lnd.xprv/chainntnfs/interface_test.go

677 lines
20 KiB
Go
Raw Normal View History

package chainntnfs_test
import (
"bytes"
"log"
"sync"
"testing"
"time"
"github.com/lightningnetwork/lnd/chainntnfs"
_ "github.com/lightningnetwork/lnd/chainntnfs/btcdnotify"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg"
"github.com/roasbeef/btcd/rpctest"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
)
var (
testPrivKey = []byte{
0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda,
0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17,
0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d,
0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9,
}
netParams = &chaincfg.SimNetParams
privKey, pubKey = btcec.PrivKeyFromBytes(btcec.S256(), testPrivKey)
addrPk, _ = btcutil.NewAddressPubKey(pubKey.SerializeCompressed(),
netParams)
testAddr = addrPk.AddressPubKeyHash()
)
func getTestTxId(miner *rpctest.Harness) (*chainhash.Hash, error) {
script, err := txscript.PayToAddrScript(testAddr)
if err != nil {
return nil, err
}
outputs := []*wire.TxOut{&wire.TxOut{2e8, script}}
return miner.SendOutputs(outputs, 10)
}
func testSingleConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
t.Logf("testing single conf notification")
// We'd like to test the case of being notified once a txid reaches
// a *single* confirmation.
//
// So first, let's send some coins to "ourself", obtainig a txid.
// We're spending from a coinbase output here, so we use the dedicated
// function.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
// Now that we have a txid, register a confirmation notiication with
// the chainntfn source.
numConfs := uint32(1)
confIntent, err := notifier.RegisterConfirmationsNtfn(txid, numConfs)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// Now generate a single block, the transaction should be included which
// should trigger a notification event.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
confSent := make(chan *chainntnfs.TxConfirmation)
go func() {
confSent <- <-confIntent.Confirmed
}()
select {
case <-confSent:
break
case <-time.After(2 * time.Second):
t.Fatalf("confirmation notification never received")
}
}
func testMultiConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
t.Logf("testing mulit-conf notification")
// We'd like to test the case of being notified once a txid reaches
// N confirmations, where N > 1.
//
// Again, we'll begin by creating a fresh transaction, so we can obtain a fresh txid.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test addr: %v", err)
}
numConfs := uint32(6)
confIntent, err := notifier.RegisterConfirmationsNtfn(txid, numConfs)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// Now generate a six blocks. The transaction should be included in the
// first block, which will be built upon by the other 5 blocks.
if _, err := miner.Node.Generate(6); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
confSent := make(chan *chainntnfs.TxConfirmation)
go func() {
confSent <- <-confIntent.Confirmed
}()
select {
case <-confSent:
break
case <-time.After(2 * time.Second):
t.Fatalf("confirmation notification never received")
}
}
func testBatchConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
t.Logf("testing batch mulit-conf notification")
// We'd like to test a case of serving notifiations to multiple
// clients, each requesting to be notified once a txid receives
// various numbers of confirmations.
confSpread := [6]uint32{1, 2, 3, 6, 20, 22}
confIntents := make([]*chainntnfs.ConfirmationEvent, len(confSpread))
// Create a new txid spending miner coins for each confirmation entry
// in confSpread, we collect each conf intent into a slice so we can
// verify they're each notified at the proper number of confirmations
// below.
for i, numConfs := range confSpread {
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test addr: %v", err)
}
confIntent, err := notifier.RegisterConfirmationsNtfn(txid, numConfs)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
confIntents[i] = confIntent
}
// Now, for each confirmation intent, generate the delta number of blocks
// needed to trigger the confirmation notification. A goroutine is
// spawned in order to verify the proper notification is triggered.
for i, numConfs := range confSpread {
var blocksToGen uint32
// If this is the last instance, manually index to generate the
// proper block delta in order to avoid a panic.
if i == len(confSpread)-1 {
blocksToGen = confSpread[len(confSpread)-1] - confSpread[len(confSpread)-2]
} else {
blocksToGen = confSpread[i+1] - confSpread[i]
}
// Generate the number of blocks necessary to trigger this
// current confirmation notification.
if _, err := miner.Node.Generate(blocksToGen); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
confSent := make(chan *chainntnfs.TxConfirmation)
go func() {
confSent <- <-confIntents[i].Confirmed
}()
select {
case <-confSent:
continue
case <-time.After(2 * time.Second):
t.Fatalf("confirmation notification never received: %v", numConfs)
}
}
}
func testSpendNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
t.Logf("testing multi-client spend notification")
// We'd like to test the spend notifiations for all ChainNotifier
// concrete implemenations.
