lnd.xprv/htlcswitch/iterator.go

430 lines
14 KiB
Go
Raw Normal View History

package htlcswitch
import (
"encoding/binary"
"io"
2018-07-31 10:17:17 +03:00
"github.com/btcsuite/btcd/btcec"
"github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/lnwire"
)
// NetworkHop indicates the blockchain network that is intended to be the next
// hop for a forwarded HTLC. The existence of this field within the
// ForwardingInfo struct enables the ability for HTLC to cross chain-boundaries
// at will.
type NetworkHop uint8
const (
// BitcoinHop denotes that an HTLC is to be forwarded along the Bitcoin
// link with the specified short channel ID.
BitcoinHop NetworkHop = iota
// LitecoinHop denotes that an HTLC is to be forwarded along the
// Litecoin link with the specified short channel ID.
LitecoinHop
)
// String returns the string representation of the target NetworkHop.
func (c NetworkHop) String() string {
switch c {
case BitcoinHop:
return "Bitcoin"
case LitecoinHop:
return "Litecoin"
default:
return "Kekcoin"
}
}
var (
// exitHop is a special "hop" which denotes that an incoming HTLC is
// meant to pay finally to the receiving node.
exitHop lnwire.ShortChannelID
// sourceHop is a sentinel value denoting that an incoming HTLC is
// initiated by our own switch.
sourceHop lnwire.ShortChannelID
)
// ForwardingInfo contains all the information that is necessary to forward and
// incoming HTLC to the next hop encoded within a valid HopIterator instance.
// Forwarding links are to use this information to authenticate the information
// received within the incoming HTLC, to ensure that the prior hop didn't
// tamper with the end-to-end routing information at all.
type ForwardingInfo struct {
// Network is the target blockchain network that the HTLC will travel
// over next.
Network NetworkHop
// NextHop is the channel ID of the next hop. The received HTLC should
// be forwarded to this particular channel in order to continue the
// end-to-end route.
NextHop lnwire.ShortChannelID
// AmountToForward is the amount of milli-satoshis that the receiving
// node should forward to the next hop.
AmountToForward lnwire.MilliSatoshi
// OutgoingCTLV is the specified value of the CTLV timelock to be used
// in the outgoing HTLC.
OutgoingCTLV uint32
// TODO(roasbeef): modify sphinx logic to not just discard the
// remaining bytes, instead should include the rest as excess
}
// HopIterator is an interface that abstracts away the routing information
// included in HTLC's which includes the entirety of the payment path of an
// HTLC. This interface provides two basic method which carry out: how to
// interpret the forwarding information encoded within the HTLC packet, and hop
// to encode the forwarding information for the _next_ hop.
type HopIterator interface {
// ForwardingInstructions returns the set of fields that detail exactly
// _how_ this hop should forward the HTLC to the next hop.
// Additionally, the information encoded within the returned
// ForwardingInfo is to be used by each hop to authenticate the
// information given to it by the prior hop.
ForwardingInstructions() ForwardingInfo
// EncodeNextHop encodes the onion packet destined for the next hop
// into the passed io.Writer.
EncodeNextHop(w io.Writer) error
// ExtractErrorEncrypter returns the ErrorEncrypter needed for this hop,
// along with a failure code to signal if the decoding was successful.
ExtractErrorEncrypter(ErrorEncrypterExtracter) (ErrorEncrypter,
lnwire.FailCode)
}
// sphinxHopIterator is the Sphinx implementation of hop iterator which uses
// onion routing to encode the payment route in such a way so that node might
// see only the next hop in the route..
type sphinxHopIterator struct {
// ogPacket is the original packet from which the processed packet is
// derived.
ogPacket *sphinx.OnionPacket
// processedPacket is the outcome of processing an onion packet. It
// includes the information required to properly forward the packet to
// the next hop.
processedPacket *sphinx.ProcessedPacket
}
// makeSphinxHopIterator converts a processed packet returned from a sphinx
// router and converts it into an hop iterator for usage in the link.
func makeSphinxHopIterator(ogPacket *sphinx.OnionPacket,
packet *sphinx.ProcessedPacket) *sphinxHopIterator {
return &sphinxHopIterator{
ogPacket: ogPacket,
processedPacket: packet,
}
}
// A compile time check to ensure sphinxHopIterator implements the HopIterator
// interface.
