lnd.xprv/chainntnfs/neutrinonotify/neutrino.go

880 lines
26 KiB
Go
Raw Normal View History

package neutrinonotify
import (
"container/heap"
"errors"
"sync"
"sync/atomic"
"time"
2017-06-06 05:44:54 +03:00
"github.com/lightninglabs/neutrino"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/rpcclient"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
"github.com/roasbeef/btcutil/gcs/builder"
"github.com/roasbeef/btcwallet/waddrmgr"
)
const (
// notifierType uniquely identifies this concrete implementation of the
// ChainNotifier interface.
notifierType = "neutrino"
)
var (
// ErrChainNotifierShuttingDown is used when we are trying to
// measure a spend notification when notifier is already stopped.
ErrChainNotifierShuttingDown = errors.New("chainntnfs: system interrupt " +
"while attempting to register for spend notification.")
)
// NeutrinoNotifier is a version of ChainNotifier that's backed by the neutrino
// Bitcoin light client. Unlike other implementations, this implementation
// speaks directly to the p2p network. As a result, this implementation of the
// ChainNotifier interface is much more light weight that other implementation
// which rely of receiving notification over an RPC interface backed by a
// running full node.
//
// TODO(roasbeef): heavily consolidate with NeutrinoNotifier code
// * maybe combine into single package?
type NeutrinoNotifier struct {
started int32 // To be used atomically.
stopped int32 // To be used atomically.
spendClientCounter uint64 // To be used atomically.
epochClientCounter uint64 // To be used atomically.
heightMtx sync.RWMutex
bestHeight uint32
p2pNode *neutrino.ChainService
chainView neutrino.Rescan
notificationCancels chan interface{}
notificationRegistry chan interface{}
spendNotifications map[wire.OutPoint]map[uint64]*spendNotification
confNotifications map[chainhash.Hash][]*confirmationsNotification
confHeap *confirmationHeap
blockEpochClients map[uint64]*blockEpochRegistration
rescanErr <-chan error
newBlocks *chainntnfs.ConcurrentQueue
staleBlocks *chainntnfs.ConcurrentQueue
wg sync.WaitGroup
quit chan struct{}
}
// Ensure NeutrinoNotifier implements the ChainNotifier interface at compile time.
var _ chainntnfs.ChainNotifier = (*NeutrinoNotifier)(nil)
// New creates a new instance of the NeutrinoNotifier concrete implementation
// of the ChainNotifier interface.
//
// NOTE: The passed neutrino node should already be running and active before
// being passed into this function.
func New(node *neutrino.ChainService) (*NeutrinoNotifier, error) {
notifier := &NeutrinoNotifier{
notificationCancels: make(chan interface{}),
notificationRegistry: make(chan interface{}),
blockEpochClients: make(map[uint64]*blockEpochRegistration),
spendNotifications: make(map[wire.OutPoint]map[uint64]*spendNotification),
confNotifications: make(map[chainhash.Hash][]*confirmationsNotification),
confHeap: newConfirmationHeap(),
p2pNode: node,
rescanErr: make(chan error),
newBlocks: chainntnfs.NewConcurrentQueue(10),
staleBlocks: chainntnfs.NewConcurrentQueue(10),
quit: make(chan struct{}),
}
return notifier, nil
}
// Start contacts the running neutrino light client and kicks off an initial
// empty rescan.
func (n *NeutrinoNotifier) Start() error {
// Already started?
if atomic.AddInt32(&n.started, 1) != 1 {
return nil
}
// First, we'll obtain the latest block height of the p2p node. We'll
// start the auto-rescan from this point. Once a caller actually wishes
// to register a chain view, the rescan state will be rewound
// accordingly.
bestHeader, bestHeight, err := n.p2pNode.BlockHeaders.ChainTip()
if err != nil {
return err
}
startingPoint := &waddrmgr.BlockStamp{
Height: int32(bestHeight),
Hash: bestHeader.BlockHash(),
}
n.bestHeight = bestHeight
// Next, we'll create our set of rescan options. Currently it's
// required that a user MUST set a addr/outpoint/txid when creating a
// rescan. To get around this, we'll add a "zero" outpoint, that won't
// actually be matched.
