225 lines
7.5 KiB
Go
225 lines
7.5 KiB
Go
|
package contractcourt
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"crypto/sha256"
|
||
|
"encoding/binary"
|
||
|
"fmt"
|
||
|
"io"
|
||
|
)
|
||
|
|
||
|
// htlcIncomingContestResolver is a ContractResolver that's able to resolve an
|
||
|
// incoming HTLC that is still contested. An HTLC is still contested, if at the
|
||
|
// time of commitment broadcast, we don't know of the preimage for it yet, and
|
||
|
// it hasn't expired. In this case, we can resolve the HTLC if we learn of the
|
||
|
// preimage, otherwise the remote party will sweep it after it expires.
|
||
|
//
|
||
|
// TODO(roasbeef): just embed the other resolver?
|
||
|
type htlcIncomingContestResolver struct {
|
||
|
// htlcExpiry is the absolute expiry of this incoming HTLC. We use this
|
||
|
// value to determine if we can exit early as if the HTLC times out,
|
||
|
// before we learn of the preimage then we can't claim it on chain
|
||
|
// successfully.
|
||
|
htlcExpiry uint32
|
||
|
|
||
|
// htlcSuccessResolver is the inner resolver that may be utilized if we
|
||
|
// learn of the preimage.
|
||
|
htlcSuccessResolver
|
||
|
}
|
||
|
|
||
|
// Resolve attempts to resolve this contract. As we don't yet know of the
|
||
|
// preimage for the contract, we'll wait for one of two things to happen:
|
||
|
//
|
||
|
// 1. We learn of the preimage! In this case, we can sweep the HTLC incoming
|
||
|
// and ensure that if this was a multi-hop HTLC we are made whole. In this
|
||
|
// case, an additional ContractResolver will be returned to finish the
|
||
|
// job.
|
||
|
//
|
||
|
// 2. The HTLC expires. If this happens, then the contract is fully resolved
|
||
|
// as we have no remaining actions left at our disposal.
|
||
|
//
|
||
|
// NOTE: Part of the ContractResolver interface.
|
||
|
func (h *htlcIncomingContestResolver) Resolve() (ContractResolver, error) {
|
||
|
// If we're already full resolved, then we don't have anything further
|
||
|
// to do.
|
||
|
if h.resolved {
|
||
|
return nil, nil
|
||
|
}
|
||
|
|
||
|
// We'll first check if this HTLC has been timed out, if so, we can
|
||
|
// return now and mark ourselves as resolved.
|
||
|
_, currentHeight, err := h.ChainIO.GetBestBlock()
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
// If we're past the point of expiry of the HTLC, then at this point
|
||
|
// the sender can sweep it, so we'll end our lifetime.
|
||
|
if uint32(currentHeight) >= h.htlcExpiry {
|
||
|
// TODO(roasbeef): should also somehow check if outgoing is
|
||
|
// resolved or not
|
||
|
// * may need to hook into the circuit map
|
||
|
// * can't timeout before the outgoing has been
|
||
|
|
||
|
log.Infof("%T(%v): HTLC has timed out (expiry=%v, height=%v), "+
|
||
|
"abandoning", h, h.htlcResolution.ClaimOutpoint,
|
||
|
h.htlcExpiry, currentHeight)
|
||
|
h.resolved = true
|
||
|
return nil, h.Checkpoint(h)
|
||
|
}
|
||
|
|
||
|
// applyPreimage is a helper function that will populate our internal
|
||
|
// resolver with the preimage we learn of. This should be called once
|
||
|
// the preimage is revealed so the inner resolver can properly complete
|
||
|
// its duties.
|
||
|
applyPreimage := func(preimage []byte) {
|
||
|
copy(h.htlcResolution.Preimage[:], preimage)
|
||
|
|
||
|
log.Infof("%T(%v): extracted preimage=%x from beacon!", h,
|
||
|
h.htlcResolution.ClaimOutpoint, preimage[:])
|
||
|
|
||
|
// If this our commitment transaction, then we'll need to
|
||
|
// populate the witness for the second-level HTLC transaction.
|
||
|
if h.htlcResolution.SignedSuccessTx != nil {
|
||
|
// Within the witness for the success transaction, the
|
||
|
// preimage is the 4th element as it looks like:
|
||
|
//
|
||
|
// * <sender sig> <recvr sig> <preimage> <witness script>
|
||
|
//
|
||
|
// We'll populate it within the witness, as since this
|
||
|
// was a "contest" resolver, we didn't yet know of the
|
||
|
// preimage.
|
||
|
h.htlcResolution.SignedSuccessTx.TxIn[0].Witness[3] = preimage[:]
|
||
|
}
|
||
|
|
||
|
copy(h.htlcResolution.Preimage[:], preimage[:])
|
||
|
}
|
||
|
|
||
|
// If the HTLC hasn't expired yet, then we may still be able to claim
|
||
|
// it if we learn of the pre-image, so we'll subscribe to the preimage
|
||
|
// database to see if it turns up, or the HTLC times out.
|
||
|
//
|
||
|
// NOTE: This is done BEFORE opportunistically querying the db, to
|
||
|
// ensure the preimage can't be delivered between querying and
|
||
|
// registering for the preimage subscription.