var _ HopIterator = (*sphinxHopIterator)(nil)
// Encode encodes iterator and writes it to the writer.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) EncodeNextHop(w io.Writer) error {
return r.processedPacket.NextPacket.Encode(w)
}
// ForwardingInstructions returns the set of fields that detail exactly _how_
// this hop should forward the HTLC to the next hop. Additionally, the
// information encoded within the returned ForwardingInfo is to be used by each
// hop to authenticate the information given to it by the prior hop.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) ForwardingInstructions() ForwardingInfo {
fwdInst := r.processedPacket.ForwardingInstructions
var nextHop lnwire.ShortChannelID
switch r.processedPacket.Action {
case sphinx.ExitNode:
nextHop = exitHop
case sphinx.MoreHops:
s := binary.BigEndian.Uint64(fwdInst.NextAddress[:])
nextHop = lnwire.NewShortChanIDFromInt(s)
}
return ForwardingInfo{
Network: BitcoinHop,
NextHop: nextHop,
AmountToForward: lnwire.MilliSatoshi(fwdInst.ForwardAmount),
OutgoingCTLV: fwdInst.OutgoingCltv,
}
}
// ExtractErrorEncrypter decodes and returns the ErrorEncrypter for this hop,
// along with a failure code to signal if the decoding was successful. The
// ErrorEncrypter is used to encrypt errors back to the sender in the event that
// a payment fails.
//
// NOTE: Part of the HopIterator interface.
func (r *sphinxHopIterator) ExtractErrorEncrypter(
extracter ErrorEncrypterExtracter) (ErrorEncrypter, lnwire.FailCode) {
return extracter(r.ogPacket.EphemeralKey)
}
// OnionProcessor is responsible for keeping all sphinx dependent parts inside
// and expose only decoding function. With such approach we give freedom for
// subsystems which wants to decode sphinx path to not be dependable from
// sphinx at all.
//
// NOTE: The reason for keeping decoder separated from hop iterator is too
// maintain the hop iterator abstraction. Without it the structures which using
// the hop iterator should contain sphinx router which makes their creations in
// tests dependent from the sphinx internal parts.
type OnionProcessor struct {
router *sphinx.Router
}
// NewOnionProcessor creates new instance of decoder.
func NewOnionProcessor(router *sphinx.Router) *OnionProcessor {
return &OnionProcessor{router}
}
// Start spins up the onion processor's sphinx router.
func (p *OnionProcessor) Start() error {
return p.router.Start()
}
// Stop shutsdown the onion processor's sphinx router.
func (p *OnionProcessor) Stop() error {
p.router.Stop()
return nil
}
// DecodeHopIterator attempts to decode a valid sphinx packet from the passed io.Reader
// instance using the rHash as the associated data when checking the relevant
// MACs during the decoding process.
func (p *OnionProcessor) DecodeHopIterator(r io.Reader, rHash []byte,
incomingCltv uint32) (HopIterator, lnwire.FailCode) {
onionPkt := &sphinx.OnionPacket{}
if err := onionPkt.Decode(r); err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to decode onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
// Attempt to process the Sphinx packet. We include the payment hash of
// the HTLC as it's authenticated within the Sphinx packet itself as
// associated data in order to thwart attempts a replay attacks. In the
// case of a replay, an attacker is *forced* to use the same payment
// hash twice, thereby losing their money entirely.
sphinxPacket, err := p.router.ProcessOnionPacket(
onionPkt, rHash, incomingCltv,
)
if err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionHMAC:
return nil, lnwire.CodeInvalidOnionHmac
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to process onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
return makeSphinxHopIterator(onionPkt, sphinxPacket), lnwire.CodeNone
}
// DecodeHopIteratorRequest encapsulates all date necessary to process an onion
// packet, perform sphinx replay detection, and schedule the entry for garbage
// collection.
type DecodeHopIteratorRequest struct {
OnionReader io.Reader
RHash []byte
IncomingCltv uint32
}
// DecodeHopIteratorResponse encapsulates the outcome of a batched sphinx onion
// processing.
type DecodeHopIteratorResponse struct {
HopIterator HopIterator
FailCode lnwire.FailCode
}
// Result returns the (HopIterator, lnwire.FailCode) tuple, which should
// correspond to the index of a particular DecodeHopIteratorRequest.
//
// NOTE: The HopIterator should be considered invalid if the fail code is
// anything but lnwire.CodeNone.
func (r *DecodeHopIteratorResponse) Result() (HopIterator, lnwire.FailCode) {
return r.HopIterator, r.FailCode
}
// DecodeHopIterators performs batched decoding and validation of incoming
// sphinx packets. For the same `id`, this method will return the same iterators
// and failcodes upon subsequent invocations.