var zeroHash chainhash.Hash
rescanOptions := []neutrino.RescanOption{
neutrino.StartBlock(startingPoint),
neutrino.QuitChan(n.quit),
neutrino.NotificationHandlers(
rpcclient.NotificationHandlers{
OnFilteredBlockConnected: n.onFilteredBlockConnected,
OnFilteredBlockDisconnected: n.onFilteredBlockDisconnected,
},
),
neutrino.WatchTxIDs(zeroHash),
}
// Finally, we'll create our rescan struct, start it, and launch all
// the goroutines we need to operate this ChainNotifier instance.
n.chainView = n.p2pNode.NewRescan(rescanOptions...)
n.rescanErr = n.chainView.Start()
n.newBlocks.Start()
n.staleBlocks.Start()
n.wg.Add(1)
go n.notificationDispatcher()
return nil
}
// Stop shutsdown the NeutrinoNotifier.
func (n *NeutrinoNotifier) Stop() error {
// Already shutting down?
if atomic.AddInt32(&n.stopped, 1) != 1 {
return nil
}
close(n.quit)
n.wg.Wait()
n.newBlocks.Stop()
n.staleBlocks.Stop()
// Notify all pending clients of our shutdown by closing the related
// notification channels.
for _, spendClients := range n.spendNotifications {
for _, spendClient := range spendClients {
close(spendClient.spendChan)
}
}
for _, confClients := range n.confNotifications {
for _, confClient := range confClients {
close(confClient.finConf)
close(confClient.negativeConf)
}
}
for _, epochClient := range n.blockEpochClients {
close(epochClient.epochChan)
}
return nil
}
// filteredBlock represents a new block which has been connected to the main
// chain. The slice of transactions will only be populated if the block
// includes a transaction that confirmed one of our watched txids, or spends
// one of the outputs currently being watched.
type filteredBlock struct {
hash chainhash.Hash
height uint32
txns []*btcutil.Tx
}
// onFilteredBlockConnected is a callback which is executed each a new block is
// connected to the end of the main chain.
func (n *NeutrinoNotifier) onFilteredBlockConnected(height int32,
header *wire.BlockHeader, txns []*btcutil.Tx) {
// Append this new chain update to the end of the queue of new chain
// updates.
n.newBlocks.ChanIn() <- &filteredBlock{
hash: header.BlockHash(),
height: uint32(height),
txns: txns,
}
}
// onFilteredBlockDisconnected is a callback which is executed each time a new
// block has been disconnected from the end of the mainchain due to a re-org.
func (n *NeutrinoNotifier) onFilteredBlockDisconnected(height int32,
header *wire.BlockHeader) {
// Append this new chain update to the end of the queue of new chain
// disconnects.
n.staleBlocks.ChanIn() <- &filteredBlock{
hash: header.BlockHash(),
height: uint32(height),
}
}
// notificationDispatcher is the primary goroutine which handles client
// notification registrations, as well as notification dispatches.
func (n *NeutrinoNotifier) notificationDispatcher() {
defer n.wg.Done()
for {
select {
case cancelMsg := <-n.notificationCancels:
switch msg := cancelMsg.(type) {
case *spendCancel:
chainntnfs.Log.Infof("Cancelling spend "+
"notification for out_point=%v, "+
"spend_id=%v", msg.op, msg.spendID)
// Before we attempt to close the spendChan,
// ensure that the notification hasn't already
// yet been dispatched.
if outPointClients, ok := n.spendNotifications[msg.op]; ok {
close(outPointClients[msg.spendID].spendChan)
delete(n.spendNotifications[msg.op], msg.spendID)
}
case *epochCancel:
chainntnfs.Log.Infof("Cancelling epoch "+
"notification, epoch_id=%v", msg.epochID)
// First, close the cancel channel for this
// specific client, and wait for the client to
// exit.
close(n.blockEpochClients[msg.epochID].cancelChan)
n.blockEpochClients[msg.epochID].wg.Wait()
// Once the client has exited, we can then
// safely close the channel used to send epoch
// notifications, in order to notify any
// listeners that the intent has been
// cancelled.
close(n.blockEpochClients[msg.epochID].epochChan)
delete(n.blockEpochClients, msg.epochID)
}
case registerMsg := <-n.notificationRegistry:
switch msg := registerMsg.(type) {
case *spendNotification:
chainntnfs.Log.Infof("New spend subscription: "+
"utxo=%v", msg.targetOutpoint)
op := *msg.targetOutpoint
if _, ok := n.spendNotifications[op]; !ok {
n.spendNotifications[op] = make(map[uint64]*spendNotification)
}
n.spendNotifications[op][msg.spendID] = msg
case *confirmationsNotification:
chainntnfs.Log.Infof("New confirmations "+
"subscription: txid=%v, numconfs=%v, "+
"height_hint=%v", *msg.txid,
msg.numConfirmations, msg.heightHint)
// If the notification can be partially or
// fully dispatched, then we can skip the first
// phase for ntfns.