|
||
|
preimageSubscription := h.PreimageDB.SubscribeUpdates()
|
||
|
blockEpochs, err := h.Notifier.RegisterBlockEpochNtfn(nil)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
defer func() {
|
||
|
preimageSubscription.CancelSubscription()
|
||
|
blockEpochs.Cancel()
|
||
|
}()
|
||
|
|
||
|
// With the epochs and preimage subscriptions initialized, we'll query
|
||
|
// to see if we already know the preimage.
|
||
|
preimage, ok := h.PreimageDB.LookupPreimage(h.payHash[:])
|
||
|
if ok {
|
||
|
// If we do, then this means we can claim the HTLC! However,
|
||
|
// we don't know how to ourselves, so we'll return our inner
|
||
|
// resolver which has the knowledge to do so.
|
||
|
applyPreimage(preimage[:])
|
||
|
return &h.htlcSuccessResolver, nil
|
||
|
}
|
||
|
|
||
|
for {
|
||
|
|
||
|
select {
|
||
|
case preimage := <-preimageSubscription.WitnessUpdates:
|
||
|
// If this isn't our preimage, then we'll continue
|
||
|
// onwards.
|
||
|
newHash := sha256.Sum256(preimage)
|
||
|
preimageMatches := bytes.Equal(newHash[:], h.payHash[:])
|
||
|
if !preimageMatches {
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
// Otherwise, we've learned of the preimage! We'll add
|
||
|
// this information to our inner resolver, then return
|
||
|
// it so it can continue contract resolution.
|
||
|
applyPreimage(preimage)
|
||
|
return &h.htlcSuccessResolver, nil
|
||
|
|
||
|
case newBlock, ok := <-blockEpochs.Epochs:
|
||
|
if !ok {
|
||
|
return nil, fmt.Errorf("quitting")
|
||
|
}
|
||
|
|
||
|
// If this new height expires the HTLC, then this means
|
||
|
// we never found out the preimage, so we can mark
|
||
|
// resolved and
|
||
|
// exit.
|
||
|
newHeight := uint32(newBlock.Height)
|
||
|
if newHeight >= h.htlcExpiry {
|
||
|
log.Infof("%T(%v): HTLC has timed out "+
|
||
|
"(expiry=%v, height=%v), abandoning", h,
|
||
|
h.htlcResolution.ClaimOutpoint,
|
||
|
h.htlcExpiry, currentHeight)
|
||
|
h.resolved = true
|
||
|
return nil, h.Checkpoint(h)
|
||
|
}
|
||
|
|
||
|
case <-h.Quit:
|
||
|
return nil, fmt.Errorf("resolver stopped")
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Stop signals the resolver to cancel any current resolution processes, and
|
||
|
// suspend.
|
||
|
//
|
||
|
// NOTE: Part of the ContractResolver interface.
|
||
|
func (h *htlcIncomingContestResolver) Stop() {
|
||
|
close(h.Quit)
|
||
|
}
|
||
|
|
||
|
// IsResolved returns true if the stored state in the resolve is fully
|
||
|
// resolved. In this case the target output can be forgotten.
|
||
|
//
|
||
|
// NOTE: Part of the ContractResolver interface.
|
||
|
func (h *htlcIncomingContestResolver) IsResolved() bool {
|
||
|
return h.resolved
|
||
|
}
|
||
|
|
||
|
// Encode writes an encoded version of the ContractResolver into the passed
|
||
|
// Writer.
|
||
|
//
|
||
|
// NOTE: Part of the ContractResolver interface.
|
||
|
func (h *htlcIncomingContestResolver) Encode(w io.Writer) error {
|
||
|
// We'll first write out the one field unique to this resolver.
|
||
|
if err := binary.Write(w, endian, h.htlcExpiry); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Then we'll write out our internal resolver.
|
||
|
return h.htlcSuccessResolver.Encode(w)
|
||
|
}
|
||
|
|
||
|
// Decode attempts to decode an encoded ContractResolver from the passed Reader
|
||
|
// instance, returning an active ContractResolver instance.
|
||
|
//
|
||
|
// NOTE: Part of the ContractResolver interface.
|
||
|
func (h *htlcIncomingContestResolver) Decode(r io.Reader) error {
|
||
|
// We'll first read the one field unique to this resolver.
|
||
|
if err := binary.Read(r, endian, &h.htlcExpiry); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Then we'll decode our internal resolver.
|
||
|
return h.htlcSuccessResolver.Decode(r)
|
||
|
}
|
||
|
|
||
|
// AttachResolverKit should be called once a resolved is successfully decoded
|
||
|
// from its stored format. This struct delivers a generic tool kit that
|
||
|
// resolvers need to complete their duty.
|
||
|
//
|
||
|
// NOTE: Part of the ContractResolver interface.
|
||
|
func (h *htlcIncomingContestResolver) AttachResolverKit(r ResolverKit) {
|
||
|
h.ResolverKit = r
|
||
|
}
|
||
|
|
||
|
// A compile time assertion to ensure htlcIncomingContestResolver meets the
|
||
|
// ContractResolver interface.
|
||
|
var _ ContractResolver = (*htlcIncomingContestResolver)(nil)
|