwitch) RegisterLink(p *peer, linkInfo *channeldb.ChannelSnapshot,
linkChan chan *htlcPacket) chan *htlcPacket {
done := make(chan struct{}, 1)
req := &registerLinkMsg{p, linkInfo, linkChan, done}
h.linkControl <- req
<-done
return h.htlcPlex
}
// unregisterLinkMsg is a message which requests the active link be unregistered.
type unregisterLinkMsg struct {
chanInterface [32]byte
chanID *lnwire.ChannelID
// remoteID is the identity public key of the node we're removing the
// link between. The public key is expected to be serialized in
// compressed form.
// TODO(roasbeef): redo interface map
remoteID []byte
done chan struct{}
}
// UnregisterLink requests the htlcSwitch to register the new active link. An
// unregistered link will no longer be considered a candidate to forward
// HTLCs.
func (h *htlcSwitch) UnregisterLink(remotePub *btcec.PublicKey,
chanID *lnwire.ChannelID) {
done := make(chan struct{}, 1)
rawPub := remotePub.SerializeCompressed()
h.linkControl <- &unregisterLinkMsg{
chanInterface: sha256.Sum256(rawPub),
chanID: chanID,
remoteID: rawPub,
done: done,
}
<-done
}
// LinkCloseType is an enum which signals the type of channel closure the switch
// should execute.
type LinkCloseType uint8
const (
// CloseRegular indicates a regular cooperative channel closure should
// be attempted.
CloseRegular LinkCloseType = iota
// CloseBreach indicates that a channel breach has been detected, and
// the link should immediately be marked as unavailable.
CloseBreach
)
// closeChanReq represents a request to close a particular channel specified by
// its outpoint.
type closeLinkReq struct {
CloseType LinkCloseType
chanPoint *wire.OutPoint
updates chan *lnrpc.CloseStatusUpdate
err chan error
}
// CloseLink closes an active link targetted by its channel point. Closing the
// link initiates a cooperative channel closure iff forceClose is false. If
// forceClose is true, then a unilateral channel closure is executed.
// TODO(roasbeef): consolidate with UnregisterLink?
func (h *htlcSwitch) CloseLink(chanPoint *wire.OutPoint,
closeType LinkCloseType) (chan *lnrpc.CloseStatusUpdate, chan error) {
updateChan := make(chan *lnrpc.CloseStatusUpdate, 1)
errChan := make(chan error, 1)
h.linkControl <- &closeLinkReq{
CloseType: closeType,
chanPoint: chanPoint,
updates: updateChan,
err: errChan,
}
return updateChan, errChan
}
// linkInfoUpdateMsg encapsulates a request for the htlc switch to update the
// metadata related to the target link.
type linkInfoUpdateMsg struct {
targetLink lnwire.ChannelID
bandwidthDelta btcutil.Amount
}
// UpdateLink sends a message to the switch to update the available bandwidth
// within the link by the passed satoshi delta. This function may be used when
// re-anchoring to boost the capacity of a channel, or once a peer settles an
// HTLC invoice.
func (h *htlcSwitch) UpdateLink(chanID lnwire.ChannelID, delta btcutil.Amount) {
h.linkControl <- &linkInfoUpdateMsg{
targetLink: chanID,
bandwidthDelta: delta,
}
}