lnd.xprv/routing/notifications_test.go

662 lines
18 KiB
Go
Raw Normal View History

package routing
import (
"fmt"
"image/color"
"net"
"sync"
"testing"
"time"
prand "math/rand"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
)
var (
testAddr = &net.TCPAddr{IP: (net.IP)([]byte{0xA, 0x0, 0x0, 0x1}),
Port: 9000}
testAddrs = []net.Addr{testAddr}
testFeatures = lnwire.NewFeatureVector([]lnwire.Feature{})
testHash = [32]byte{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9,
0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
)
func createGraphNode() (*channeldb.LightningNode, error) {
updateTime := prand.Int63()
priv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, err
}
pub := priv.PubKey().SerializeCompressed()
return &channeldb.LightningNode{
LastUpdate: time.Unix(updateTime, 0),
Addresses: testAddrs,
PubKey: priv.PubKey(),
Color: color.RGBA{1, 2, 3, 0},
Alias: "kek" + string(pub[:]),
Features: testFeatures,
}, nil
}
func createTestWireNode() (*lnwire.NodeAnnouncement, error) {
priv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, err
}
pub := priv.PubKey().SerializeCompressed()
alias, err := lnwire.NewAlias("kek" + string(pub[:]))
if err != nil {
return nil, err
}
return &lnwire.NodeAnnouncement{
Timestamp: uint32(prand.Int31()),
Addresses: testAddrs,
NodeID: priv.PubKey(),
Alias: alias,
Features: testFeatures,
}, nil
}
func randEdgePolicyAnn(chanID lnwire.ChannelID) *lnwire.ChannelUpdateAnnouncement {
return &lnwire.ChannelUpdateAnnouncement{
Signature: testSig,
ChannelID: chanID,
Timestamp: uint32(prand.Int31()),
TimeLockDelta: uint16(prand.Int63()),
HtlcMinimumMsat: uint32(prand.Int31()),
FeeBaseMsat: uint32(prand.Int31()),
FeeProportionalMillionths: uint32(prand.Int31()),
}
}
func randChannelEdge(ctx *testCtx, chanValue btcutil.Amount,
fundingHeight uint32) (*wire.MsgTx, wire.OutPoint, lnwire.ChannelID) {
fundingTx := wire.NewMsgTx(2)
fundingTx.TxOut = append(fundingTx.TxOut, &wire.TxOut{
Value: int64(chanValue),
})
chanUtxo := wire.OutPoint{
Hash: fundingTx.TxHash(),
Index: 0,
}
// With the utxo constructed, we'll mark it as closed.
ctx.chain.addUtxo(chanUtxo, chanValue)
// Our fake channel will be "confirmed" at height 101.
chanID := lnwire.ChannelID{
BlockHeight: fundingHeight,
TxIndex: 0,
TxPosition: 0,
}
return fundingTx, chanUtxo, chanID
}
type mockChain struct {
blocks map[chainhash.Hash]*wire.MsgBlock
blockIndex map[uint32]chainhash.Hash
utxos map[wire.OutPoint]wire.TxOut
bestHeight int32
bestHash *chainhash.Hash
sync.RWMutex
}
func newMockChain(currentHeight uint32) *mockChain {
return &mockChain{
bestHeight: int32(currentHeight),
blocks: make(map[chainhash.Hash]*wire.MsgBlock),
utxos: make(map[wire.OutPoint]wire.TxOut),
blockIndex: make(map[uint32]chainhash.Hash),
}
}
func (m *mockChain) setBestBlock(height int32) {
m.Lock()
defer m.Unlock()
m.bestHeight = height
}
func (m *mockChain) GetBestBlock() (*chainhash.Hash, int32, error) {
m.RLock()
defer m.RUnlock()
return nil, m.bestHeight, nil
}
func (m *mockChain) GetTransaction(txid *chainhash.Hash) (*wire.MsgTx, error) {
return nil, nil
}
func (m *mockChain) GetBlockHash(blockHeight int64) (*chainhash.Hash, error) {
m.RLock()
defer m.RUnlock()
hash, ok := m.blockIndex[uint32(blockHeight)]
if !ok {
return nil, fmt.Errorf("can't find block hash, for "+
"height %v", blockHeight)
}
return &hash, nil
}
