lnd.xprv/sweep/walletsweep.go

287 lines
9.6 KiB
Go
Raw Normal View History

package sweep
import (
"fmt"
"math"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
)
const (
// defaultNumBlocksEstimate is the number of blocks that we fall back
// to issuing an estimate for if a fee pre fence doesn't specify an
// explicit conf target or fee rate.
defaultNumBlocksEstimate = 6
)
// FeePreference allows callers to express their time value for inclusion of a
// transaction into a block via either a confirmation target, or a fee rate.
type FeePreference struct {
// ConfTarget if non-zero, signals a fee preference expressed in the
// number of desired blocks between first broadcast, and confirmation.
ConfTarget uint32
// FeeRate if non-zero, signals a fee pre fence expressed in the fee
// rate expressed in sat/kw for a particular transaction.
FeeRate chainfee.SatPerKWeight
}
// String returns a human-readable string of the fee preference.
func (p FeePreference) String() string {
if p.ConfTarget != 0 {
return fmt.Sprintf("%v blocks", p.ConfTarget)
}
return p.FeeRate.String()
}
// DetermineFeePerKw will determine the fee in sat/kw that should be paid given
// an estimator, a confirmation target, and a manual value for sat/byte. A
// value is chosen based on the two free parameters as one, or both of them can
// be zero.
func DetermineFeePerKw(feeEstimator chainfee.Estimator,
feePref FeePreference) (chainfee.SatPerKWeight, error) {
switch {
// If both values are set, then we'll return an error as we require a
// strict directive.
case feePref.FeeRate != 0 && feePref.ConfTarget != 0:
return 0, fmt.Errorf("only FeeRate or ConfTarget should " +
"be set for FeePreferences")
// If the target number of confirmations is set, then we'll use that to
// consult our fee estimator for an adequate fee.
case feePref.ConfTarget != 0:
feePerKw, err := feeEstimator.EstimateFeePerKW(
uint32(feePref.ConfTarget),
)
if err != nil {
return 0, fmt.Errorf("unable to query fee "+
"estimator: %v", err)
}
return feePerKw, nil
// If a manual sat/byte fee rate is set, then we'll use that directly.
// We'll need to convert it to sat/kw as this is what we use
// internally.
case feePref.FeeRate != 0:
feePerKW := feePref.FeeRate
if feePerKW < chainfee.FeePerKwFloor {
log.Infof("Manual fee rate input of %d sat/kw is "+
"too low, using %d sat/kw instead", feePerKW,
chainfee.FeePerKwFloor)
feePerKW = chainfee.FeePerKwFloor
}
return feePerKW, nil
// Otherwise, we'll attempt a relaxed confirmation target for the
// transaction
default:
feePerKw, err := feeEstimator.EstimateFeePerKW(
defaultNumBlocksEstimate,
)
if err != nil {
return 0, fmt.Errorf("unable to query fee estimator: "+
"%v", err)
}
return feePerKw, nil
}
}
// UtxoSource is an interface that allows a caller to access a source of UTXOs
// to use when crafting sweep transactions.
type UtxoSource interface {
// ListUnspentWitness returns all UTXOs from the source that have
// between minConfs and maxConfs number of confirmations.
ListUnspentWitness(minConfs, maxConfs int32) ([]*lnwallet.Utxo, error)
}
// CoinSelectionLocker is an interface that allows the caller to perform an
// operation, which is synchronized with all coin selection attempts. This can
// be used when an operation requires that all coin selection operations cease
// forward progress. Think of this as an exclusive lock on coin selection
// operations.
type CoinSelectionLocker interface {
// WithCoinSelectLock will execute the passed function closure in a
// synchronized manner preventing any coin selection operations from
// proceeding while the closure if executing. This can be seen as the
// ability to execute a function closure under an exclusive coin
// selection lock.
WithCoinSelectLock(func() error) error
}
// OutpointLocker allows a caller to lock/unlock an outpoint. When locked, the
// outpoints shouldn't be used for any sort of channel funding of coin
// selection. Locked outpoints are not expect to be persisted between restarts.
type OutpointLocker interface {
// LockOutpoint locks a target outpoint, rendering it unusable for coin
// selection.
LockOutpoint(o wire.OutPoint)
// UnlockOutpoint unlocks a target outpoint, allowing it to be used for
// coin selection once again.
UnlockOutpoint(o wire.OutPoint)
}
// WalletSweepPackage is a package that gives the caller the ability to sweep
// ALL funds from a wallet in a single transaction. We also package a function
// closure that allows one to abort the operation.
type WalletSweepPackage struct {
// SweepTx is a fully signed, and valid transaction that is broadcast,
// will sweep ALL confirmed coins in the wallet with a single
// transaction.
SweepTx *wire.MsgTx
// CancelSweepAttempt allows the caller to cancel the sweep attempt.
