lnd.xprv/lnwire/lnwire_test.go

917 lines
22 KiB
Go
Raw Normal View History

package lnwire
import (
"bytes"
"encoding/binary"
"encoding/hex"
"image/color"
"math"
"math/big"
"math/rand"
"net"
"reflect"
"testing"
"testing/quick"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/tor"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
)
var (
revHash = [32]byte{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9,
0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
shaHash1Bytes, _ = hex.DecodeString("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855")
shaHash1, _ = chainhash.NewHash(shaHash1Bytes)
outpoint1 = wire.NewOutPoint(shaHash1, 0)
testSig = &btcec.Signature{
R: new(big.Int),
S: new(big.Int),
}
_, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10)
_, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10)
)
func randPubKey() (*btcec.PublicKey, error) {
priv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, err
}
return priv.PubKey(), nil
}
func randRawKey() ([33]byte, error) {
var n [33]byte
priv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return n, err
}
copy(n[:], priv.PubKey().SerializeCompressed())
return n, nil
}
func randRawFeatureVector(r *rand.Rand) *RawFeatureVector {
featureVec := NewRawFeatureVector()
for i := 0; i < 10000; i++ {
if r.Int31n(2) == 0 {
featureVec.Set(FeatureBit(i))
}
}
return featureVec
}
func randTCP4Addr(r *rand.Rand) (*net.TCPAddr, error) {
var ip [4]byte
if _, err := r.Read(ip[:]); err != nil {
return nil, err
}
var port [2]byte
if _, err := r.Read(port[:]); err != nil {
return nil, err
}
addrIP := net.IP(ip[:])
addrPort := int(binary.BigEndian.Uint16(port[:]))
return &net.TCPAddr{IP: addrIP, Port: addrPort}, nil
}
func randTCP6Addr(r *rand.Rand) (*net.TCPAddr, error) {
var ip [16]byte
if _, err := r.Read(ip[:]); err != nil {
return nil, err
}
var port [2]byte
if _, err := r.Read(port[:]); err != nil {
return nil, err
}
addrIP := net.IP(ip[:])
addrPort := int(binary.BigEndian.Uint16(port[:]))
return &net.TCPAddr{IP: addrIP, Port: addrPort}, nil
}
func randV2OnionAddr(r *rand.Rand) (*tor.OnionAddr, error) {
var serviceID [tor.V2DecodedLen]byte
if _, err := r.Read(serviceID[:]); err != nil {
return nil, err
}
var port [2]byte
if _, err := r.Read(port[:]); err != nil {
return nil, err
}
onionService := tor.Base32Encoding.EncodeToString(serviceID[:])
onionService += tor.OnionSuffix
addrPort := int(binary.BigEndian.Uint16(port[:]))
return &tor.OnionAddr{OnionService: onionService, Port: addrPort}, nil
}
func randV3OnionAddr(r *rand.Rand) (*tor.OnionAddr, error) {
var serviceID [tor.V3DecodedLen]byte
if _, err := r.Read(serviceID[:]); err != nil {
return nil, err
}
var port [2]byte
if _, err := r.Read(port[:]); err != nil {
return nil, err
}
onionService := tor.Base32Encoding.EncodeToString(serviceID[:])
onionService += tor.OnionSuffix
addrPort := int(binary.BigEndian.Uint16(port[:]))
return &tor.OnionAddr{OnionService: onionService, Port: addrPort}, nil
}
func randAddrs(r *rand.Rand) ([]net.Addr, error) {
tcp4Addr, err := randTCP4Addr(r)
if err != nil {
return nil, err
}
tcp6Addr, err := randTCP6Addr(r)
if err != nil {
return nil, err
}
v2OnionAddr, err := randV2OnionAddr(r)
if err != nil {
return nil, err
}
v3OnionAddr, err := randV3OnionAddr(r)
if err != nil {
return nil, err
}
return []net.Addr{tcp4Addr, tcp6Addr, v2OnionAddr, v3OnionAddr}, nil
}
func TestMaxOutPointIndex(t *testing.T) {
t.Parallel()
op := wire.OutPoint{
Index: math.MaxUint32,
}
var b bytes.Buffer
if err := writeElement(&b, op); err == nil {
t.Fatalf("write of outPoint should fail, index exceeds 16-bits")
}
}
func TestEmptyMessageUnknownType(t *testing.T) {
t.Parallel()
fakeType := MessageType(math.MaxUint16)
if _, err := makeEmptyMessage(fakeType); err == nil {
t.Fatalf("should not be able to make an empty message of an " +
"unknown type")
}
}
// TestLightningWireProtocol uses the testing/quick package to create a series
// of fuzz tests to attempt to break a primary scenario which is implemented as
// property based testing scenario.
