lnd.xprv/lnd_test.go

385 lines
13 KiB
Go
Raw Normal View History

package main
import (
"bytes"
"fmt"
"runtime/debug"
"testing"
"time"
"golang.org/x/net/context"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/roasbeef/btcd/rpctest"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcrpcclient"
"github.com/roasbeef/btcutil"
)
type lndTestCase func(net *networkHarness, t *testing.T)
func assertTxInBlock(block *btcutil.Block, txid *wire.ShaHash, t *testing.T) {
for _, tx := range block.Transactions() {
if bytes.Equal(txid[:], tx.Sha()[:]) {
return
}
}
t.Fatalf("funding tx was not included in block")
}
// openChannelAndAssert attempts to open a channel with the specified
// parameters extended from Alice to Bob. Additionally, two items are asserted
// after the channel is considered open: the funding transactino should be
// found within a block, and that Alice can report the status of the new
// channel.
func openChannelAndAssert(t *testing.T, net *networkHarness, ctx context.Context,
alice, bob *lightningNode, amount btcutil.Amount) *lnrpc.ChannelPoint {
chanOpenUpdate, err := net.OpenChannel(ctx, alice, bob, amount, 1)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
blockHash, err := net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := net.Miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
fundingChanPoint, err := net.WaitForChannelOpen(ctx, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := wire.NewShaHash(fundingChanPoint.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
assertTxInBlock(block, fundingTxID, t)
// The channel should be listed in the peer information returned by
// both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
err = net.AssertChannelExists(ctx, alice, &chanPoint)
if err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
return fundingChanPoint
}
// closeChannelAndAssert attemps to close a channel identified by the passed
// channel point owned by the passed lighting node. A fully blocking channel
// closure is attempted, therefore the passed context should be a child derived
// via timeout from a base parent. Additionally, once the channel has been
// detected as closed, an assertion checks that the transaction is found within
// a block.
func closeChannelAndAssert(t *testing.T, net *networkHarness,
ctx context.Context, node *lightningNode,
fundingChanPoint *lnrpc.ChannelPoint) {
closeUpdates, err := net.CloseChannel(ctx, node, fundingChanPoint, false)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
blockHash, err := net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := net.Miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
closingTxid, err := net.WaitForChannelClose(ctx, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(block, closingTxid, t)
}
// testBasicChannelFunding performs a test exercising expected behavior from a
// basic funding workflow. The test creates a new channel between Alice and
// Bob, then immediately closes the channel after asserting some expected post
// conditions. Finally, the chain itself is checked to ensure the closing
// transaction was mined.
func testBasicChannelFunding(net *networkHarness, t *testing.T) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
chanAmt := btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob. This function will block until the channel itself is fully
// open or an error occurs in the funding process. A series of
// assertions will be executed to ensure the funding process completed
// successfully.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(t, net, ctxt, net.Alice, net.Bob, chanAmt)
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(t, net, ctxt, net.Alice, chanPoint)
}
// testChannelBalance creates a new channel between Alice and Bob, then
// checks channel balance to be equal amount specified while creation of channel.
func testChannelBalance(net *networkHarness, t *testing.T) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
// Creates a helper closure to be used below which asserts the proper
// response to a channel balance RPC.
checkChannelBalance := func(node lnrpc.LightningClient, amount btcutil.Amount) {
response, err := node.ChannelBalance(ctxb, &lnrpc.ChannelBalanceRequest{})
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
balance := btcutil.Amount(response.Balance)
if balance != amount {
t.Fatalf("channel balance wrong: %v != %v", balance, amount)
}
}
// Open a channel with 0.5 BTC between Alice and Bob, ensuring the
// channel has been opened properly.
amount := btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(t, net, ctxt, net.Alice, net.Bob, amount)
// As this is a single funder channel, Alice's balance should be
// exactly 0.5 BTC since now state transitions have taken place yet.
checkChannelBalance(net.Alice, amount)
// Since we only explicitly wait for Alice's channel open notification,
// Bob might not yet have updated his internal state in response to
// Alice's channel open proof. So we sleep here for a second to let Bob
// catch up.
// TODO(roasbeef): Bob should also watch for the channel on-chain after
// the changes to restrict the number of pending channels are in.
time.Sleep(time.Second)
// Ensure Bob currently has no available balance within the channel.
checkChannelBalance(net.Bob, 0)
// Finally close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(t, net, ctxt, net.Alice, chanPoint)
}
// testChannelForceClosure performs a test to exercise the behavior of "force"
// closing a channel or unilaterally broadcasting the latest local commitment
// state on-chain. The test creates a new channel between Alice and Bob, then
// force closes the channel after some cursory assertions. Within the test, two
// transactions should be broadcast on-chain, the commitment transaction itself
// (which closes the channel), and the sweep transaction a few blocks later
// once the output(s) become mature.