n.heightMtx.RLock()
currentHeight := n.bestHeight
if n.attemptHistoricalDispatch(msg, currentHeight, msg.heightHint) {
n.heightMtx.RUnlock()
continue
}
n.heightMtx.RUnlock()
// If we can't fully dispatch confirmation,
// then we'll update our filter so we can be
// notified of its future initial confirmation.
rescanUpdate := []neutrino.UpdateOption{
neutrino.AddTxIDs(*msg.txid),
neutrino.Rewind(currentHeight),
}
if err := n.chainView.Update(rescanUpdate...); err != nil {
chainntnfs.Log.Errorf("unable to update rescan: %v", err)
}
txid := *msg.txid
n.confNotifications[txid] = append(n.confNotifications[txid], msg)
case *blockEpochRegistration:
chainntnfs.Log.Infof("New block epoch subscription")
n.blockEpochClients[msg.epochID] = msg
}
case item := <-n.newBlocks.ChanOut():
newBlock := item.(*filteredBlock)
n.heightMtx.Lock()
n.bestHeight = newBlock.height
n.heightMtx.Unlock()
chainntnfs.Log.Infof("New block: height=%v, sha=%v",
newBlock.height, newBlock.hash)
// First we'll notify any subscribed clients of the
// block.
n.notifyBlockEpochs(int32(newBlock.height), &newBlock.hash)
// Next, we'll scan over the list of relevant
// transactions and possibly dispatch notifications for
// confirmations and spends.
for _, tx := range newBlock.txns {
// Check if the inclusion of this transaction
// within a block by itself triggers a block
// confirmation threshold, if so send a
// notification. Otherwise, place the
// notification on a heap to be triggered in
// the future once additional confirmations are
// attained.
mtx := tx.MsgTx()
txIndex := tx.Index()
txSha := mtx.TxHash()
n.checkConfirmationTrigger(&txSha, newBlock, txIndex)
for i, txIn := range mtx.TxIn {
prevOut := txIn.PreviousOutPoint
// If this transaction indeed does
// spend an output which we have a
// registered notification for, then
// create a spend summary, finally
// sending off the details to the
// notification subscriber.
if clients, ok := n.spendNotifications[prevOut]; ok {
// TODO(roasbeef): many
// integration tests expect
// spend to be notified within
// the mempool.
spendDetails := &chainntnfs.SpendDetail{
SpentOutPoint: &prevOut,
SpenderTxHash: &txSha,
SpendingTx: mtx,
SpenderInputIndex: uint32(i),
SpendingHeight: int32(newBlock.height),
}
for _, ntfn := range clients {
chainntnfs.Log.Infof("Dispatching "+
"spend notification for "+
"outpoint=%v", ntfn.targetOutpoint)
ntfn.spendChan <- spendDetails
// Close spendChan to ensure that any calls to Cancel will not
// block. This is safe to do since the channel is buffered, and the
// message can still be read by the receiver.
close(ntfn.spendChan)
}
delete(n.spendNotifications, prevOut)
}
}
}
// A new block has been connected to the main chain.
// Send out any N confirmation notifications which may
// have been triggered by this new block.
n.notifyConfs(int32(newBlock.height))
case item := <-n.staleBlocks.ChanOut():
staleBlock := item.(*filteredBlock)
chainntnfs.Log.Warnf("Block disconnected from main "+
"chain: %v", staleBlock.hash)
case err := <-n.rescanErr:
chainntnfs.Log.Errorf("Error during rescan: %v", err)
case <-n.quit:
return
}
}
}
// attemptHistoricalDispatch attempts to consult the historical chain data to
// see if a transaction has already reached full confirmation status at the
// time a notification for it was registered. If it has, then we do an
// immediate dispatch. Otherwise, we'll add the partially confirmed transaction
// to the confirmation heap.
func (n *NeutrinoNotifier) attemptHistoricalDispatch(msg *confirmationsNotification,
currentHeight, heightHint uint32) bool {
targetHash := msg.txid
var (
confDetails *chainntnfs.TxConfirmation
scanHeight uint32
)
chainntnfs.Log.Infof("Attempting to trigger dispatch for %v from "+
"historical chain", msg.txid)
// Starting from the height hint, we'll walk forwards in the chain to
// see if this transaction has already been confirmed.