//
// To do so, we first create a new output to our test target address.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test addr: %v", err)
}
// Mine a single block which should include that txid above.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// Now that we have the txid, fetch the transaction itself.
wrappedTx, err := miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get new tx: %v", err)
}
tx := wrappedTx.MsgTx()
// Locate the output index sent to us. We need this so we can construct
// a spending txn below.
outIndex := -1
var pkScript []byte
for i, txOut := range tx.TxOut {
if bytes.Contains(txOut.PkScript, testAddr.ScriptAddress()) {
pkScript = txOut.PkScript
outIndex = i
break
}
}
if outIndex == -1 {
t.Fatalf("unable to locate new output")
}
// Now that we've found the output index, register for a spentness
// notification for the newly created output with multiple clients in
// order to ensure the implementation can support multi-client spend
// notifiations.
outpoint := wire.NewOutPoint(txid, uint32(outIndex))
const numClients = 5
spendClients := make([]*chainntnfs.SpendEvent, numClients)
for i := 0; i < numClients; i++ {
spentIntent, err := notifier.RegisterSpendNtfn(outpoint)
if err != nil {
t.Fatalf("unable to register for spend ntfn: %v", err)
}
spendClients[i] = spentIntent
}
// Next, create a new transaction spending that output.
spendingTx := wire.NewMsgTx(1)
spendingTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *outpoint,
})
spendingTx.AddTxOut(&wire.TxOut{
Value: 1e8,
PkScript: pkScript,
})
sigScript, err := txscript.SignatureScript(spendingTx, 0, pkScript,
txscript.SigHashAll, privKey, true)
if err != nil {
t.Fatalf("unable to sign tx: %v", err)
}
spendingTx.TxIn[0].SignatureScript = sigScript
// Broadcast our spending transaction.
spenderSha, err := miner.Node.SendRawTransaction(spendingTx, true)
if err != nil {
t.Fatalf("unable to brodacst tx: %v", err)
}
// Now we mine a single block, which should include our spend. The
// notification should also be sent off.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// For each event we registered for above, we create a goroutine which
// will listen on the event channel, passing it proxying each
// notification into a single which will be examined belwo.
spentNtfn := make(chan *chainntnfs.SpendDetail, numClients)
for i := 0; i < numClients; i++ {
go func(c *chainntnfs.SpendEvent) {
spentNtfn <- <-c.Spend
}(spendClients[i])
}
for i := 0; i < numClients; i++ {
select {
case ntfn := <-spentNtfn:
// We've received the spend nftn. So now verify all the
// fields have been set properly.
if ntfn.SpentOutPoint != outpoint {
t.Fatalf("ntfn includes wrong output, reports "+
"%v instead of %v",
ntfn.SpentOutPoint, outpoint)
}
if !bytes.Equal(ntfn.SpenderTxHash[:], spenderSha[:]) {
t.Fatalf("ntfn includes wrong spender tx sha, "+
"reports %v intead of %v",
ntfn.SpenderTxHash[:], spenderSha[:])
}
if ntfn.SpenderInputIndex != 0 {
t.Fatalf("ntfn includes wrong spending input "+
"index, reports %v, should be %v",
ntfn.SpenderInputIndex, 0)
}
case <-time.After(2 * time.Second):
t.Fatalf("spend ntfn never received")
}
}
}
func testBlockEpochNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
t.Logf("testing block epoch notification")
// We'd like to test the case of multiple registered clients receiving
// block epoch notifications.
const numBlocks = 10
const numClients = 5
var wg sync.WaitGroup
// Create numClients clients which will listen for block notifications. We
// expect each client to receive 10 notifications for each of the ten
// blocks we generate below. So we'll use a WaitGroup to synchronize the
// test.
for i := 0; i < numClients; i++ {
epochClient, err := notifier.RegisterBlockEpochNtfn()
if err != nil {
t.Fatalf("unable to register for epoch notification")
}
wg.Add(numBlocks)
go func() {
for i := 0; i < numBlocks; i++ {
<-epochClient.Epochs
wg.Done()
}
}()
}
epochsSent := make(chan struct{})
go func() {
wg.Wait()
close(epochsSent)
}()
// Now generate 10 blocks, the clients above should each receive 10
// notifications, thereby unblocking the goroutine above.