//
// NOTE: If the sweeping transaction isn't or cannot be broadcast, then
// this closure MUST be called, otherwise all selected utxos will be
// unable to be used.
CancelSweepAttempt func()
}
// CraftSweepAllTx attempts to craft a WalletSweepPackage which will allow the
// caller to sweep ALL outputs within the wallet to a single UTXO, as specified
// by the delivery address. The sweep transaction will be crafted with the
// target fee rate, and will use the utxoSource and outpointLocker as sources
// for wallet funds.
func CraftSweepAllTx(feeRate chainfee.SatPerKWeight, blockHeight uint32,
deliveryAddr btcutil.Address, coinSelectLocker CoinSelectionLocker,
utxoSource UtxoSource, outpointLocker OutpointLocker,
feeEstimator chainfee.Estimator,
signer input.Signer) (*WalletSweepPackage, error) {
// TODO(roasbeef): turn off ATPL as well when available?
var allOutputs []*lnwallet.Utxo
// We'll make a function closure up front that allows us to unlock all
// selected outputs to ensure that they become available again in the
// case of an error after the outputs have been locked, but before we
// can actually craft a sweeping transaction.
unlockOutputs := func() {
for _, utxo := range allOutputs {
outpointLocker.UnlockOutpoint(utxo.OutPoint)
}
}
// Next, we'll use the coinSelectLocker to ensure that no coin
// selection takes place while we fetch and lock all outputs the wallet
// knows of. Otherwise, it may be possible for a new funding flow to
// lock an output while we fetch the set of unspent witnesses.
err := coinSelectLocker.WithCoinSelectLock(func() error {
// Now that we can be sure that no other coin selection
// operations are going on, we can grab a clean snapshot of the
// current UTXO state of the wallet.
utxos, err := utxoSource.ListUnspentWitness(
1, math.MaxInt32,
)
if err != nil {
return err
}
// We'll now lock each UTXO to ensure that other callers don't
// attempt to use these UTXOs in transactions while we're
// crafting out sweep all transaction.
for _, utxo := range utxos {
outpointLocker.LockOutpoint(utxo.OutPoint)
}
allOutputs = append(allOutputs, utxos...)
return nil
})
if err != nil {
// If we failed at all, we'll unlock any outputs selected just
// in case we had any lingering outputs.
unlockOutputs()
return nil, fmt.Errorf("unable to fetch+lock wallet "+
"utxos: %v", err)
}
// Now that we've locked all the potential outputs to sweep, we'll
// assemble an input for each of them, so we can hand it off to the
// sweeper to generate and sign a transaction for us.
var inputsToSweep []input.Input
for _, output := range allOutputs {
// As we'll be signing for outputs under control of the wallet,
// we only need to populate the output value and output script.
// The rest of the items will be populated internally within
// the sweeper via the witness generation function.
signDesc := &input.SignDescriptor{
Output: &wire.TxOut{
PkScript: output.PkScript,
Value: int64(output.Value),
},
HashType: txscript.SigHashAll,
}
pkScript := output.PkScript
// Based on the output type, we'll map it to the proper witness
// type so we can generate the set of input scripts needed to
// sweep the output.
var witnessType input.WitnessType
switch output.AddressType {
// If this is a p2wkh output, then we'll assume it's a witness
// key hash witness type.
case lnwallet.WitnessPubKey:
witnessType = input.WitnessKeyHash
// If this is a p2sh output, then as since it's under control
// of the wallet, we'll assume it's a nested p2sh output.
case lnwallet.NestedWitnessPubKey:
witnessType = input.NestedWitnessKeyHash
// All other output types we count as unknown and will fail to
// sweep.
default:
unlockOutputs()
return nil, fmt.Errorf("unable to sweep coins, "+
"unknown script: %x", pkScript[:])
}
// Now that we've constructed the items required, we'll make an
// input which can be passed to the sweeper for ultimate
// sweeping.
input := input.MakeBaseInput(&output.OutPoint, witnessType, signDesc, 0)
inputsToSweep = append(inputsToSweep, &input)
}
// Next, we'll convert the delivery addr to a pkScript that we can use
// to create the sweep transaction.
deliveryPkScript, err := txscript.PayToAddrScript(deliveryAddr)
if err != nil {
unlockOutputs()
return nil, err
}
// Finally, we'll ask the sweeper to craft a sweep transaction which
// respects our fee preference and targets all the UTXOs of the wallet.
sweepTx, err := createSweepTx(
inputsToSweep, deliveryPkScript, blockHeight, feeRate, signer,
)
if err != nil {
unlockOutputs()
return nil, err
}
return &WalletSweepPackage{
SweepTx: sweepTx,
CancelSweepAttempt: unlockOutputs,
}, nil
}