chainScan:
for scanHeight := heightHint; scanHeight <= currentHeight; scanHeight++ {
// First, we'll fetch the block header for this height so we
// can compute the current block hash.
header, err := n.p2pNode.BlockHeaders.FetchHeaderByHeight(scanHeight)
if err != nil {
chainntnfs.Log.Errorf("unable to get header for "+
"height=%v: %v", scanHeight, err)
return false
}
blockHash := header.BlockHash()
// With the hash computed, we can now fetch the basic filter
// for this height.
regFilter, err := n.p2pNode.GetCFilter(blockHash,
wire.GCSFilterRegular)
if err != nil {
chainntnfs.Log.Errorf("unable to retrieve regular "+
"filter for height=%v: %v", scanHeight, err)
return false
}
// If the block has no transactions other than the coinbase
// transaction, then the filter may be nil, so we'll continue
// forward int that case.
if regFilter == nil {
continue
}
// In the case that the filter exists, we'll attempt to see if
// any element in it match our target txid.
key := builder.DeriveKey(&blockHash)
match, err := regFilter.Match(key, targetHash[:])
if err != nil {
chainntnfs.Log.Errorf("unable to query filter: %v", err)
return false
}
// If there's no match, then we can continue forward to the
// next block.
if !match {
continue
}
// In the case that we do have a match, we'll fetch the block
// from the network so we can find the positional data required
// to send the proper response.
block, err := n.p2pNode.GetBlockFromNetwork(blockHash)
if err != nil {
chainntnfs.Log.Errorf("unable to get block from "+
"network: %v", err)
return false
}
for j, tx := range block.Transactions() {
txHash := tx.Hash()
if txHash.IsEqual(targetHash) {
confDetails = &chainntnfs.TxConfirmation{
BlockHash: &blockHash,
BlockHeight: scanHeight,
TxIndex: uint32(j),
}
break chainScan
}
}
}
// If it hasn't yet been confirmed, then we can exit early.
if confDetails == nil {
return false
}
// Otherwise, we'll calculate the number of confirmations that the
// transaction has so we can decide if it has reached the desired
// number of confirmations or not.
txConfs := currentHeight - scanHeight
// If the transaction has more that enough confirmations, then we can
// dispatch it immediately after obtaining for information w.r.t
// exactly *when* if got all its confirmations.
if uint32(txConfs) >= msg.numConfirmations {
msg.finConf <- confDetails
return true
}
// Otherwise, the transaction has only been *partially* confirmed, so
// we need to insert it into the confirmation heap.
confsLeft := msg.numConfirmations - uint32(txConfs)
confHeight := uint32(currentHeight) + confsLeft
heapEntry := &confEntry{
msg,
confDetails,
confHeight,
}
heap.Push(n.confHeap, heapEntry)
return false
}
// notifyBlockEpochs notifies all registered block epoch clients of the newly
// connected block to the main chain.
func (n *NeutrinoNotifier) notifyBlockEpochs(newHeight int32, newSha *chainhash.Hash) {
epoch := &chainntnfs.BlockEpoch{
Height: newHeight,
Hash: newSha,
}
for _, epochClient := range n.blockEpochClients {
n.wg.Add(1)
epochClient.wg.Add(1)
go func(ntfnChan chan *chainntnfs.BlockEpoch, cancelChan chan struct{},
clientWg *sync.WaitGroup) {
defer clientWg.Done()
defer n.wg.Done()
select {
case ntfnChan <- epoch:
case <-cancelChan:
return
case <-n.quit:
return
}
}(epochClient.epochChan, epochClient.cancelChan, &epochClient.wg)
}
}
// notifyConfs examines the current confirmation heap, sending off any
// notifications which have been triggered by the connection of a new block at
// newBlockHeight.
func (n *NeutrinoNotifier) notifyConfs(newBlockHeight int32) {
// If the heap is empty, we have nothing to do.
if n.confHeap.Len() == 0 {
return
}
// Traverse our confirmation heap. The heap is a min-heap, so the
// confirmation notification which requires the smallest block-height
// will always be at the top of the heap. If a confirmation
// notification is eligible for triggering, then fire it off, and check
// if another is eligible until there are no more eligible entries.