func TestLightningWireProtocol(t *testing.T) {
t.Parallel()
// mainScenario is the primary test that will programmatically be
// executed for all registered wire messages. The quick-checker within
// testing/quick will attempt to find an input to this function, s.t
// the function returns false, if so then we've found an input that
// violates our model of the system.
mainScenario := func(msg Message) bool {
// Give a new message, we'll serialize the message into a new
// bytes buffer.
var b bytes.Buffer
if _, err := WriteMessage(&b, msg, 0); err != nil {
t.Fatalf("unable to write msg: %v", err)
return false
}
// Next, we'll ensure that the serialized payload (subtracting
// the 2 bytes for the message type) is _below_ the specified
// max payload size for this message.
payloadLen := uint32(b.Len()) - 2
if payloadLen > msg.MaxPayloadLength(0) {
t.Fatalf("msg payload constraint violated: %v > %v",
payloadLen, msg.MaxPayloadLength(0))
return false
}
// Finally, we'll deserialize the message from the written
// buffer, and finally assert that the messages are equal.
newMsg, err := ReadMessage(&b, 0)
if err != nil {
t.Fatalf("unable to read msg: %v", err)
return false
}
if !reflect.DeepEqual(msg, newMsg) {
t.Fatalf("messages don't match after re-encoding: %v "+
"vs %v", spew.Sdump(msg), spew.Sdump(newMsg))
return false
}
return true
}
// customTypeGen is a map of functions that are able to randomly
// generate a given type. These functions are needed for types which
// are too complex for the testing/quick package to automatically
// generate.
customTypeGen := map[MessageType]func([]reflect.Value, *rand.Rand){
MsgInit: func(v []reflect.Value, r *rand.Rand) {
req := NewInitMessage(
randRawFeatureVector(r),
randRawFeatureVector(r),
)
v[0] = reflect.ValueOf(*req)
},
MsgOpenChannel: func(v []reflect.Value, r *rand.Rand) {
req := OpenChannel{
FundingAmount: btcutil.Amount(r.Int63()),
PushAmount: MilliSatoshi(r.Int63()),
DustLimit: btcutil.Amount(r.Int63()),
MaxValueInFlight: MilliSatoshi(r.Int63()),
ChannelReserve: btcutil.Amount(r.Int63()),
HtlcMinimum: MilliSatoshi(r.Int31()),
FeePerKiloWeight: uint32(r.Int63()),
CsvDelay: uint16(r.Int31()),
MaxAcceptedHTLCs: uint16(r.Int31()),
ChannelFlags: FundingFlag(uint8(r.Int31())),
}
if _, err := r.Read(req.ChainHash[:]); err != nil {
t.Fatalf("unable to generate chain hash: %v", err)
return
}
if _, err := r.Read(req.PendingChannelID[:]); err != nil {
t.Fatalf("unable to generate pending chan id: %v", err)
return
}
var err error
req.FundingKey, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.RevocationPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.PaymentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.DelayedPaymentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.HtlcPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.FirstCommitmentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgAcceptChannel: func(v []reflect.Value, r *rand.Rand) {
req := AcceptChannel{
DustLimit: btcutil.Amount(r.Int63()),
MaxValueInFlight: MilliSatoshi(r.Int63()),
ChannelReserve: btcutil.Amount(r.Int63()),
MinAcceptDepth: uint32(r.Int31()),
HtlcMinimum: MilliSatoshi(r.Int31()),
CsvDelay: uint16(r.Int31()),
MaxAcceptedHTLCs: uint16(r.Int31()),
}
if _, err := r.Read(req.PendingChannelID[:]); err != nil {
t.Fatalf("unable to generate pending chan id: %v", err)
return
}
var err error
req.FundingKey, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.RevocationPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.PaymentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.DelayedPaymentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.HtlcPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.FirstCommitmentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgFundingCreated: func(v []reflect.Value, r *rand.Rand) {