//
// NOTE: In order for the responses to be valid, the caller must guarantee that
// the presented readers and rhashes *NEVER* deviate across invocations for the
// same id.
func (p *OnionProcessor) DecodeHopIterators(id []byte,
reqs []DecodeHopIteratorRequest) ([]DecodeHopIteratorResponse, error) {
var (
batchSize = len(reqs)
onionPkts = make([]sphinx.OnionPacket, batchSize)
resps = make([]DecodeHopIteratorResponse, batchSize)
)
tx := p.router.BeginTxn(id, batchSize)
for i, req := range reqs {
onionPkt := &onionPkts[i]
resp := &resps[i]
err := onionPkt.Decode(req.OnionReader)
switch err {
case nil:
// success
case sphinx.ErrInvalidOnionVersion:
resp.FailCode = lnwire.CodeInvalidOnionVersion
continue
case sphinx.ErrInvalidOnionKey:
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
default:
log.Errorf("unable to decode onion packet: %v", err)
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
}
err = tx.ProcessOnionPacket(
uint16(i), onionPkt, req.RHash, req.IncomingCltv,
)
switch err {
case nil:
// success
case sphinx.ErrInvalidOnionVersion:
resp.FailCode = lnwire.CodeInvalidOnionVersion
continue
case sphinx.ErrInvalidOnionHMAC:
resp.FailCode = lnwire.CodeInvalidOnionHmac
continue
case sphinx.ErrInvalidOnionKey:
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
default:
log.Errorf("unable to process onion packet: %v", err)
resp.FailCode = lnwire.CodeInvalidOnionKey
continue
}
}
// With that batch created, we will now attempt to write the shared
// secrets to disk. This operation will returns the set of indices that
// were detected as replays, and the computed sphinx packets for all
// indices that did not fail the above loop. Only indices that are not
// in the replay set should be considered valid, as they are
// opportunistically computed.
packets, replays, err := tx.Commit()
if err != nil {
log.Errorf("unable to process onion packet batch %x: %v",
id, err)
// If we failed to commit the batch to the secret share log, we
// will mark all not-yet-failed channels with a temporary
// channel failure and exit since we cannot proceed.
for i := range resps {
resp := &resps[i]
// Skip any indexes that already failed onion decoding.
if resp.FailCode != lnwire.CodeNone {
continue
}
log.Errorf("unable to process onion packet %x-%v",
id, i)
resp.FailCode = lnwire.CodeTemporaryChannelFailure
}
// TODO(conner): return real errors to caller so link can fail?
return resps, err
}
// Otherwise, the commit was successful. Now we will post process any
// remaining packets, additionally failing any that were included in the
// replay set.
for i := range resps {
resp := &resps[i]
// Skip any indexes that already failed onion decoding.
if resp.FailCode != lnwire.CodeNone {
continue
}
// If this index is contained in the replay set, mark it with a
// temporary channel failure error code. We infer that the
// offending error was due to a replayed packet because this
// index was found in the replay set.
if replays.Contains(uint16(i)) {
log.Errorf("unable to process onion packet: %v",
sphinx.ErrReplayedPacket)
resp.FailCode = lnwire.CodeTemporaryChannelFailure
continue
}
// Finally, construct a hop iterator from our processed sphinx
// packet, simultaneously caching the original onion packet.
resp.HopIterator = makeSphinxHopIterator(&onionPkts[i], &packets[i])
}
return resps, nil
}
// ExtractErrorEncrypter takes an io.Reader which should contain the onion
// packet as original received by a forwarding node and creates an
// ErrorEncrypter instance using the derived shared secret. In the case that en
// error occurs, a lnwire failure code detailing the parsing failure will be
// returned.
func (p *OnionProcessor) ExtractErrorEncrypter(ephemeralKey *btcec.PublicKey) (
ErrorEncrypter, lnwire.FailCode) {
onionObfuscator, err := sphinx.NewOnionErrorEncrypter(
p.router, ephemeralKey,
)
if err != nil {
switch err {
case sphinx.ErrInvalidOnionVersion:
return nil, lnwire.CodeInvalidOnionVersion
case sphinx.ErrInvalidOnionHMAC:
return nil, lnwire.CodeInvalidOnionHmac
case sphinx.ErrInvalidOnionKey:
return nil, lnwire.CodeInvalidOnionKey
default:
log.Errorf("unable to process onion packet: %v", err)
return nil, lnwire.CodeInvalidOnionKey
}
}
return &SphinxErrorEncrypter{
OnionErrorEncrypter: onionObfuscator,
EphemeralKey: ephemeralKey,
}, lnwire.CodeNone
}