func (m *mockChain) addUtxo(op wire.OutPoint, value btcutil.Amount) {
m.Lock()
m.utxos[op] = wire.TxOut{
Value: int64(value),
}
m.Unlock()
}
func (m *mockChain) GetUtxo(txid *chainhash.Hash, index uint32) (*wire.TxOut, error) {
m.RLock()
defer m.RUnlock()
op := wire.OutPoint{
Hash: *txid,
Index: index,
}
utxo, ok := m.utxos[op]
if !ok {
return nil, fmt.Errorf("utxo not found")
}
return &utxo, nil
}
func (m *mockChain) addBlock(block *wire.MsgBlock, height uint32) {
m.Lock()
block.Header.Nonce = height
hash := block.Header.BlockHash()
m.blocks[hash] = block
m.blockIndex[height] = hash
m.Unlock()
}
func (m *mockChain) GetBlock(blockHash *chainhash.Hash) (*wire.MsgBlock, error) {
m.RLock()
defer m.RUnlock()
block, ok := m.blocks[*blockHash]
if !ok {
return nil, fmt.Errorf("block not found")
}
return block, nil
}
type mockNotifier struct {
clientCounter uint32
epochClients map[uint32]chan *chainntnfs.BlockEpoch
sync.RWMutex
}
func newMockNotifier() *mockNotifier {
return &mockNotifier{
epochClients: make(map[uint32]chan *chainntnfs.BlockEpoch),
}
}
func (m *mockNotifier) RegisterConfirmationsNtfn(txid *chainhash.Hash,
numConfs uint32) (*chainntnfs.ConfirmationEvent, error) {
return nil, nil
}
func (m *mockNotifier) RegisterSpendNtfn(outpoint *wire.OutPoint) (*chainntnfs.SpendEvent, error) {
return nil, nil
}
func (m *mockNotifier) notifyBlock(hash chainhash.Hash, height uint32) {
m.RLock()
defer m.RUnlock()
for _, client := range m.epochClients {
client <- &chainntnfs.BlockEpoch{
Height: int32(height),
Hash: &hash,
}
}
}
func (m *mockNotifier) RegisterBlockEpochNtfn() (*chainntnfs.BlockEpochEvent, error) {
m.RLock()
defer m.RUnlock()
epochChan := make(chan *chainntnfs.BlockEpoch)
clientID := m.clientCounter
m.clientCounter++
m.epochClients[clientID] = epochChan
return &chainntnfs.BlockEpochEvent{
Epochs: epochChan,
Cancel: func() {},
}, nil
}
func (m *mockNotifier) Start() error {
return nil
}
func (m *mockNotifier) Stop() error {
return nil
}
// TestEdgeUpdateNotification tests that when edges are updated or discovered,
// a proper notification is sent of to all registered clients.
func TestEdgeUpdateNotification(t *testing.T) {
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtx(startingBlockHeight)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
// First we'll create the utxo for the channel to be "closed"
const chanValue = btcutil.Amount(10000)
fundingTx, chanPoint, chanID := randChannelEdge(ctx, chanValue,
startingBlockHeight)
// We'll also add a record for the block that included our funding
// transaction.
fundingBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{fundingTx},
}
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight)
// Next we'll create two test nodes that the fake channel will be open
// between and add then as members of the channel graph.
node1, err := createTestWireNode()
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
node2, err := createTestWireNode()
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
// Send the two node announcements to the channel router so they can be
// validated and stored within the graph database.
ctx.router.ProcessRoutingMessage(node1, node1.NodeID)
ctx.router.ProcessRoutingMessage(node2, node2.NodeID)
// Finally, to conclude our test set up, we'll create a channel
// announcement to announce the created channel between the two nodes.