req := FundingCreated{}
if _, err := r.Read(req.PendingChannelID[:]); err != nil {
t.Fatalf("unable to generate pending chan id: %v", err)
return
}
if _, err := r.Read(req.FundingPoint.Hash[:]); err != nil {
t.Fatalf("unable to generate hash: %v", err)
return
}
req.FundingPoint.Index = uint32(r.Int31()) % math.MaxUint16
var err error
req.CommitSig, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgFundingSigned: func(v []reflect.Value, r *rand.Rand) {
var c [32]byte
_, err := r.Read(c[:])
if err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
req := FundingSigned{
ChanID: ChannelID(c),
}
req.CommitSig, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgFundingLocked: func(v []reflect.Value, r *rand.Rand) {
var c [32]byte
if _, err := r.Read(c[:]); err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
pubKey, err := randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req := NewFundingLocked(ChannelID(c), pubKey)
v[0] = reflect.ValueOf(*req)
},
MsgClosingSigned: func(v []reflect.Value, r *rand.Rand) {
req := ClosingSigned{
FeeSatoshis: btcutil.Amount(r.Int63()),
}
var err error
req.Signature, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
if _, err := r.Read(req.ChannelID[:]); err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgCommitSig: func(v []reflect.Value, r *rand.Rand) {
req := NewCommitSig()
if _, err := r.Read(req.ChanID[:]); err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
var err error
req.CommitSig, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
// Only create the slice if there will be any signatures
// in it to prevent false positive test failures due to
// an empty slice versus a nil slice.
numSigs := uint16(r.Int31n(1020))
if numSigs > 0 {
req.HtlcSigs = make([]Sig, numSigs)
}
for i := 0; i < int(numSigs); i++ {
req.HtlcSigs[i], err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
}
v[0] = reflect.ValueOf(*req)
},
MsgRevokeAndAck: func(v []reflect.Value, r *rand.Rand) {
req := NewRevokeAndAck()
if _, err := r.Read(req.ChanID[:]); err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
if _, err := r.Read(req.Revocation[:]); err != nil {
t.Fatalf("unable to generate bytes: %v", err)
return
}
var err error
req.NextRevocationKey, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
v[0] = reflect.ValueOf(*req)
},
MsgChannelAnnouncement: func(v []reflect.Value, r *rand.Rand) {
var err error
req := ChannelAnnouncement{
ShortChannelID: NewShortChanIDFromInt(uint64(r.Int63())),
Features: randRawFeatureVector(r),
}
req.NodeSig1, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.NodeSig2, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.BitcoinSig1, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.BitcoinSig2, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.NodeID1, err = randRawKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.NodeID2, err = randRawKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.BitcoinKey1, err = randRawKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.BitcoinKey2, err = randRawKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
if _, err := r.Read(req.ChainHash[:]); err != nil {
t.Fatalf("unable to generate chain hash: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgNodeAnnouncement: func(v []reflect.Value, r *rand.Rand) {
var a [32]byte
if _, err := r.Read(a[:]); err != nil {
t.Fatalf("unable to generate alias: %v", err)
return
}
var err error
req := NodeAnnouncement{