nextConf := heap.Pop(n.confHeap).(*confEntry)
for nextConf.triggerHeight <= uint32(newBlockHeight) {
nextConf.finConf <- nextConf.initialConfDetails
if n.confHeap.Len() == 0 {
return
}
nextConf = heap.Pop(n.confHeap).(*confEntry)
}
heap.Push(n.confHeap, nextConf)
}
// checkConfirmationTrigger determines if the passed txSha included at
// blockHeight triggers any single confirmation notifications. In the event
// that the txid matches, yet needs additional confirmations, it is added to
// the confirmation heap to be triggered at a later time.
func (n *NeutrinoNotifier) checkConfirmationTrigger(txSha *chainhash.Hash,
newTip *filteredBlock, txIndex int) {
// If a confirmation notification has been registered for this txid,
// then either trigger a notification event if only a single
// confirmation notification was requested, or place the notification
// on the confirmation heap for future usage.
if confClients, ok := n.confNotifications[*txSha]; ok {
// Either all of the registered confirmations will be
// dispatched due to a single confirmation, or added to the
// conf head. Therefor we unconditionally delete the registered
// confirmations from the staging zone.
defer func() {
delete(n.confNotifications, *txSha)
}()
for _, confClient := range confClients {
confDetails := &chainntnfs.TxConfirmation{
BlockHash: &newTip.hash,
BlockHeight: uint32(newTip.height),
TxIndex: uint32(txIndex),
}
if confClient.numConfirmations == 1 {
chainntnfs.Log.Infof("Dispatching single conf "+
"notification, sha=%v, height=%v", txSha,
newTip.height)
confClient.finConf <- confDetails
continue
}
// The registered notification requires more than one
// confirmation before triggering. So we create a
// heapConf entry for this notification. The heapConf
// allows us to easily keep track of which
// notification(s) we should fire off with each
// incoming block.
confClient.initialConfirmHeight = uint32(newTip.height)
finalConfHeight := confClient.initialConfirmHeight + confClient.numConfirmations - 1
heapEntry := &confEntry{
confClient,
confDetails,
finalConfHeight,
}
heap.Push(n.confHeap, heapEntry)
}
}
}
// spendNotification couples a target outpoint along with the channel used for
// notifications once a spend of the outpoint has been detected.
type spendNotification struct {
targetOutpoint *wire.OutPoint
spendChan chan *chainntnfs.SpendDetail
spendID uint64
}
// spendCancel is a message sent to the NeutrinoNotifier when a client wishes
// to cancel an outstanding spend notification that has yet to be dispatched.
type spendCancel struct {
// op is the target outpoint of the notification to be cancelled.
op wire.OutPoint
// spendID the ID of the notification to cancel.
spendID uint64
}
// RegisterSpendNtfn registers an intent to be notified once the target
// outpoint has been spent by a transaction on-chain. Once a spend of the
// target outpoint has been detected, the details of the spending event will be
// sent across the 'Spend' channel.
func (n *NeutrinoNotifier) RegisterSpendNtfn(outpoint *wire.OutPoint,
heightHint uint32) (*chainntnfs.SpendEvent, error) {
n.heightMtx.RLock()
currentHeight := n.bestHeight
n.heightMtx.RUnlock()
chainntnfs.Log.Infof("New spend notification for outpoint=%v, "+
"height_hint=%v", outpoint, heightHint)
ntfn := &spendNotification{
targetOutpoint: outpoint,
spendChan: make(chan *chainntnfs.SpendDetail, 1),
spendID: atomic.AddUint64(&n.spendClientCounter, 1),
}
spendEvent := &chainntnfs.SpendEvent{
Spend: ntfn.spendChan,
Cancel: func() {
cancel := &spendCancel{
op: *outpoint,
spendID: ntfn.spendID,
}
// Submit spend cancellation to notification dispatcher.
select {
case n.notificationCancels <- cancel:
// Cancellation is being handled, drain the spend chan until it is
// closed before yielding to the caller.
for {
select {
case _, ok := <-ntfn.spendChan:
if !ok {
return
}
case <-n.quit:
return
}
}
case <-n.quit:
}
},
}
// Ensure that neutrino is caught up to the height hint before we
// attempt to fetch the utxo fromt the chain. If we're behind, then we
// may miss a notification dispatch.
for {
n.heightMtx.RLock()
currentHeight := n.bestHeight
n.heightMtx.RUnlock()
if currentHeight < heightHint {
time.Sleep(time.Millisecond * 200)
continue
}
break
}
// Before sending off the notification request, we'll attempt to see if
// this output is still spent or not at this point in the chain.