channelAnn := &lnwire.ChannelAnnouncement{
FirstNodeSig: testSig,
SecondNodeSig: testSig,
ChannelID: chanID,
FirstBitcoinSig: testSig,
SecondBitcoinSig: testSig,
FirstNodeID: node1.NodeID,
SecondNodeID: node2.NodeID,
FirstBitcoinKey: node1.NodeID,
SecondBitcoinKey: node2.NodeID,
}
ctx.router.ProcessRoutingMessage(channelAnn, node1.NodeID)
// With the channel edge now in place, we'll subscribe for topology
// notifications.
ntfnClient, err := ctx.router.SubscribeTopology()
if err != nil {
t.Fatalf("unable to subscribe for channel notifications: %v", err)
}
// Create random policy edges that are stemmed to the channel id
// created above.
edge1 := randEdgePolicyAnn(chanID)
edge1.Flags = 0
edge2 := randEdgePolicyAnn(chanID)
edge2.Flags = 1
ctx.router.ProcessRoutingMessage(edge1, node1.NodeID)
ctx.router.ProcessRoutingMessage(edge2, node2.NodeID)
assertEdgeAnnCorrect := func(t *testing.T, edgeUpdate *ChannelEdgeUpdate,
edgeAnn *lnwire.ChannelUpdateAnnouncement) {
if edgeUpdate.ChanID != edgeAnn.ChannelID.ToUint64() {
t.Fatalf("channel ID of edge doesn't match: "+
"expected %v, got %v", chanID.ToUint64(), edgeUpdate.ChanID)
}
if edgeUpdate.ChanPoint != chanPoint {
t.Fatalf("channel don't match: expected %v, got %v",
chanPoint, edgeUpdate.ChanPoint)
}
// TODO(roasbeef): this is a hack, needs to be removed
// after commitment fees are dynamic.
if edgeUpdate.Capacity != chanValue-5000 {
t.Fatalf("capacity of edge doesn't match: "+
"expected %v, got %v", chanValue, edgeUpdate.Capacity)
}
if edgeUpdate.MinHTLC != btcutil.Amount(edgeAnn.HtlcMinimumMsat) {
t.Fatalf("min HTLC of edge doesn't match: "+
"expected %v, got %v", btcutil.Amount(edgeAnn.HtlcMinimumMsat),
edgeUpdate.MinHTLC)
}
if edgeUpdate.BaseFee != btcutil.Amount(edgeAnn.FeeBaseMsat) {
t.Fatalf("base fee of edge doesn't match: "+
"expected %v, got %v", edgeAnn.FeeBaseMsat,
edgeUpdate.BaseFee)
}
if edgeUpdate.FeeRate != btcutil.Amount(edgeAnn.FeeProportionalMillionths) {
t.Fatalf("fee rate of edge doesn't match: "+
"expected %v, got %v", edgeAnn.FeeProportionalMillionths,
edgeUpdate.FeeRate)
}
if edgeUpdate.TimeLockDelta != edgeAnn.TimeLockDelta {
t.Fatalf("time lock delta of edge doesn't match: "+
"expected %v, got %v", edgeAnn.TimeLockDelta,
edgeUpdate.TimeLockDelta)
}
}
const numEdgePolicies = 2
for i := 0; i < numEdgePolicies; i++ {
select {
case ntfn := <-ntfnClient.TopologyChanges:
edgeUpdate := ntfn.ChannelEdgeUpdates[0]
if i == 0 {
assertEdgeAnnCorrect(t, edgeUpdate, edge1)
if !edgeUpdate.AdvertisingNode.IsEqual(node1.NodeID) {
t.Fatalf("advertising node mismatch")
}
if !edgeUpdate.ConnectingNode.IsEqual(node2.NodeID) {
t.Fatalf("connecting node mismatch")
}
continue
}
assertEdgeAnnCorrect(t, edgeUpdate, edge2)
if !edgeUpdate.ConnectingNode.IsEqual(node1.NodeID) {
t.Fatalf("connecting node mismatch")
}
if !edgeUpdate.AdvertisingNode.IsEqual(node2.NodeID) {
t.Fatalf("advertising node mismatch")
}
case <-time.After(time.Second * 5):
t.Fatalf("update not received")
}
}
}
// TestNodeUpdateNotification tests that notifications are sent out when nodes
// either join the network for the first time, or update their authenticated
// attributes with new data.