Features: randRawFeatureVector(r),
Timestamp: uint32(r.Int31()),
Alias: a,
RGBColor: color.RGBA{
R: uint8(r.Int31()),
G: uint8(r.Int31()),
B: uint8(r.Int31()),
},
}
req.Signature, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.NodeID, err = randRawKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.Addresses, err = randAddrs(r)
if err != nil {
t.Fatalf("unable to generate addresses: %v", err)
}
v[0] = reflect.ValueOf(req)
},
MsgChannelUpdate: func(v []reflect.Value, r *rand.Rand) {
var err error
req := ChannelUpdate{
ShortChannelID: NewShortChanIDFromInt(uint64(r.Int63())),
Timestamp: uint32(r.Int31()),
Flags: ChanUpdateFlag(r.Int31()),
TimeLockDelta: uint16(r.Int31()),
HtlcMinimumMsat: MilliSatoshi(r.Int63()),
BaseFee: uint32(r.Int31()),
FeeRate: uint32(r.Int31()),
}
req.Signature, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
if _, err := r.Read(req.ChainHash[:]); err != nil {
t.Fatalf("unable to generate chain hash: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgAnnounceSignatures: func(v []reflect.Value, r *rand.Rand) {
var err error
req := AnnounceSignatures{
ShortChannelID: NewShortChanIDFromInt(uint64(r.Int63())),
}
req.NodeSignature, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.BitcoinSignature, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
if _, err := r.Read(req.ChannelID[:]); err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgChannelReestablish: func(v []reflect.Value, r *rand.Rand) {
req := ChannelReestablish{
NextLocalCommitHeight: uint64(r.Int63()),
RemoteCommitTailHeight: uint64(r.Int63()),
}
// With a 50/50 probability, we'll include the
// additional fields so we can test our ability to
// properly parse, and write out the optional fields.
if r.Int()%2 == 0 {
_, err := r.Read(req.LastRemoteCommitSecret[:])
if err != nil {
t.Fatalf("unable to read commit secret: %v", err)
return
}
req.LocalUnrevokedCommitPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
}
v[0] = reflect.ValueOf(req)
},
MsgQueryShortChanIDs: func(v []reflect.Value, r *rand.Rand) {
req := QueryShortChanIDs{}
// With a 50/50 change, we'll either use zlib encoding,
// or regular encoding.
if r.Int31()%2 == 0 {
req.EncodingType = EncodingSortedZlib
} else {
req.EncodingType = EncodingSortedPlain
}
if _, err := rand.Read(req.ChainHash[:]); err != nil {
t.Fatalf("unable to read chain hash: %v", err)
return
}
numChanIDs := rand.Int31n(5000)
for i := int32(0); i < numChanIDs; i++ {
req.ShortChanIDs = append(req.ShortChanIDs,
NewShortChanIDFromInt(uint64(r.Int63())))
}
v[0] = reflect.ValueOf(req)
},
MsgReplyChannelRange: func(v []reflect.Value, r *rand.Rand) {
req := ReplyChannelRange{
QueryChannelRange: QueryChannelRange{
FirstBlockHeight: uint32(r.Int31()),
NumBlocks: uint32(r.Int31()),
},
}
if _, err := rand.Read(req.ChainHash[:]); err != nil {
t.Fatalf("unable to read chain hash: %v", err)
return
}
req.Complete = uint8(r.Int31n(2))
// With a 50/50 change, we'll either use zlib encoding,
// or regular encoding.
if r.Int31()%2 == 0 {
req.EncodingType = EncodingSortedZlib
} else {
req.EncodingType = EncodingSortedPlain
}
numChanIDs := rand.Int31n(5000)
req.ShortChanIDs = make([]ShortChannelID, numChanIDs)
for i := int32(0); i < numChanIDs; i++ {
req.ShortChanIDs[i] = NewShortChanIDFromInt(
uint64(r.Int63()),
)
}
v[0] = reflect.ValueOf(req)
},
}
// With the above types defined, we'll now generate a slice of
// scenarios to feed into quick.Check. The function scans in input
// space of the target function under test, so we'll need to create a
// series of wrapper functions to force it to iterate over the target
// types, but re-use the mainScenario defined above.