spendReport, err := n.p2pNode.GetUtxo(
neutrino.WatchOutPoints(*outpoint),
neutrino.StartBlock(&waddrmgr.BlockStamp{
Height: int32(heightHint),
}),
)
if err != nil {
return nil, err
}
// If a spend report was returned, and the transaction is present, then
// this means that the output is already spent.
if spendReport != nil && spendReport.SpendingTx != nil {
// As a result, we'll launch a goroutine to immediately
// dispatch the notification with a normal response.
go func() {
txSha := spendReport.SpendingTx.TxHash()
select {
case ntfn.spendChan <- &chainntnfs.SpendDetail{
SpentOutPoint: outpoint,
SpenderTxHash: &txSha,
SpendingTx: spendReport.SpendingTx,
SpenderInputIndex: spendReport.SpendingInputIndex,
SpendingHeight: int32(spendReport.SpendingTxHeight),
}:
case <-n.quit:
return
}
}()
return spendEvent, nil
}
// If the output is still unspent, then we'll update our rescan's
// filter, and send the request to the dispatcher goroutine.
rescanUpdate := []neutrino.UpdateOption{
neutrino.AddOutPoints(*outpoint),
neutrino.Rewind(currentHeight),
}
if err := n.chainView.Update(rescanUpdate...); err != nil {
return nil, err
}
select {
case n.notificationRegistry <- ntfn:
case <-n.quit:
return nil, ErrChainNotifierShuttingDown
}
return spendEvent, nil
}
// confirmationNotification represents a client's intent to receive a
// notification once the target txid reaches numConfirmations confirmations.
type confirmationsNotification struct {
txid *chainhash.Hash
heightHint uint32
initialConfirmHeight uint32
numConfirmations uint32
finConf chan *chainntnfs.TxConfirmation
negativeConf chan int32 // TODO(roasbeef): re-org funny business
}
// RegisterConfirmationsNtfn registers a notification with NeutrinoNotifier
// which will be triggered once the txid reaches numConfs number of
// confirmations.
func (n *NeutrinoNotifier) RegisterConfirmationsNtfn(txid *chainhash.Hash,
numConfs, heightHint uint32) (*chainntnfs.ConfirmationEvent, error) {
ntfn := &confirmationsNotification{
txid: txid,
heightHint: heightHint,
numConfirmations: numConfs,
finConf: make(chan *chainntnfs.TxConfirmation, 1),
negativeConf: make(chan int32, 1),
}
select {
case <-n.quit:
return nil, ErrChainNotifierShuttingDown
case n.notificationRegistry <- ntfn:
return &chainntnfs.ConfirmationEvent{
Confirmed: ntfn.finConf,
NegativeConf: ntfn.negativeConf,
}, nil
}
}
// blockEpochRegistration represents a client's intent to receive a
// notification with each newly connected block.
type blockEpochRegistration struct {
epochID uint64
epochChan chan *chainntnfs.BlockEpoch
cancelChan chan struct{}
wg sync.WaitGroup
}
// epochCancel is a message sent to the NeutrinoNotifier when a client wishes
// to cancel an outstanding epoch notification that has yet to be dispatched.
type epochCancel struct {
epochID uint64
}
// RegisterBlockEpochNtfn returns a BlockEpochEvent which subscribes the caller
// to receive notifications, of each new block connected to the main chain.
func (n *NeutrinoNotifier) RegisterBlockEpochNtfn() (*chainntnfs.BlockEpochEvent, error) {
registration := &blockEpochRegistration{
epochChan: make(chan *chainntnfs.BlockEpoch, 20),
cancelChan: make(chan struct{}),
epochID: atomic.AddUint64(&n.epochClientCounter, 1),
}
select {
case <-n.quit:
return nil, errors.New("chainntnfs: system interrupt while " +
"attempting to register for block epoch notification.")
case n.notificationRegistry <- registration:
return &chainntnfs.BlockEpochEvent{
Epochs: registration.epochChan,
Cancel: func() {
cancel := &epochCancel{
epochID: registration.epochID,
}
// Submit epoch cancellation to notification dispatcher.
select {
case n.notificationCancels <- cancel:
// Cancellation is being handled, drain the epoch channel until it is
// closed before yielding to caller.
for {
select {
case _, ok := <-registration.epochChan:
if !ok {
return
}
case <-n.quit:
return
}
}
case <-n.quit:
}
},
}, nil
}
}