if _, err := miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
select {
case <-epochsSent:
case <-time.After(2 * time.Second):
t.Fatalf("all notifications not sent")
}
}
func testMultiClientConfirmationNotification(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
t.Logf("testing multi-client multi-conf notification")
// We'd like to test the case of a multiple clients registered to
// receive a confirmation notification for the same transaction.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
var wg sync.WaitGroup
const (
numConfsClients = 5
numConfs = 1
)
// Register for a conf notification for the above generated txid with
// numConfsClients distinct clients.
for i := 0; i < numConfsClients; i++ {
confClient, err := notifier.RegisterConfirmationsNtfn(txid, numConfs)
if err != nil {
t.Fatalf("unable to register for confirmation: %v", err)
}
wg.Add(1)
go func() {
<-confClient.Confirmed
wg.Done()
}()
}
confsSent := make(chan struct{})
go func() {
wg.Wait()
close(confsSent)
}()
// Finally, generate a single block which should trigger the unblocking
// of all numConfsClients blocked on the channel read above.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
select {
case <-confsSent:
case <-time.After(2 * time.Second):
t.Fatalf("all confirmation notifications not sent")
}
}
// Tests the case in which a confirmation notification is requested for a
// transaction that has already been included in a block. In this case, the
// confirmation notification should be dispatched immediately.
func testTxConfirmedBeforeNtfnRegistration(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
t.Logf("testing transaction confirmed before notification registration")
// First, let's send some coins to "ourself", obtaining a txid. We're
// spending from a coinbase output here, so we use the dedicated
// function.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
// Now generate one block. The notifier must check older blocks when
// the confirmation event is registered below to ensure that the TXID
// hasn't already been included in the chain, otherwise the
// notification will never be sent.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate two blocks: %v", err)
}
// Now that we have a txid, register a confirmation notification with
// the chainntfn source.
numConfs := uint32(1)
confIntent, err := notifier.RegisterConfirmationsNtfn(txid, numConfs)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
confSent := make(chan *chainntnfs.TxConfirmation)
go func() {
confSent <- <-confIntent.Confirmed
}()
select {
case <-confSent:
break
case <-time.After(2 * time.Second):
t.Fatalf("confirmation notification never received")
}
// Next, we want to test fully dispatching the notification for a
// transaction that has been *partially* confirmed. So we'll create
// another test txid.
txid, err = getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test tx: %v", err)
}
// We'll request 6 confirmations for the above generated txid, but we
// will generate the confirmations in chunks.
numConfs = 6
// First, generate 2 confirmations.
if _, err := miner.Node.Generate(2); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Next, register for the notification *after* the transition has
// already been partially confirmed.
confIntent, err = notifier.RegisterConfirmationsNtfn(txid, numConfs)
if err != nil {
t.Fatalf("unable to register ntfn: %v", err)
}
// With the notification registered, generate another 4 blocks, this
// should dispatch the notification.
if _, err := miner.Node.Generate(4); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
confSent = make(chan *chainntnfs.TxConfirmation)
go func() {
confSent <- <-confIntent.Confirmed
}()
select {
case <-confSent:
break
case <-time.After(2 * time.Second):
t.Fatalf("confirmation notification never received")
}
}
// Tests the case in which a spend notification is requested for a spend that
// has already been included in a block. In this case, the spend notification
// should be dispatched immediately.
func testSpendBeforeNtfnRegistration(miner *rpctest.Harness,
notifier chainntnfs.ChainNotifier, t *testing.T) {
t.Logf("testing spend broadcast before notification registration")
// We'd like to test the spend notifications for all ChainNotifier
// concrete implementations.
//
// To do so, we first create a new output to our test target address.
txid, err := getTestTxId(miner)
if err != nil {
t.Fatalf("unable to create test addr: %v", err)
}
// Mine a single block which should include that txid above.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// Now that we have the txid, fetch the transaction itself.
wrappedTx, err := miner.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to get new tx: %v", err)
}
tx := wrappedTx.MsgTx()
// Locate the output index sent to us. We need this so we can construct
// a spending txn below.
outIndex := -1
var pkScript []byte
for i, txOut := range tx.TxOut {
if bytes.Contains(txOut.PkScript, testAddr.ScriptAddress()) {
pkScript = txOut.PkScript
outIndex = i
break
}
}
if outIndex == -1 {
t.Fatalf("unable to locate new output")
}
// Now that we've found the output index, register for a spentness
// notification for the newly created output.