//
// TODO(roabeef): also add an unsettled HTLC before force closing.
func testChannelForceClosure(net *networkHarness, t *testing.T) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
// First establish a channel ween with a capacity of 100k satoshis
// between Alice and Bob.
numFundingConfs := uint32(1)
chanAmt := btcutil.Amount(10e4)
chanOpenUpdate, err := net.OpenChannel(ctxb, net.Alice, net.Bob,
chanAmt, numFundingConfs)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
if _, err := net.Miner.Node.Generate(numFundingConfs); err != nil {
t.Fatalf("unable to mine block: %v", err)
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel to open: %v", err)
}
// Now that the channel is open, immediately execute a force closure of
// the channel. This will also assert that the commitment transaction
// was immediately broadcast in order to fulfill the force closure
// request.
closeUpdate, err := net.CloseChannel(ctxb, net.Alice, chanPoint, true)
if err != nil {
t.Fatalf("unable to execute force channel closure: %v", err)
}
// Mine a block which should confirm the commitment transaction
// broadcast as a result of the force closure.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closingTxID, err := net.WaitForChannelClose(ctxt, closeUpdate)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
// Currently within the codebase, the default CSV is 4 relative blocks.
// So generate exactly 4 new blocks.
// TODO(roasbeef): should check default value in config here instead,
// or make delay a param
const defaultCSV = 4
if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the sweeping transaction should now be broadcast. So
// we fetch the node's mempool to ensure it has been properly
// broadcast.
var sweepingTXID *wire.ShaHash
var mempool []*wire.ShaHash
mempoolPoll:
for {
select {
case <-time.After(time.Second * 5):
t.Fatalf("sweep tx not found in mempool")
default:
mempool, err = net.Miner.Node.GetRawMempool()
if err != nil {
t.Fatalf("unable to fetch node's mempool: %v", err)
}
if len(mempool) == 0 {
continue
}
break mempoolPoll
}
}
// There should be exactly one transaction within the mempool at this
// point.
// TODO(roasbeef): assertion may not necessarily hold with concurrent
// test executions
if len(mempool) != 1 {
t.Fatalf("node's mempool is wrong size, expected 1 got %v",
len(mempool))
}
sweepingTXID = mempool[0]
// Fetch the sweep transaction, all input it's spending should be from
// the commitment transaction which was broadcast on-chain.
sweepTx, err := net.Miner.Node.GetRawTransaction(sweepingTXID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
for _, txIn := range sweepTx.MsgTx().TxIn {
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
t.Fatalf("sweep transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
}
// Finally, we mine an additional block which should include the sweep
// transaction as the input scripts and the sequence locks on the
// inputs should be properly met.
blockHash, err := net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := net.Miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
assertTxInBlock(block, sweepTx.Sha(), t)
}
var lndTestCases = map[string]lndTestCase{
"basic funding flow": testBasicChannelFunding,
"channel force closure": testChannelForceClosure,
"channel balance": testChannelBalance,
}
// TestLightningNetworkDaemon performs a series of integration tests amongst a
// programmatically driven network of lnd nodes.
func TestLightningNetworkDaemon(t *testing.T) {
var (
btcdHarness *rpctest.Harness
lightningNetwork *networkHarness
currentTest string
err error
)
defer func() {
// If one of the integration tests caused a panic within the main
// goroutine, then tear down all the harnesses in order to avoid
// any leaked processes.
if r := recover(); r != nil {
fmt.Println("recovering from test panic: ", r)
if err := btcdHarness.TearDown(); err != nil {
fmt.Println("unable to tear btcd harnesses: ", err)
}
if err := lightningNetwork.TearDownAll(); err != nil {
fmt.Println("unable to tear lnd harnesses: ", err)
}
t.Fatalf("test %v panicked: %s", currentTest, debug.Stack())
}
}()
// First create the network harness to gain access to its
// 'OnTxAccepted' call back.
lightningNetwork, err = newNetworkHarness()
if err != nil {
t.Fatalf("unable to create lightning network harness: %v", err)
}
defer lightningNetwork.TearDownAll()
handlers := &btcrpcclient.NotificationHandlers{
OnTxAccepted: lightningNetwork.OnTxAccepted,
}
// First create an instance of the btcd's rpctest.Harness. This will be
// used to fund the wallets of the nodes within the test network and to
// drive blockchain related events within the network.
btcdHarness, err = rpctest.New(harnessNetParams, handlers, nil)
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
defer btcdHarness.TearDown()
if err = btcdHarness.SetUp(true, 50); err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
if err := btcdHarness.Node.NotifyNewTransactions(false); err != nil {
t.Fatalf("unable to request transaction notifications: %v", err)
}
// With the btcd harness created, we can now complete the
// initialization of the network. args - list of lnd arguments,
// example: "--debuglevel=debug"
args := []string{}
if err := lightningNetwork.InitializeSeedNodes(btcdHarness, args); err != nil {
t.Fatalf("unable to initialize seed nodes: %v", err)
}
if err = lightningNetwork.SetUp(); err != nil {
t.Fatalf("unable to set up test lightning network: %v", err)
}
t.Logf("Running %v integration tests", len(lndTestCases))
for testName, lnTest := range lndTestCases {
t.Logf("Executing test %v", testName)
currentTest = testName
lnTest(lightningNetwork, t)
}
}