func TestNodeUpdateNotification(t *testing.T) {
ctx, cleanUp, err := createTestCtx(1)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
// Create a new client to receive notifications.
ntfnClient, err := ctx.router.SubscribeTopology()
if err != nil {
t.Fatalf("unable to subscribe for channel notifications: %v", err)
}
// Create two random nodes to add to send as node announcement messages
// to trigger notifications.
node1Ann, err := createTestWireNode()
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
node2Ann, err := createTestWireNode()
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
// Send both announcement message to the channel router.
ctx.router.ProcessRoutingMessage(node1Ann, node1Ann.NodeID)
ctx.router.ProcessRoutingMessage(node2Ann, node2Ann.NodeID)
assertNodeNtfnCorrect := func(t *testing.T, ann *lnwire.NodeAnnouncement,
ntfns []*NetworkNodeUpdate) {
// For each processed announcement we should only receive a
// single announcement in a batch.
if len(ntfns) != 1 {
t.Fatalf("expected 1 notification, instead have %v",
len(ntfns))
}
// The notification received should directly map the
// announcement originally sent.
nodeNtfn := ntfns[0]
if nodeNtfn.Addresses[0] != ann.Addresses[0] {
t.Fatalf("node address doesn't match: expected %v, got %v",
nodeNtfn.Addresses[0], ann.Addresses[0])
}
if !nodeNtfn.IdentityKey.IsEqual(ann.NodeID) {
t.Fatalf("node identity keys don't match: expected %x, "+
"got %x", ann.NodeID.SerializeCompressed(),
nodeNtfn.IdentityKey.SerializeCompressed())
}
if nodeNtfn.Alias != ann.Alias.String() {
t.Fatalf("node alias doesn't match: expected %v, got %v",
ann.Alias.String(), nodeNtfn.Alias)
}
}
// Exactly two notifications should be sent, each corresponding to the
// node announcement messages sent above.
const numAnns = 2
for i := 0; i < numAnns; i++ {
select {
case ntfn := <-ntfnClient.TopologyChanges:
if i == 0 {
assertNodeNtfnCorrect(t, node1Ann, ntfn.NodeUpdates)
continue
}
assertNodeNtfnCorrect(t, node2Ann, ntfn.NodeUpdates)
case <-time.After(time.Second * 5):
}
}
// If we receive a new update from a node (with a higher timestamp),
// then it should trigger a new notification.
// TODO(roasbeef): assume monotonic time.
nodeUpdateAnn := *node1Ann
nodeUpdateAnn.Timestamp = node1Ann.Timestamp + 300
// Send off the new node announcement to the channel router.
ctx.router.ProcessRoutingMessage(&nodeUpdateAnn, node1Ann.NodeID)
// Once again a notification should be received reflecting the up to
// date node announcement.
select {
case ntfn := <-ntfnClient.TopologyChanges:
assertNodeNtfnCorrect(t, &nodeUpdateAnn, ntfn.NodeUpdates)
case <-time.After(time.Second * 5):
}
}
// TestNotificationCancellation tests that notifications are properly cancelled
// when the client wishes to exit.
func TestNotificationCancellation(t *testing.T) {
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtx(startingBlockHeight)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
// Create a new client to receive notifications.
ntfnClient, err := ctx.router.SubscribeTopology()
if err != nil {
t.Fatalf("unable to subscribe for channel notifications: %v", err)
}
// We'll create a fresh new node announcement to feed to the channel
// router.
node1Ann, err := createTestWireNode()
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
// Before we send the message to the channel router, we'll cancel the
// notifications for this client. As a result, the notification
// triggered by accepting this announcement shouldn't be sent to the
// client.
ntfnClient.Cancel()
ctx.router.ProcessRoutingMessage(node1Ann, node1Ann.NodeID)
select {
// The notification shouldn't be sent, however, the channel should be
// closed, causing the second read-value to be false.