outpoint := wire.NewOutPoint(txid, uint32(outIndex))
// Next, create a new transaction spending that output.
spendingTx := wire.NewMsgTx(1)
spendingTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *outpoint,
})
spendingTx.AddTxOut(&wire.TxOut{
Value: 1e8,
PkScript: pkScript,
})
sigScript, err := txscript.SignatureScript(spendingTx, 0, pkScript,
txscript.SigHashAll, privKey, true)
if err != nil {
t.Fatalf("unable to sign tx: %v", err)
}
spendingTx.TxIn[0].SignatureScript = sigScript
// Broadcast our spending transaction.
spenderSha, err := miner.Node.SendRawTransaction(spendingTx, true)
if err != nil {
t.Fatalf("unable to brodacst tx: %v", err)
}
// Now we mine an additional block, which should include our spend.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate single block: %v", err)
}
// Now, we register to be notified of a spend that has already
// happened. The notifier should dispatch a spend notification
// immediately.
spentIntent, err := notifier.RegisterSpendNtfn(outpoint)
if err != nil {
t.Fatalf("unable to register for spend ntfn: %v", err)
}
spentNtfn := make(chan *chainntnfs.SpendDetail)
go func() {
spentNtfn <- <-spentIntent.Spend
}()
select {
case ntfn := <-spentNtfn:
// We've received the spend nftn. So now verify all the fields
// have been set properly.
if ntfn.SpentOutPoint != outpoint {
t.Fatalf("ntfn includes wrong output, reports %v instead of %v",
ntfn.SpentOutPoint, outpoint)
}
if !bytes.Equal(ntfn.SpenderTxHash[:], spenderSha[:]) {
t.Fatalf("ntfn includes wrong spender tx sha, reports %v intead of %v",
ntfn.SpenderTxHash[:], spenderSha[:])
}
if ntfn.SpenderInputIndex != 0 {
t.Fatalf("ntfn includes wrong spending input index, reports %v, should be %v",
ntfn.SpenderInputIndex, 0)
}
case <-time.After(2 * time.Second):
t.Fatalf("spend ntfn never received")
}
}
var ntfnTests = []func(node *rpctest.Harness, notifier chainntnfs.ChainNotifier, t *testing.T){
testSingleConfirmationNotification,
testMultiConfirmationNotification,
testBatchConfirmationNotification,
testMultiClientConfirmationNotification,
testSpendNotification,
testBlockEpochNotification,
testTxConfirmedBeforeNtfnRegistration,
testSpendBeforeNtfnRegistration,
}
// TestInterfaces tests all registered interfaces with a unified set of tests
// which excersie each of the required methods found within the ChainNotifier
// interface.
//
// NOTE: In the future, when additional implementations of the ChainNotifier
// interface have been implemented, in order to ensure the new concrete
// implementation is automatically tested, two steps must be undertaken. First,
// one needs add a "non-captured" (_) import from the new sub-package. This
// import should trigger an init() method within the package which registeres
// the interface. Second, an additional case in the switch within the main loop
// below needs to be added which properly initializes the interface.
func TestInterfaces(t *testing.T) {
// Initialize the harness around a btcd node which will serve as our
// dedicated miner to generate blocks, cause re-orgs, etc. We'll set up
// this node with a chain length of 125, so we have plentyyy of BTC to
// play around with.
miner, err := rpctest.New(netParams, nil, nil)
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
defer miner.TearDown()
if err := miner.SetUp(true, 25); err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
rpcConfig := miner.RPCConfig()
log.Printf("Running %v ChainNotifier interface tests\n", len(ntfnTests))
var notifier chainntnfs.ChainNotifier
for _, notifierDriver := range chainntnfs.RegisteredNotifiers() {
notifierType := notifierDriver.NotifierType
switch notifierType {
case "btcd":
notifier, err = notifierDriver.New(&rpcConfig)
if err != nil {
t.Fatalf("unable to create %v notifier: %v",
notifierType, err)
}
}
if err := notifier.Start(); err != nil {
t.Fatalf("unable to start notifier %v: %v",
notifierType, err)
}
for _, ntfnTest := range ntfnTests {
ntfnTest(miner, notifier, t)
}
notifier.Stop()
}
}