tests := []struct {
msgType MessageType
scenario interface{}
}{
{
msgType: MsgInit,
scenario: func(m Init) bool {
return mainScenario(&m)
},
},
{
msgType: MsgError,
scenario: func(m Error) bool {
return mainScenario(&m)
},
},
{
msgType: MsgPing,
scenario: func(m Ping) bool {
return mainScenario(&m)
},
},
{
msgType: MsgPong,
scenario: func(m Pong) bool {
return mainScenario(&m)
},
},
{
msgType: MsgOpenChannel,
scenario: func(m OpenChannel) bool {
return mainScenario(&m)
},
},
{
msgType: MsgAcceptChannel,
scenario: func(m AcceptChannel) bool {
return mainScenario(&m)
},
},
{
msgType: MsgFundingCreated,
scenario: func(m FundingCreated) bool {
return mainScenario(&m)
},
},
{
msgType: MsgFundingSigned,
scenario: func(m FundingSigned) bool {
return mainScenario(&m)
},
},
{
msgType: MsgFundingLocked,
scenario: func(m FundingLocked) bool {
return mainScenario(&m)
},
},
{
msgType: MsgShutdown,
scenario: func(m Shutdown) bool {
return mainScenario(&m)
},
},
{
msgType: MsgClosingSigned,
scenario: func(m ClosingSigned) bool {
return mainScenario(&m)
},
},
{
msgType: MsgUpdateAddHTLC,
scenario: func(m UpdateAddHTLC) bool {
return mainScenario(&m)
},
},
{
msgType: MsgUpdateFulfillHTLC,
scenario: func(m UpdateFulfillHTLC) bool {
return mainScenario(&m)
},
},
{
msgType: MsgUpdateFailHTLC,
scenario: func(m UpdateFailHTLC) bool {
return mainScenario(&m)
},
},
{
msgType: MsgCommitSig,
scenario: func(m CommitSig) bool {
return mainScenario(&m)
},
},
{
msgType: MsgRevokeAndAck,
scenario: func(m RevokeAndAck) bool {
return mainScenario(&m)
},
},
2017-07-14 21:28:40 +03:00
{
msgType: MsgUpdateFee,
scenario: func(m UpdateFee) bool {
return mainScenario(&m)
},
},
{
msgType: MsgUpdateFailMalformedHTLC,
scenario: func(m UpdateFailMalformedHTLC) bool {
return mainScenario(&m)
},
},
{
msgType: MsgChannelReestablish,
scenario: func(m ChannelReestablish) bool {
return mainScenario(&m)
},
},
{
msgType: MsgChannelAnnouncement,
scenario: func(m ChannelAnnouncement) bool {
return mainScenario(&m)
},
},
{
msgType: MsgNodeAnnouncement,
scenario: func(m NodeAnnouncement) bool {
return mainScenario(&m)
},
},
{
msgType: MsgChannelUpdate,
scenario: func(m ChannelUpdate) bool {
return mainScenario(&m)
},
},
{
msgType: MsgAnnounceSignatures,
scenario: func(m AnnounceSignatures) bool {
return mainScenario(&m)
},
},
{
msgType: MsgGossipTimestampRange,
scenario: func(m GossipTimestampRange) bool {
return mainScenario(&m)
},
},
{
msgType: MsgQueryShortChanIDs,
scenario: func(m QueryShortChanIDs) bool {
return mainScenario(&m)
},
},
{
msgType: MsgReplyShortChanIDsEnd,
scenario: func(m ReplyShortChanIDsEnd) bool {
return mainScenario(&m)
},
},
{
msgType: MsgQueryChannelRange,
scenario: func(m QueryChannelRange) bool {
return mainScenario(&m)
},
},
{
msgType: MsgReplyChannelRange,
scenario: func(m ReplyChannelRange) bool {
return mainScenario(&m)
},
},
}
for _, test := range tests {
var config *quick.Config
// If the type defined is within the custom type gen map above,
// then we'll modify the default config to use this Value
// function that knows how to generate the proper types.
if valueGen, ok := customTypeGen[test.msgType]; ok {
config = &quick.Config{
Values: valueGen,
}
}
t.Logf("Running fuzz tests for msgType=%v", test.msgType)
if err := quick.Check(test.scenario, config); err != nil {
t.Fatalf("fuzz checks for msg=%v failed: %v",
test.msgType, err)
}
}
}
func init() {
rand.Seed(time.Now().Unix())
}