case _, ok := <-ntfnClient.TopologyChanges:
if !ok {
return
}
t.Fatalf("notification sent but shouldn't have been")
case <-time.After(time.Second * 5):
t.Fatalf("notification client never cancelled")
}
}
// TestChannelCloseNotification tests that channel closure notifications are
// properly dispatched to all registered clients.
func TestChannelCloseNotification(t *testing.T) {
const startingBlockHeight = 101
ctx, cleanUp, err := createTestCtx(startingBlockHeight)
defer cleanUp()
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
// First we'll create the utxo for the channel to be "closed"
const chanValue = btcutil.Amount(10000)
fundingTx, chanUtxo, chanID := randChannelEdge(ctx, chanValue,
startingBlockHeight)
// We'll also add a record for the block that included our funding
// transaction.
fundingBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{fundingTx},
}
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight)
// Next we'll create two test nodes that the fake channel will be open
// between and add then as members of the channel graph.
node1, err := createTestWireNode()
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
node2, err := createTestWireNode()
if err != nil {
t.Fatalf("unable to create test node: %v", err)
}
// Finally, to conclude our test set up, we'll create a channel
// announcement to announce the created channel between the two nodes.
channelAnn := lnwire.ChannelAnnouncement{
FirstNodeSig: testSig,
SecondNodeSig: testSig,
ChannelID: chanID,
FirstBitcoinSig: testSig,
SecondBitcoinSig: testSig,
FirstNodeID: node1.NodeID,
SecondNodeID: node2.NodeID,
FirstBitcoinKey: node1.NodeID,
SecondBitcoinKey: node2.NodeID,
}
ctx.router.ProcessRoutingMessage(&channelAnn, node1.NodeID)
// With the channel edge now in place, we'll subscribe for topology
// notifications.
ntfnClient, err := ctx.router.SubscribeTopology()
if err != nil {
t.Fatalf("unable to subscribe for channel notifications: %v", err)
}
// Next, we'll simulate the closure of our channel by generating a new
// block at height 102 which spends the original multi-sig output of
// the channel.
blockHeight := uint32(102)
newBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{
{
TxIn: []*wire.TxIn{
{
PreviousOutPoint: chanUtxo,
},
},
},
},
}
ctx.chain.addBlock(newBlock, blockHeight)
ctx.notifier.notifyBlock(newBlock.Header.BlockHash(), blockHeight)
// The notification registered above should be sent, if not we'll time
// out and mark the test as failed.
select {
case ntfn := <-ntfnClient.TopologyChanges:
// We should have exactly a single notification for the channel
// "closed" above.
closedChans := ntfn.ClosedChannels
if len(closedChans) == 0 {
t.Fatalf("close channel ntfn not populated")
} else if len(closedChans) != 1 {
t.Fatalf("only one should've been detected as closed, "+
"instead %v were", len(closedChans))
}
// Ensure that the notification we received includes the proper
// update the for the channel that was closed in the generated
// block.
closedChan := closedChans[0]
if closedChan.ChanID != chanID.ToUint64() {
t.Fatalf("channel ID of closed channel doesn't match: "+
"expected %v, got %v", chanID.ToUint64(), closedChan.ChanID)
}
// TODO(roasbeef): this is a hack, needs to be removed
// after commitment fees are dynamic.
if closedChan.Capacity != chanValue-5000 {
t.Fatalf("capacity of closed channel doesn't match: "+
"expected %v, got %v", chanValue, closedChan.Capacity)
}
if closedChan.ClosedHeight != blockHeight {
t.Fatalf("close height of closed channel doesn't match: "+
"expected %v, got %v", blockHeight, closedChan.ClosedHeight)
}
if closedChan.ChanPoint != chanUtxo {
t.Fatalf("chan point of closed channel doesn't match: "+
"expected %v, got %v", chanUtxo, closedChan.ChanPoint)
}
case <-time.After(time.Second * 5):
t.Fatalf("notification not sent")
}
}